Remarks on lower bounds of the general Randić index R_{-1} of graph

I. Ž. Milovanovića ${ }^{\text {a }}$, E. I. Milovanović ${ }^{\text {b }}$
${ }^{a}$ University of Niš, Faculty of Electronic Engineering, Serbia
${ }^{b}$ University of Niš, Faculty of Electronic Engineering, Serbia

Abstract

Let $G=(V, E), V=\{1,2, \ldots, n\}$ be a simple graph with $n \geq 2$ vertices and m edges with vertex degree sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. Topological degree-based index of graph $R_{\alpha}=\sum_{i \sim j}\left(d_{i} d_{j}\right)^{\alpha}$, where $i \sim j$ denotes that vertices i and j are adjacent, is referred to as general Randić index. We consider the case when $\alpha=-1$ and obtain lower bound for R_{-1} and lower and upper bounds of normalized Laplacian eigenvalues.

1. Introduction

Let $G=(V, E)$ be an undirected simple, connected graph with $n \geq 2$ vertices and m edges, with vertex degree sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}, d_{i}=d(i), i=1,2, \ldots, n$. If two vertices are adjacent we denote it as $i \sim j$. The general Randic index R_{α} defined by Bollobas and Erdös [1]

$$
R_{\alpha}=\sum_{i \sim j}\left(d_{i} d_{j}\right)^{\alpha}
$$

where α is a given parameter, is generalization of the classic index, where $\alpha=-\frac{1}{2}$, introduced by Randic in 1975 [13]. The Randić index is an important molecular descriptor and has been closely related with many physico-chemical properties of alkanes, such as boiling points, surface areas, energy levels, etc. For details of chemical applications of the general Randić index see for example [7-9, 13, 14]. On other topological degree-based indices of graphs and their applications one can refer to [5, 6, 15].

If \mathbf{A} is the adjacency matrix of graph G and $\mathbf{D}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ the diagonal matrix of order $n \times n$, then $\mathbf{L}=\mathbf{D}-\mathbf{A}$ is the Laplacian matrix od G. Since G is connected, the matrix \mathbf{D} is nonsingular, so \mathbf{D}^{-1} is well defined. Matrix $\mathbf{L}^{*}=\mathbf{D}^{-1 / 2} \mathbf{L D}^{-1 / 2}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{A D}^{-1 / 2}$ is called the normalized Laplacian matrix of graph G. Eigenvalues of $\mathbf{L}^{*}, \rho_{1} \geq \rho_{2} \geq \cdots \geq \rho_{n-1}>\rho_{n}=0$, are normalized Laplacian eigenvalues of graph G. Some of their well known properties are [17]

$$
\sum_{i=1}^{n-1} \rho_{i}=n \quad \text { and } \quad \sum_{i=1}^{n-1} \rho_{i}^{2}=n+2 R_{-1}
$$

[^0]where $R_{-1}=\sum_{i \sim j} \frac{1}{d_{i} d_{j}}$ is general Randić index obtained for $\alpha=-1$.
The general Randić index can be exactly determined only for some particular classes of graphs. Therefore, it is important to derive inequalities that set up lower and upper bounds for this invariant, in terms of other graph parameters (see for example $[2,3,7,8,11,12,16]$). In the present article we establish lower bound for R_{-1}. In addition, we determine lower and upper bounds for the normalized Laplacian eigenvalues of graph, $\rho_{i}, i=1,2, \ldots, n-1$. The obtained results improve the one published in [16].

2. Preliminaries

In the sequel we recall the results from [16] that are of interest for our work.
Lemma 2.1. [16]. Let G be a simple connected graph on n vertices. If

$$
\begin{equation*}
\rho_{1} \leq \frac{2}{\sum_{i=1}^{n} d_{i}^{-2}} \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
R_{-1} \geq \frac{n-1}{2(n-2)}\left(\rho_{1}-\frac{n}{n-1}\right)^{2}+\frac{n}{2(n-1)} \tag{2.2}
\end{equation*}
$$

Lemma 2.2. [16] Let G be a simple connected graph. If

$$
\begin{equation*}
R_{-1} \leq 1, \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\rho_{1} \leq \frac{n}{n-1}+\sqrt{\frac{n-2}{n-1}\left(2 R_{-1}-\frac{n}{n-1}\right)} . \tag{2.4}
\end{equation*}
$$

In the text that follows we prove the inequality that is more general than (2.2). Then, we prove the inequality that establishes lower and upper bounds for all normalized Laplacian eigenvalues $\rho_{i}, i=$ $1,2, \ldots, n-1$, in terms of n and R_{-1}, and n, d_{1} and d_{n}. The inequality (2.4) will be obtained as a particular case of our results. Also, we prove that conditions (2.1) and (2.3) are needless.

3. Main result

Theorem 3.1. Let $G=(V, E)$ be a simple connected graph with $n \geq 3$ vertices and m edges. Then, for any real k with the property $\rho_{1} \geq k \geq \rho_{n-1}$.

$$
\begin{equation*}
R_{-1} \geq \frac{n-1}{2(n-2)}\left(k-\frac{n}{n-1}\right)^{2}+\frac{n}{2(n-1)} \tag{3.1}
\end{equation*}
$$

equality holds if and only if $k=\frac{n}{n-1}$ and $G \cong K_{n}$.
Proof In [10], a class $\mathcal{P}_{n}\left(a_{1}, a_{2}\right)$ of polynomials, with real roots, of the form

$$
P_{n}(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+b_{3} x^{n-3}+\cdots+b_{n}
$$

was considered, where a_{1} and a_{2} are fixed real numbers. It was proved that for the roots $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$, of that class of polynomials, the following inequalities are valid

$$
\begin{align*}
& \bar{x}+\frac{1}{n} \sqrt{\frac{\Delta}{n-1}} \leq x_{1} \leq \bar{x}+\frac{1}{n} \sqrt{(n-1) \Delta} \tag{3.2}\\
& \bar{x}-\frac{1}{n} \sqrt{\frac{i-1}{n-i+1} \Delta} \leq x_{i} \leq \bar{x}+\frac{1}{n} \sqrt{\frac{n-i}{i}} \Delta, \quad 2 \leq i \leq n-1 \tag{3.3}\\
& \bar{x}-\frac{1}{n} \sqrt{(n-1) \Delta} \leq x_{n} \leq \bar{x}-\frac{1}{n} \sqrt{\frac{\Delta}{n-1}} \tag{3.4}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \text { and } \quad \Delta=n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2} \tag{3.5}
\end{equation*}
$$

Consider now the polynomial

$$
\begin{aligned}
\varphi(x) & =x P_{n-1}(x)=x \prod_{i=1}^{n-1}\left(x-\rho_{i}\right)= \\
& =x\left(x^{n-1}+a_{1} x^{n-2}+a_{2} x^{n-3}+b_{3} x^{n-4}+\cdots+b_{n-1}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& a_{1}=-\sum_{i=1}^{n-1} \rho_{i}=-n \text { and } \\
& a_{2}=\frac{1}{2}\left(\left(\sum_{i=1}^{n-1} \rho_{i}\right)^{2}-\sum_{i=1}^{n-1} \rho_{i}^{2}\right)=\frac{1}{2}\left(n^{2}-n-2 R_{-1}\right)
\end{aligned}
$$

the polynomial $P_{n-1}(x)$ belongs to a class $\mathcal{P}_{n-1}\left(-n, \frac{1}{2}\left(n^{2}-n-2 R_{-1}\right)\right)$. According to (3.5) for $n:=n-1, x_{i}=\rho_{i}$, $i=1,2, \ldots, n-1$, we have

$$
\bar{x}=\frac{1}{n-1} \sum_{i=1}^{n-1} \rho_{i}=\frac{n}{n-1}
$$

and

$$
\Delta=(n-1) \sum_{i=1}^{n-1} \rho_{i}^{2}-\left(\sum_{i=1}^{n-1} \rho_{i}\right)^{2}=2(n-1) R_{-1}-n
$$

Now, for any k with the property $\rho_{1} \geq k \geq \rho_{n-1}$, according to (3.2) we have

$$
k \leq \rho_{1} \leq \frac{n}{n-1}+\frac{1}{n-1} \sqrt{(n-2)\left(2(n-1) R_{-1}-n\right)}
$$

i.e.

$$
\begin{equation*}
(n-1) k-n \leq \sqrt{(n-2)\left(2(n-1) R_{-1}-n\right)} \tag{3.6}
\end{equation*}
$$

On the other hand, based on (3.4) we have that

$$
\rho_{1} \geq k \geq \rho_{n-1} \geq \frac{n}{n-1}-\frac{1}{n-1} \sqrt{(n-2)\left(2(n-1) R_{-1}-n\right)}
$$

i.e.

$$
\begin{equation*}
n-(n-1) k \leq \sqrt{(n-2)\left(2(n-1) R_{-1}-n\right)} \tag{3.7}
\end{equation*}
$$

According to (3.6) and (3.7) we have that

$$
|n-(n-1) k| \leq \sqrt{(n-2)\left(2(n-1) R_{-1}-n\right)}
$$

wherefrom we obtain the required result.

Remark 3.2. For $k=\rho_{1}$ from (3.1) the inequality (2.2) follows. Also, for any $k=\rho_{i}, 1 \leq i \leq n-1$,

$$
R_{-1} \geq \frac{n-1}{2(n-2)}\left(\rho_{i}-\frac{n}{n-1}\right)^{2}+\frac{n}{2(n-1)}
$$

Equality holds if and only if $G \cong K_{n}$. It is easy to conclude that the condition (2.1) in Lemma 2.1 is needless.
For $n:=n-1, x_{i}=\rho_{i}, i=1,2, \ldots, n$, from (3.2), (3.3) (3.4) and (3.5), we obtain the following result:
Theorem 3.3. Let $G=(V, E)$ be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{align*}
& \frac{n}{n-1}+\frac{1}{n-1} \sqrt{\frac{2(n-1) R_{-1}-n}{n-2}} \leq \tag{3.8}\\
& \leq \rho_{1} \leq \frac{n}{n-1}+\frac{1}{n-1} \sqrt{(n-2)\left(2(n-1) R_{-1}-n\right)}, \\
& \quad \frac{n}{n-1}-\frac{1}{n-1} \sqrt{\frac{i-1}{n-i}\left(2(n-1) R_{-1}-n\right)} \leq \\
& \leq \rho_{i} \leq \frac{n}{n-1}+\frac{1}{n-1} \sqrt{\frac{n-i-1}{i}\left(2(n-1) R_{-1}-n\right)}, 2 \leq i \leq n-2, \\
& \frac{n}{n-1}-\frac{1}{n-1} \sqrt{(n-2)\left(2(n-1) R_{-1}-n\right)} \leq \rho_{n-1} \leq \\
& \leq \frac{n}{n-1}-\frac{1}{n-1} \sqrt{\frac{2(n-1) R_{-1}-n}{n-2}} . \tag{3.9}
\end{align*}
$$

Equalities hold if and only if $G \cong K_{n}$.
Remark 3.4. Right-hand side of the inequality (3.8) coincides with (2.4). It is obvious that the condition (2.3), from Lemma 2.2, is needless. Let us note that left-hand side of (3.8) as well as right-hand part of (3.9) were proved in [16].

The following inequality was proved in [2]:

$$
\frac{n}{2 d_{1}} \leq R_{-1} \leq \frac{n}{2 d_{n}}
$$

Having that in mind, the following corollary of the Theorem 3.3 is obtained.
Corollary 3.5. Let $G=(V, E)$ be a simple graph with $n \geq 2$ vertices and m edges. Then

$$
\begin{aligned}
& \frac{n}{n-1}+\frac{1}{n-1} \sqrt{\frac{n\left(n-1-d_{1}\right)}{(n-2) d_{1}}} \leq \rho_{1} \leq \\
& \leq \frac{n}{n-1}+\frac{1}{n-1} \sqrt{\frac{n(n-2)\left(n-1-d_{n}\right)}{d_{n}}}, \\
& \frac{n}{n-1}-\frac{1}{n-1} \sqrt{\frac{n(i-1)\left(n-1-d_{n}\right)}{(n-i) d_{n}}} \leq \rho_{i} \leq \\
& \leq \frac{n}{n-1}+\frac{1}{n-1} \sqrt{\frac{n(n-i-1)\left(n-1-d_{n}\right)}{i d_{n}}}, \quad 2 \leq i \leq n-2 \\
& \frac{n}{n-1}-\frac{1}{n-1} \sqrt{\frac{n(n-2)\left(n-1-d_{n}\right)}{d_{n}}} \leq \rho_{1} \leq \\
& \leq \frac{n}{n-1}-\frac{1}{n-1} \sqrt{\frac{n\left(n-1-d_{1}\right)}{(n-2) d_{1}}},
\end{aligned}
$$

equalities hold if and only if $G \cong K_{n}$.

References

[1] B. Bollobas, P. Erdös, Graphs of extended weights, Ars. Combin. 50 (1998) 225-233.
[2] M. Cavers, The normalized Laplacian matrix and general Randić index of graphs, Ph. Disertation, Univ. Regina, Regina, 2010.
[3] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R_{-1} of graph, Lin. Algebra Appl., 433 (2010), 172-190.
[4] F. R. K. Chung, Spectral graph theory, Am. Math. Soc., Providence, 1997.
[5] M. V. Duidea, M. S. Florescu, P. V. Khadikar, Molecular topology and its applications, Eficon Press, Bucarest, 2006.
[6] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351-361.
[7] X. Li, Y. Yang, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem., 51 (2004), 155-166.
[8] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59(1)(2008), 127-156.
[9] X. Li, I. Gutman, Mathematical aspects on the Randić-type molecular structure descriptors, I, Univ. Kragujevac, Kragujevac, 2006.
[10] A. Lupas, Inequalities for the roots of a class of polynomials, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Math. Fiz. 594 (1977) 79-85.
[11] I. Ž. Milovanović, P. M. Bekakos, M. P. Bekakos, E. I. Milovanović, Remark on upper bounds of Randić index of a graph, Creat. Math. Inform., 25 (1) (2016), 65-69.
[12] E. I. Milovanović, P. M. Bekakos, M. P. Bekakos, I. Ž. Milovanović, Sharp bounds for the general Randić index R_{-1} of a graph, Rocky Mountain J. Math. (in print).
[13] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609-6615.
[14] M. Randić, On the history of the Randić index and energing hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem., 59 (2008), 5-124.
[15] R. Todeschini, V. Cousonni, Handbook of molecular descriptors, Wiley-VCH, Weinheim, 2000.
[16] G. Yu, L. Feng, Randić index and eigenvalues of graphs, Rocky Mountain J. Math., 40 (2) (2010), 713-721.
[17] P. Zumstein, Comparision of spectral methods through the adjacency matrix and the Laplacian of a graph, TH Diploma, ETH Zürich, 2005.

[^0]: 2010 Mathematics Subject Classification. 05C50.
 Keywords. Normalized Laplacian eigenvalues; general Randić index.
 Received: 8 May 2016; Accepted: 6 June 2016
 Communicated by Dragan S. Djordjevic
 Email addresses: igor@elfak.ni.ac.rs (I. Ž. Milovanović), ema@elfak.ni.ac.rs (E. I. Milovanović)

