
Applied Mathematics and
Computer Science
1 (1) (2016), 15–26

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we analyze the Li-Yorke chaotic properties of abstract non-degenerate differential
equations of first order in Banach and Fréchet spaces. We investigate the property of Li-Yorke chaos
for sequences of linear (not necessarily continuous) operators. Li-Yorke chaotic properties of translation
semigroups and strongly continuous semigroups induced by semiflows are studied, as well.

1. Introduction and preliminaries

The notion of Li-Yorke chaos was introduced by Li and Yorke [17] in 1975, and it has attracted great
attention after that. Li-Yorke chaotic linear continuous operators on Banach and Fréchet spaces have been
thoroughly analyzed in [5] and [7] (cf. also [1], [8] and [13]). It is said that a linear continuous operator T
acting on a Fréchet space X is Li-Yorke chaotic iff there exists an uncountable set S ⊆ X (scrambled set) such
that for each pair x, y ∈ S of distinct points we have that

lim inf
k→+∞

d
(
Tkx,Tky

)
= 0 and lim sup

k→+∞
d
(
Tkx,Tky

)
> 0,

where d(·, ·) is the metric on X defined by the equation (1) below. If S can be chosen to be dense in X, then
we say that T is densely Li-Yorke chaotic.

The main aim of this paper is to transfer the results of Bernardes Jr et al. [7] to strongly continuous
semigroups in Fréchet spaces, as well as to continue the researches of Wu [19] and Conejero et al. [9]. The
organization of paper can be briefly described as follows. In the second section of paper, we examine the
possibility to extend results presented in [7] to sequences of linear, in general, non-continuous operators. In
the third section, we introduce the notion of a X̃-Li-Yorke (semi)-irregular vector of a strongly continuous
semigroup (T(t))t≥0. We prove in Theorem 3.7 that, under some conditions, any neighborhood of a X̃-
Li-Yorke semi-irregular vector x of (T(t))t≥0 contains a X̃-Li-Yorke irregular vector of (T(t))t≥0. From the
point of view of possible applications, the most important results of third section are Theorem 3.13 and
Corollary 3.14. In the fourth section of paper, we enquire into the basic Li-Yorke chaotic properties of
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translation semigroups and strongly continuous semigroups induced by semiflows, acting on various
classes of weighted function spaces.

Throughout this paper, we assume that X is an infinite-dimensional Fréchet space over the field od
complex numbers, and that the topology of X is induced by the fundamental system (pn)n∈N of increasing
seminorms. The translation invariant metric d : X × X→ [0,∞) is defined by

d(x, y) :=
∞∑

n=1

1
2n

pn(x − y)
1 + pn(x − y)

, x, y ∈ X. (1)

Let us recall that d(·, ·) has the following properties:

d(x + u, y + v) ≤ d(x, y) + d(u, v), x, y, u, v ∈ X, (2)

d(cx, cy) ≤ (|c| + 1)d(x, y), c ∈ C, x, y ∈ X, (3)

and

d(αx, βx) ≥
|α − β|

1 + |α − β|d(0, x), x ∈ X, α, β ∈ C. (4)

If (Z, ∥ · ∥Z) is a Banach space under consideration, then it will be assumed that the metric on Z is given
by dZ(x, y) := ∥x − y∥Z, x, y ∈ Z; the norm on X will be abbreviated to ∥ · ∥. By I we denote the identity
operator on X. Suppose now that Y is another Fréchet space over the field of complex numbers and the
topology of Y is induced by the fundamental system (pY

n )n∈N of increasing seminorms. By dY(·, ·) we denote
the induced metric on Y (cf. (1)), and by L(X,Y) we denote the space which consists of all continuous linear
mappings from X into Y; L(X) ≡ L(X,X). Throughout the paper, X̃ denotes a closed linear subspace of X.
Let B be the family of bounded subsets of X and let pn,B(T) := supx∈B pY

n (Tx), n ∈ N, B ∈ B, T ∈ L(X,Y).
Then pn,B(·) is a seminorm on L(X,Y) and the calibration (pn,B)(n,B)∈N×B induces a Hausdorff locally convex
topology on L(X,Y). In the case that (X, ∥ · ∥) or (Y, ∥ · ∥Y) is a Banach space, then the distance of two elements
x, y ∈ X (x, y ∈ Y) will be defined by d(x, y) := ∥x − y∥ (dY(x, y) := ∥x − y∥Y). By A we denote a closed linear
operator acting on X; unlesss stated otherwise, C ∈ L(X) denotes an injective operator satisfying CA ⊆ AC.
The domain, range, point spectrum and adjoint operator of A are denoted by D(A), ρ(A), R(A), σp(A) and A∗,
respectively. Since no confusion seems likely, we will identify A with its graph. Recall that the C-resolvent
set of A, denoted by ρC(A), is defined by ρC(A) := {λ ∈ C : λ−A is injective and (λ−A)−1C ∈ L(X)}. Suppose
now that F is a linear subspace of X. Then the part of A in F, denoted by A|F, is a linear operator defined
by D(A|F) := {x ∈ D(A) ∩ F : Ax ∈ F} and A|Fx := Ax, x ∈ D(A|F). If X̃ is a closed linear subspace of X, then
X̃ is a Fréchet space itself and the fundamental system of seminorms which induces the topology on X̃ is
(pn |X̃)n∈N.

2. Li-Yorke chaos for single operators

Throughout this section, we assume that X and Y are two infinite-dimensional Fréchet spaces over the
field of complex numbers and that the topology of Y is induced by the fundamental system (pY

n )n∈N of
increasing seminorms. Our main aim is to investigate the basic Li-Yorke chaotic properties of a sequence
(Tk)k∈N of linear, not necessarily continuous, mappings between the spaces X and Y.

Definition 2.1. Suppose that, for every k ∈N,Tk : D(Tk)→ Y is a linear operator and X̃ is a closed linear subspace of
X. Then we say that the sequence (Tk)k∈N is X̃-Li-Yorke chaotic iff there exists an uncountable set S ⊆ ∩∞k=1 D(Tk)∩ X̃
such that for each pair x, y ∈ S of distinct points we have that

lim inf
k→+∞

dY

(
Tkx,Tky

)
= 0 and lim sup

k→+∞
dY

(
Tkx,Tky

)
> 0; (5)

the sequence (Tk)k∈N is said to be densely X̃-Li-Yorke chaotic iff S can be chosen to be dense in X̃. A linear operator
T : D(T)→ Y is said to be (densely) X̃-Li-Yorke chaotic iff the sequence (Tk ≡ Tk)k∈N is. If X̃ = X, then we also say
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that the sequence (Tk)k∈N (the operator T) is Li-Yorke chaotic. The set S is said to be X̃-scrambled set (scrambled set,
in the case that X̃ = X) of the sequence (Tk)k∈N (the operator T). If (5) holds, then we call (x, y) a Li-Yorke pair for
(Tk)k∈N.

Besides of above, we can also introduce some other notions of (subspace) Li-Yorke chaoticity of se-
quence (Tk)k∈N, like generic Li-Yorke chaoticity, densely weak Li-Yorke chaoticity, generically weak Li-Yorke
chaoticity, Li-Yorke sensitivity and spatio-temporal chaoticity (cf. [7, p. 1724] and [19, Definition 1.1]).

Now we will introduce the notions of X̃-Li-Yorke irregular vectors for (Tk)k∈N and X̃-Li-Yorke semi-
irregular vectors for (Tk)k∈N following the approaches of Beauzamy [4] (Banach space setting) and Bernardes
Jr et al. [7] (Fréchet space setting):

Definition 2.2. Let X̃ be a closed linear subspace of X, let for each k ∈ N Tk : D(Tk) → Y be a linear operator, and
let x ∈ ∩∞k=1 D(Tk) ∩ X̃. Then it is said that x is:

(i) a X̃-Li-Yorke irregular vector for (Tk)k∈N iff there exists a sequence (kn) of non-negative integers such that the
set {Tkx : k ∈N} is unbounded in Y and limn→+∞ Tkn x = 0;

(ii) a X̃-Li-Yorke semi-irregular vector for (Tk)k∈N iff there exists a sequence (kn) of non-negative integers such that
Tkx does not converge to zero as k→ +∞, but limn→+∞ Tkn x = 0.

In the case that X̃ = X, then we also say that x is a Li-Yorke (semi-)irregular vector for (Tk)k∈N. The notions of a X̃-
Li-Yorke (semi-)irregular vector and a Li-Yorke (semi-)irregular vector for the operator T : D(T)→ Y are introduced
similarly.

It can be simply verified with the help of translation-invariance of metric dY(·, ·) and the properties (2)-(4)
that if 0 , x ∈ ∩∞k=1 D(Tk)∩ X̃ is a X̃-Li-Yorke irregular vector for the sequence (Tk)k∈N (the operator T), then
(Tk)k∈N (T) is X̃-Li-Yorke chaotic, with S ≡ span{x} being the corresponding scrambled set. On the other
hand, if the sequence (Tk)k∈N (the operator T) is X̃-Li-Yorke chaotic and S is the corresponding X̃-scrambled
set, then for each two distinct points x, y ∈ S, x − y is a X̃-Li-Yorke semi-irregular vector for (Tk)k∈N (the
operator T).

Let X′ ⊆ ∩∞k=1 D(Tk) ∩ X̃ be a linear manifold. Then it is said that X′ is a X̃-Li-Yorke irregular manifold
for the sequence (Tk)k∈N (the operator T) (Li-Yorke irregular manifold for (Tk)k∈N (T), in the case that X̃ = X)
iff any vector x ∈ X′ \ {0} is a X̃-Li-Yorke irregular vector for (Tk)k∈N (T); the notion of a (X̃-)Li-Yorke semi-
irregular manifold for (Tk)k∈N (T) is defined similarly. Further on, it is said that X′ is a uniformly X̃-Li-Yorke
irregular manifold for the sequence (Tk)k∈N (the operator T) (uniformly Li-Yorke irregular manifold for
(Tk)k∈N (T), in the case that X̃ = X) iff there exists q ∈ N such that, for every x ∈ X′ \ {0}, there exists
a sequence (kn) of non-negative integers such that the set {pY

q (Tkx) : k ∈ N} is unbounded in [0,∞) and
limn→+∞ Tkn x = 0; this notion can be similarly introduced for (X̃-)Li-Yorke semi-irregular vectors. It is
evident that if 0 , x ∈ ∩∞k=1 D(Tk)∩ X̃ is a X̃-Li-Yorke irregular vector for the sequence (Tk)k∈N (the operator
T), then X′ ≡ span{x} is a uniformly X̃-Li-Yorke (semi-)irregular manifold for (Tk)k∈N (T).

If (Tk)k∈N and X̃ are given in advance, then we define the linear mappings Tk : D(Tk) → Y by D(Tk) :=
D(Tk) ∩ X̃ and Tkx := Tkx, x ∈ D(Tk) (k ∈ N). Then (Tk)k∈N is a sequence of linear mappings between the
Fréchet spaces X̃ and Y. The following proposition shows that X̃-Li-Yorke chaotic properties of sequence
(Tk)k∈N can be analysed by passing to sequence (Tk)k∈N; the proof is very easy and therefore omitted. Similar
statement can be formulated for X̃-Li-Yorke chaotic properties of unbounded linear operators.

Proposition 2.3. (i) The sequence (Tk)k∈N is (densely) X̃-Li-Yorke chaotic iff the sequence (Tk)k∈N is (densely)
Li-Yorke chaotic.

(ii) A vector x is a X̃-Li-Yorke (semi-)irregular vector for the sequence (Tk)k∈N iff x is a Li-Yorke (semi-)irregular
vector for the sequence (Tk)k∈N.

(iii) A linear manifold X′ ⊆ ∩∞k=1 D(Tk)∩ X̃ is a (uniformly) X̃-Li-Yorke (semi-)irregular manifold for the sequence
(Tk)k∈N iff X′ is a (uniformly) Li-Yorke (semi-)irregular manifold for the sequence (Tk)k∈N.



M. Kostić / Appl. Math. Comp. Sci. 1 (1) (2016), 15–26 18

In order to relax our further exposition, we will assume that X̃ = X henceforth. The following theorem
provides generalizations of [7, Proposition 3 and 5; Corollary 4 and 6]; the proof can be deduced by using
the arguments contained in the proofs of these assertions and therefore omitted.

Theorem 2.4. Supppose that Tk ∈ L(X,Y) for all k ∈N.
(i) The set of all vectors x ∈ X such that (Tkx)k∈N has a subsequence converging to zero is a Gδ-set in X.

(ii) If the set of all points x ∈ X such that (Tkx)k∈N has a subsequence converging to zero is dense in X, then it is
residual in X.

(iii) If the set {Tku : k ∈N} is unbounded in Y, then the sequence (Tk)k∈N has a residual set of vectors with unbounded
orbits, i.e., the vectors x ∈ X for which the set {Tkx : k ∈N} is unbounded in Y.

(iv) If the set of all irregular vectors for the sequence (Tk)k∈N is dense in X, then it is residual in X.

Unfortunately, the assertions of [7, Lemma 7, Theorem 8, Lemma 13] cannot be so easily reconsidered
for sequences of operators, even in the case that they are all continuous and X = Y. The semigroup property
of sequence (Tk)k∈N, where T ∈ L(X), plays an important role in the proof of [7, Lemma 7]. Concerning [7,
Theorem 9], we can only prove the implications (i)⇒ (ii)⇒ (iii) and (iv)⇒ (i) of this theorem for sequences
of linear, possibly unbounded, linear operators: summa summarum, we are not in a position to apply the
method from our previous research of distributionally chaotic properties of linear operators [9] (cf. also [6])
in the analysis of Li-Yorke chaotic properties of fractionally integrated C-semigroups and abstract fractional
differential equations.

In the above-mentioned paper, we have already constructed some important examples of unbounded
differential operators that are Li-Yorke chaotic:

Example 2.5. Suppose that X is separable, D(A) and R(C) are dense in X, CA ⊆ AC, z0 ∈ C \ {0}, β ≥ −1, d ∈ (0, 1],
m ∈ (0, 1), ε ∈ (0, 1] and γ > −1. Denote Bd = {z ∈ C : |z| ≤ d}. Assume, further, that the following conditions hold:

(i) Pz0,β,ε,m := ei arg(z0)
(
|z0| + (Pβ,ε,m ∪ Bd)

)
⊆ ρC(A), (ε,m(1 + ε)−β) ∈ ∂Bd,

(ii) the family {(1 + |λ|)−γ(λ − A)−1C : λ ∈ Pz0,β,ε,m} is equicontinuous,

(iii) the mapping λ 7→ (λ − A)−1Cx, λ ∈ Pz0,β,ε,m is continuous for every fixed element x ∈ X, and

(iv) there exist a dense subset X0 of X and a number λ ∈ σp(A) such that limk→∞Akx = 0, x ∈ X0 and |λ| > 1.

Then we have proved in [9, Theorem 3.13] that there exists a dense uniformly distributionally irregular manifold W
for the operator zAn, where n ∈ N, z ∈ C and |z| = 1. This, in particular, implies that the operator zAn is densely
Li-Yorke chaotic, with W being the corresponding scrambled set.

A concrete example can be simply constructed. Suppose that r > 0, σ > 0, ν = σ/
√

2, γ = r/µ − µ, s > 1, sν > 1
and τ ≥ 0. Set

Ys,τ :=
{

u ∈ C((0,∞)) : lim
x→0

u(x)
1 + x−τ

= lim
x→∞

u(x)
1 + xs = 0

}
.

Then Ys,τ, equipped with the norm

∥u∥s,τ := sup
x>0

∣∣∣∣∣∣ u(x)(
1 + x−τ

)(
1 + xs

) ∣∣∣∣∣∣, u ∈ Ys,τ,

becomes a separable Banach space. Let Dµ := νxd/dx,with maximal domain in Ys,τ, and let the Black-Scholes operator
B be defined by B := D2

ν + γDµ − r. Let us recall that H. Emamirad, G. R. Goldstein and J. A. Goldstein have
proved in [11] that the operator B generates a chaotic strongly continuous semigroup (it can be easily seen that the
Black-Scholes semigroup is densely distributionally chaotic, as well; cf. [9] for the notion). By [11, Lemma 3.3], the
proof of [11, Lemma 3.5] (cf. especially the Figure 1 in the abovementioned paper, in the Ox′y′ coordinate system,
with x′ = x/ν and y′ = y/ν), it readily follows that the operator A = B satisfies the properties (i)-(iv) with C = I.
Hence, B is densely Li-Yorke chaotic.
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We close this section by observing that the arguments contained in the proof of [7, Proposition 11] can
serve one to verify the validity of following proposition.

Proposition 2.6. Suppose that the set consisted of all semi-irregular vectors of a linear densely defined operator T is
dense in X. Then the operator T∗ cannot have an eigenvalue λ with |λ| ≥ 1.

3. Li-Yorke chaotic properties of strongly continuous semigroups

An operator family (T(t))t≥0 (T(t) ∈ L(X), t ≥ 0) is said to be a strongly continuous semigroup iff:

(i) T(0) = I,

(ii) T(t + s) = T(t)T(s), t, s ≥ 0 and

(iii) the mapping t 7→ T(t)x, t ≥ 0 is continuous for every fixed x ∈ X.

The linear operator

A :=
{

(x, y) ∈ X × X : lim
t→0+

T(t)x − x
t

= y
}

is said to be the infinitesimal generator of (T(t))t≥0.
The notions of various types of Li-Yorke chaos for strongly continuous semigroups on Banach spaces,

introduced by Wu in [19, Definition 1.1], can be very simply transferred to Fréchet spaces. Here we will only
consider the notions of (subspace) Li-Yorke chaoticity and (subspace) dense Li-Yorke chaoticity of strongly
continuous semigroups; let us recall that X̃ denotes a closed linear subspace of X.

Definition 3.1. A strongly continuous semigroup (T(t))t≥0 ⊆ L(X) is said to be X̃-Li-Yorke chaotic iff there exists an
uncountable set S ⊆ X̃ (X̃-scrambled set) such that for each pair x, y ∈ S of distinct points we have that:

lim inf
t→+∞

d(T(t)x,T(t)y) = 0 and lim sup
t→+∞

d(T(t)x,T(t)y) > 0. (6)

If we can choose S to be dense in X̃, then we say that (T(t))t≥0 is densely X̃-Li-Yorke chaotic. Any pair (x, y) satisfying
(6) is called a X̃-Li-Yorke pair for (T(t))t≥0. Finally, if X̃ = X, then we say that (T(t))t≥0 is (densely) Li-Yorke chaotic
and that (x, y) is a Li-Yorke pair for (T(t))t≥0; in this case, S is called a scrambled set.

The notion of a X̃-Li-Yorke (semi-)irregular vector for (T(t))t≥0 is introduced in the following definition.

Definition 3.2. Let (T(t))t≥0 ⊆ L(X) be a strongly continuous semigroup, and let x ∈ X̃. Then it is said that x is:

(i) a X̃-Li-Yorke irregular vector for (T(t))t≥0 iff there exists a sequence (tn) in [0,∞) such that the set {T(t)x : t ≥ 0}
is unbounded in X and limn→+∞ T(tn)x = 0;

(ii) a X̃-Li-Yorke semi-irregular vector for (T(t))t≥0 iff there exists a sequence (tn) in [0,∞) such that T(t)x does not
converge to zero as t→ +∞, but limn→+∞ T(tn)x = 0.

In the case that X̃ = X, then we also say that x is a Li-Yorke (semi-)irregular vector for (T(t))t≥0.

Before proceeding further, we want to observe that, in the formulation of part (i), we do not require that
{T(t)x : t ≥ 0} is a subset of X̃. The hypercyclicity of strongly continuous semigroups in Fréchet spaces is a
stronger notion than the dense Li-Yorke chaoticity. Speaking-matter-of-factly, the continuous analogue of
Herrero-Bourdon theorem [12, Theorem 7.17] holds for strongly continuous semigroups in Fréchet spaces;
using this fact, it readily follows that any hypercyclic strongly continuous semigroup (T(t))t≥0 on a Fréchet
space X has a dense subspace S consisting entirely of hypercyclic vectors, so that (T(t))t≥0 is automatically
densely Li-Yorke chaotic, with S being the corresponding scrambled set ([2], [12]). Regrettably, only a few
statements from [16, Section 3.1] can be reformulated for Li-Yorke chaotic strongly continuous semigroups.
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If x , 0 is a X̃-Li-Yorke irregular vector for (T(t))t≥0, then (T(t))t≥0 is X̃-Li-Yorke chaotic; on the other
hand, if (T(t))t≥0 is X̃-Li-Yorke chaotic and S is the corresponding X̃-scrambled set, then, for every two
distinct vectors x, y ∈ S, x− y is a X̃-Li-Yorke semi-irregular vector for (T(t))t≥0. Suppose now that X′ ⊆ X̃ is
a linear manifold. In analogy with our previous considerations of Li-Yorke chaotic properties of unbounded
linear operators and their sequences, we define the following notions: X′ is called a X̃-Li-Yorke irregular
manifold for (T(t))t≥0 (Li-Yorke irregular manifold for (T(t))t≥0, in the case that X̃ = X) iff any vector
x ∈ X′ \ {0} is a X̃-Li-Yorke irregular vector for (T(t))t≥0; the notion of X̃-Li-Yorke semi-irregular manifold
for (T(t))t≥0 (Li-Yorke semi-irregular manifold for (T(t))t≥0) is defined similarly. Clearly, if X′ is a X̃-Li-Yorke
irregular manifold for (T(t))t≥0, then X′ is a X̃-scrambled set. It is said that X′ is a uniformly X̃-Li-Yorke
irregular manifold for (T(t))t≥0 (uniformly Li-Yorke irregular manifold for (T(t))t≥0, in the case that X̃ = X)
iff there exists q ∈ N such that, for every x ∈ X′ \ {0}, there exists a sequence (tn) in [0,∞) such that the set
{pq(T(t)x) : t ≥ 0} is unbounded in [0,∞) and limn→+∞ T(tn)x = 0; this notion can be similarly introduced for
X̃-Li-Yorke semi-irregular vectors. Clearly, if 0 , x ∈ X̃ is a X̃-Li-Yorke (semi-)irregular vector for (T(t))t≥0,
then X′ ≡ span{x} is a uniformly X̃-Li-Yorke (semi-)irregular manifold for (T(t))t≥0.

The conjugacy lemma for Li-Yorke chaos of strongly continuous semigroups reads as follows. A
straightforward proof is omitted.

Theorem 3.3. Supppose that (T(t))t≥0 is a strongly continuous semigroup in X, X̃ is a closed linear subspace of X,
(S(t))t≥0 is a strongly continuous semigroup in Y,Φ : X→ Y is a linear continuous isomorphism and S(t)◦Φ = Φ◦T(t)
for all t ≥ 0. Then the following holds:

(i) (T(t))t≥0 is (densely) X̃-Li-Yorke chaotic iff (S(t))t≥0 is (densely) Φ(X̃)-Li-Yorke chaotic.

(ii) An element x ∈ X̃ is a X̃-Li-Yorke (semi-)irregular vector for (T(t))t≥0 iffΦ(x) is aΦ(X̃)-Li-Yorke (semi-)irregular
vector for (S(t))t≥0.

It can be simply verified that the following continuous version of Theorem 2.4 holds good.

Theorem 3.4. Supppose that (T(t))t≥0 is a strongly continuous semigroup in X.

(i) The set of all vectors x ∈ X̃ such that there exists a sequence (tn) in [0,∞) with limn→+∞ T(tn)x = 0 is a Gδ-set
in the Fréchet space X̃.

(ii) If the set of all points x ∈ X̃ such that there exists a sequence (tn) in [0,∞) with limn→+∞ T(tn)x = 0 is dense
in X̃, then it is residual in X̃.

(iii) If there exists u ∈ X̃ such that the set {T(t)u : t ≥ 0} is unbounded in X, then (T(t))t≥0 has a residual set of
vectors with unbounded orbits in the Fréchet space X̃, i.e., the vectors x ∈ X̃ for which the set {T(t)x : t ≥ 0} is
unbounded in X.

(iv) If the set of all irregular vectors for (T(t))t≥0 is dense in X̃, then it is residual in X̃.

Now we will transfer the assertion of [7, Lemma 7] to strongly continuous semigroups in Fréchet spaces.

Lemma 3.5. Suppose that (T(t))t≥0 is a strongly continuous semigroup in X. If x ∈ X is a semi-irregular vector
for (T(t))t≥0 which is not irregular for (T(t))t≥0, then there exists a sequence (x j) of non-zero vectors in X such that
αx +

∑∞
j=1 β jx j is an irregular vector for (T(t))t≥0, whenever α is a scalar and (β j) is a sequence of scalars that takes

only finitely many values and has infinitely many non-zero coordinates.

Proof. The proof is very similar to that of [7, Lemma 7] and, because of that, we will only outline a few
most important details. Since the function t 7→ T(t)x, t ≥ 0 does not converge to 0 as t → +∞, there exist a
sequence (tn) in [0,∞) and an absolutely convex closed neighborhood V of 0 in X such that T(tn)x < V for
infinitely many values of n. On the other hand, the set {T(t)x : t ≥ 0} must be bounded in X, whence we
may conclude that there exists r ∈ N such that T(t)x ∈ rV for all t ≥ 0. Since x is a semi-irregular vector for
(T(t))t≥0, we have the existence of a sequence (t′n) in [0,∞) such that limn→∞ T(t′n)x = 0. Let (an) be a strictly
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increasing sequence in [0,∞) satisfying that limn→∞ an = +∞ and an > tn + t′n for all n ∈ N. Using the local
equicontinuity of (T(t))t≥0 and the proof of afore-mentioned lemma, we may construct a sequence (V j) j∈N0

of absolutely convex and closed neighborhoods of 0 in X, an increasing sequence (ck)k∈N0 of non-negative
integers satisfying c0 = 0, ck = k2(2+ r(c0+ · · ·+ck−1)) for k ≥ 1, and three sequences (nk)k∈N, (mk)k∈N0 , (pk)k∈N0

of positive integers, so that the following conditions hold:

(i) V0 = V, V j + V j ⊆ V j−1 and V j ⊆ V j−1 for all j ∈N,

(ii) Vp + Vp+1 + · · · + Vq ⊆ Vp−1 whenever 1 ≤ p ≤ q,

(iii) T(t)(V j) ⊆ V j−n whenever 0 ≤ j ≤ n and 0 ≤ t ≤ a j−n+1 + · · · + a j,

(iv) n1 < m1 < n2 < m2 < · · ·, p1 < p2 < · · ·, m0 = p0 = 0,

(v) T(t′nk
)x ∈ c−1

k Vmk−1+pk−1 ,

(vi) T(tmk )x ∈ V,

(vii) T(t′pk
)x ∈ Vk, and

(viii) T(t′pk
)
∑k

j=1 λ jc jT(t′nk
)x ∈ Vk whenever k ∈N and |λ j| ≤ k, j = 1, 2, · · ·, k.

Set x j := c jT(tn j )x ( j ∈N) an fix an arbitrary sequence (β j) of scalars that takes only finitely many values and
has infinitely many non-zero coordinates. Using the argumentation contained in the proof of [7, Lemma 7],
we can prove that the limit y :=

∑∞
j=1 β jx j exists in X as well as that T(t′pk

)y→ 0 as k→ +∞ and T(tmk−nk )y < kV
for all sufficiently large values of k with βk , 0. Hence, y is a Li-Yorke irregular vector for (T(t))t≥0. The
remaining part of proof is simple and therefore omitted.

Remark 3.6. Suppose that X̃ is a closed linear subspace of X and x ∈ X̃ is a semi-irregular vector for (T(t))t≥0 which
is not irregular for (T(t))t≥0. If, additionally, T(t)x ∈ X̃ for all t ≥ 0, then (x j = c jT(tn j )x) j∈N is a sequence in X̃.

Keeping Lemma 3.5 and Remark 3.6 in mind, it is straightforward to prove the following continuous
analogons of [7, Theorem 8, Theorem 9]:

Theorem 3.7. Suppose that (T(t))t≥0 is a strongly continuous semigroup in X. If x is a X̃-Li-Yorke semi-irregular
vector for (T(t))t≥0 and T(t)x ∈ X̃ for all t ≥ 0, then any neighborhood of x in X̃ contains a X̃-Li-Yorke irregular vector
for (T(t))t≥0.

Theorem 3.8. Suppose that (T(t))t≥0 is a strongly continuous semigroup in X. Consider the following assertions:

(i) (T(t))t≥0 is X̃-Li-Yorke chaotic.

(ii) (T(t))t≥0 admits a X̃-Li-Yorke pair.

(iii) (T(t))t≥0 admits a X̃-Li-Yorke semi-irregular vector.

(iv) (T(t))t≥0 admits a X̃-Li-Yorke irregular vector.

Then we have (i)⇒ (ii)⇒ (iii) and (iv)⇒ (i). Furthermore, if T(t)(X̃) ⊆ X̃ for all t ≥ 0, then the above is equivalent.

In connection with Theorem 3.8, it should be said that it is already known that the existence of one
scrambled pair implies Li-Yorke on the interval and on graphs.

In the subsequent theorem, we will reconsider the assertion of [7, Theorem 10] for strongly continuous
semigroups in Fréchet spaces. The proof can be deduced as in discrete case and therefore omitted.

Theorem 3.9. Suppose that X is separable and (T(t))t≥0 is a strongly continuous semigroup in X. Consider the
following assertions:
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(i) (T(t))t≥0 admits a dense set of X̃–Li-Yorke irregular vectors.

(ii) (T(t))t≥0 admits a residual set of X̃–Li-Yorke irregular vectors.

(iii) (T(t))t≥0 is densely X̃-Li-Yorke chaotic.

(iv) (T(t))t≥0 admits a dense set of X̃–Li-Yorke semi-irregular vectors.

Then we have (i)⇒ (ii)⇒ (iii)⇒ (iv). Furthermore, if T(t)(X̃) ⊆ X̃ for all t ≥ 0, then the above is equivalent.

In our previous considerations, we have seen that the inclusion T(t)(X̃) ⊆ X̃ (t ≥ 0) is crucial for the
validity of a great number of assertions concerning the subspace Li-Yorke chaoticity of strongly continuous
semigroups in Fréchet spaces. The assertions of [7, Lemma 13, Theorem 15, Theorem 17, Theorem 20,
Corollary 21] can be transferred to operator semigroups in Fréchet spaces without any substantial diffi-
culties, as well, but then it is almost inevitable to assume that the above inclusion holds (we will omit the
proofs of Proposition 3.11, Theorem 3.12-Theorem 3.13 and Corollary 3.14 below which correspond to these
assertions). If so, (T(t)|X̃)t≥0 is a strongly continuous semigroup in the Fréchet space X̃ and we do not obtain
anything new and relevant compared with the case in which X̃ = X. Together with the separability of state
space X, the assumption X̃ = X will be standing henceforth.

Definition 3.10. Suppose that (T(t))t≥0 is a strongly continuous semigroup in X.

(i) We say that (T(t))t≥0 satisfies the Li-Yorke chaos criterion iff there exists a subset X0 of X with the following
properties:

(a) to every x ∈ X0 there exists a sequence (tn) in [0,∞) such that limn→∞ T(tn)x = 0,

(b) there is a bounded sequence (an) in span(X0) such that the set {T(t)an : t ≥ 0} is unbounded.

(ii) We say that (T(t))t≥0 satisfies the dense Li-Yorke chaos criterion iff there exists a dense subset X0 of X with the
properties (a) and (b) clarified above.

Proposition 3.11. Suppose that (T(t))t≥0 is a strongly continuous semigroup in X and there exists a subset X0 of X
with the following properties:

(a) limt→∞ T(t)x = 0, x ∈ X0,

(b) there is a bounded sequence (an) in span(X0) such that the set {T(t)an : t ≥ 0} is unbounded.

Then there exists a sequence (x j) of non-zero vectors in X such that
∑∞

j=1 β jx j is an irregular vector for (T(t))t≥0,
whenever (β j) is a sequence of scalars that takes only finitely many values and has infinitely many non-zero coordinates.

Theorem 3.12. Suppose that (T(t))t≥0 is a strongly continuous semigroup in X. Then (T(t))t≥0 is (densely) Li-Yorke
chaotic iff it satisfies the (dense) Li-Yorke chaos criterion.

Theorem 3.13. Suppose that (T(t))t≥0 is a strongly continuous semigroup in X and there exists a dense subset X0 of
X with the following properties:

(a) limt→∞ T(t)x = 0, x ∈ X0,

(b) there is a bounded sequence (an) in X such that the set {T(t)an : t ≥ 0} is unbounded.

Then (T(t))t≥0 admits a dense Li-Yorke chaotic irregular manifold.

Corollary 3.14. Suppose that (T(t))t≥0 is a strongly continuous semigroup in X and there exists a dense subset X0
of X with the property that limt→∞ T(t)x = 0, x ∈ X0. Then the following assertions are equivalent:

(a) (T(t))t≥0 is Li-Yorke chaotic.
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(b) (T(t))t≥0 admits a dense Li-Yorke irregular manifold.

(c) (T(t))t≥0 admits an unbounded orbit.

From our previous analyses, it readily follows that the Li-Yorke chaoticity of operator T(t0) for some
number t0 > 0 implies the Li-Yorke chaoticity of strongly continuous semigroup (T(t))t≥0 in X.

We would like to propose the following problem:
Problem 1. Suppose that (T(t))t≥0 is a strongly continuous semigroup in X. Is it true that (T(t))t≥0 is Li-Yorke
chaotic iff for each/some number t0 > 0 the operator T(t0) is Li-Yorke chaotic?

The affirmative answer would imply that there is no immediately compact semigroup (T(t))t≥0 in a
Fréchet space X that is Li-Yorke chaotic (we define this notion as in the Banach space case; cf. also [7,
Proposition 18], [5, Corollary 6] and [15, Theorem 4.12-Corollary 4.15]). The study of disjoint Li-Yorke
chaoticity of strongly continuous semigroups will be taken up somewhere else.

4. Li-Yorke chaotic properties of translation semigroups and strongly continuous semigroups induced
by semiflows

In this section, we investigate the Li-Yorke chaotic properties of translation semigroups and strongly
continuous semigroups induced by semiflows. Suppose that ∆ is [0,∞) or R. A measurable function
ρ : ∆→ (0,∞) is said to be an admissible weight function iff there exist constants M ≥ 1 and ω ∈ R such that
ρ(t) ≤Meω|t′ |ρ(t + t′) for all t, t′ ∈ ∆. For such a function ρ,we introduce the following Banach spaces:

Lp
ρ(∆) :=

{
u : ∆→ C | u is measurable and ||u||p < ∞

}
,

where p ∈ [1,∞) and ||u||p := (
∫
∆
|u(t)|pρ(t) dt)1/p, as well as

C0,ρ(∆) :=
{
u : ∆→ C | u is continuous and lim

t→∞
u(t)ρ(t) = 0

}
,

with ||u|| := supt∈∆ |u(t)ρ(t)|. Set (T(t) f )(x) := f (x + t), x ∈ ∆, t ∈ ∆. Then it is well known that (T(t))t≥0 is a
C0-semigroup on Lp

ρ([0,∞)) and C0,ρ([0,∞)), and that (T(t))t∈R is a C0-group on Lp
ρ(R) and C0,ρ(R); see [10,

Definition 4.3, Lemma 4.6, Theorem 4.9].
Up to now, we have only one result on the Li-Yorke chaoticity of translation semigroups in weighted

function spaces, proved by Wu in [19], which states that the strongly continuous translation semigroup
(T(t))t≥0 is Li-Yorke chaotic on Lp

ρ([0,∞)) iff lim inft→+∞ ρ(t) = 0, provided in advance that the function ρ is
bounded from above (cf. [19, Corollary 2.3]). In this case, the hypercyclicity of (T(t))t≥0 is equivalent with
its Li-Yorke chaoticity by [10, Theorem 4.7]. On the other hand, if the function ρ is not bounded from above,
then it is well known that there exists a strongly continuous translation semigroup that is Li-Yorke chaotic
but not hypercyclic (cf. [19, Example 2.4] and [3, Example 2.7]).

Unfortunately, the result of Wu [19] does not give us a necessary and sufficient condition for (T(t))t≥0
to be Li-Yorke chaotic on Lp

ρ([0,∞)). In the next theorem, we will completely profile the (dense) Li-Yorke
chaoticity of (T(t))t≥0 in terms of weight function ρ(t).

Theorem 4.1. Let ρ : [0,∞)→ (0,∞) be an admissible weight function.

(i) The strongly continuous translation semigroup (T(t))t≥0 is (densely) Li-Yorke chaotic on Lp
ρ([0,∞)) iff

lim sup
t→+∞

∥∥∥∥∥∥χ(0,t)(·)ρ(· − t)
ρ(·)

∥∥∥∥∥∥
L∞([0,∞),ρ(x)dx)

= +∞. (7)

(ii) The strongly continuous translation semigroup (T(t))t≥0 is (densely) Li-Yorke chaotic on C0,ρ([0,∞)) iff

lim sup
t→+∞

inf
C>0

{
ρ(x)
ρ(x + t)

≤ C for all x ≥ 0
}
= +∞. (8)
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Proof. It is well-known that Cc((0,∞)), the space which consists of all continuous functions f : (0,∞) → C
with compact support, is dense in both spaces Lp

ρ([0,∞)) and C0,ρ([0,∞)). Clearly, for every f ∈ X0 :=
Cc((0,∞)), we have that limt→+∞ T(t) f = 0. Hence, Corollary 3.14 implies that (T(t))t≥0 is (densely) Li-Yorke
chaotic iff (T(t))t≥0 admits an unbounded orbit. Using the uniform boundedness principle, it readily follows
that (T(t))t≥0 is not (densely) Li-Yorke chaotic iff there exists a finite constant M ≥ 1 such that ∥T(t)∥ ≤ M,
t ≥ 0. Since the norm of T(t) is equal to the expression appearing on the left hand side of (7), resp. (8),
the result is proved (cf. [14, Theorem 3.2, Proposition 3.11] for the case in which X = Lp

ρ([0,∞)), and [14,
Theorem 2.2] for the case in which X = C0,ρ((0,∞)) and ρ(t) is upper semicontinuous for t > 0).

Following the method proposed by Takeko [18], the author of this paper has considered in [16, Section 3.1]
various hypercyclic and topologically mixing properties of strongly continuous semigroups on the function
spaces Lp([0,∞) : C) and C0([0,∞) : C). A strongly continuous semigroup (T(t))t≥0 under consideration
takes the form (T(t) f )(x) = 1(x, t) f (x + t), x, t ≥ 0, f ∈ X, where 1 : [0,∞) × [0,∞) → C and satisifes the
conditions (HT1)-(HT4) from [16, Lemma 3.1.22]. Taking into account Theorem 3.4, Theorem 4.1, as well as
[16, Lemma 3.1.23] and the proof of [16, Theorem 3.1.25], we can simply clarify the necessary and sufficient
conditions stating when the strongly continuous semigroup (T(t))t≥0 of form described above is Li-Yorke
chaotic on Lp([0,∞) : C) and C0([0,∞) : C) (cf. also [16, Theorem 3.1.27, Example 3.1.28(iii)] and [14, Section
4]). Details are left to the interested reader.

If the state space X is Lp
ρ(R) or C0,ρ(R), then a characterization of Li-Yorke chaoticity of translation

semigroup (T(t))t≥0 in terms of admissible weight function ρ(t) is very difficult to be given. In connection
with this problem, we would like to point out that Barrachina has constructed an example of admissible
weight function ρ : R → (0,∞) such that (T(t))t≥0 ⊆ L(Lp

ρ(R)) is both non-hypercyclic and completely
distributionally chaotic (cf. [2, Definition 2.2, Example 5.4, Remark 5.2]), which implies in particular that
any function from Lp

ρ(R) is a Li-Yorke irregular vector for (T(t))t≥0. Hence, (T(t))t≥0 is both non-hypercyclic
and completely Li-Yorke chaotic, i.e., the whole space Lp

ρ(R) is a scrambled set for (T(t))t≥0.
The hypercyclicity of strongly continuous semigroups induced by semiflows has been analysed for

the first time by Kalmes in [14]-[15]. He dealt with the space Lp(X, µ), resp. C0,ρ(X), where X is a locally
compact, σ-compact Hausdorff space, p ∈ [1,∞) and µ is a locally finite Borel measure on X, resp., X
is a locally compact, Hausdorff space and ρ : X → (0,∞) is an upper semicontinuous function. In this
paper, we will consider the spaces Lp

ρ1
(Ω) and C0,ρ(Ω), where Ω is an open non-empty subset of Rn.

Here, ρ1 : Ω → (0,∞) is a locally integrable function, the norm of an element f ∈ Lp
ρ1

(Ω) is given by
|| f ||p := (

∫
Ω
| f (x)|pρ1(x) dx)1/p and dx denotes Lebesgue’s measure on Rn. Recall that, for a given upper

semicontinuous function ρ : Ω → (0,∞), the space C0,ρ(Ω) consists of all continuous functions f : Ω → C
satisfying that, for every ϵ > 0, {x ∈ Ω : | f (x)|ρ(x) ≥ ϵ} is a compact subset of Ω; equipped with the norm
|| f || := supx∈Ω | f (x)|ρ(x), C0,ρ(Ω) becomes a Banach space. Put, by common consent, supx∈∅ ρ(x) := 0 and
denote by Cc(Ω) the space of all continuous functions f : Ω → C whose support is a compact subset of Ω.
It is well known that Cc(Ω) is dense in both spaces, Lp

ρ1
(Ω) and C0,ρ(Ω).

Suppose n ∈ N, Ω is an open non-empty subset of Rn and ∆ is [0,∞) or R. A continuous mapping
φ : ∆ ×Ω→ Ω is called a semiflow [14]-[15] iff φ(0, x) = x, x ∈ Ω,

φ(t + s, x) = φ(t, φ(s, x)), t, s ∈ ∆, x ∈ Ω and

x 7→ φ(t, x) is injective for all t ∈ ∆.
Denote by φ(t, ·)−1 the inverse mapping of φ(t, ·), i.e.,

y = φ(t, x)−1 iff x = φ(t, y), t ∈ ∆.

Given a number t ∈ ∆, a semiflow φ : ∆ × Ω → Ω and a function f : Ω → C, define Tφ(t) f : Ω → C
by (Tφ(t) f )(x) := f (φ(t, x)), x ∈ Ω. Then Tφ(0) f = f , Tφ(t)Tφ(s) f = Tφ(s)Tφ(t) f = Tφ(t + s) f , t, s ∈ ∆
and Brouwer’s theorem implies Cc(Ω) ⊆ Tφ(t)[Cc(Ω)]. We refer the reader to [14, Theorem 2.1], resp.
[14, Theorem 2.2], for the necessary and sufficient conditions stating when the composition operator
Tφ(t) : Lp

ρ1
(Ω) → Lp

ρ1
(Ω), resp. Tφ(t) : C0,ρ(Ω) → C0,ρ(Ω), is well defined and continuous. The question
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whether (Tφ(t))t∈∆ is a C0-semigroup in Lp
ρ1

(Ω) or C0,ρ(Ω) has been analyzed in [14] and [16]. We have the
following:

Lemma 4.2. Suppose φ : ∆×Ω→ Ω is a semiflow and φ(t, ·) is a continuously differentiable function for all t ∈ ∆.
Then (Tφ(t))t∈∆ is a strongly continuous semigroup in Lp

ρ1
(Ω) iff the following holds:

∃M, ω ∈ R ∀t ∈ ∆ : ρ1(x) ≤Meω|t|ρ1(φ(t, x))|det Dφ(t, x)| a.e. x ∈ Ω. (9)

Lemma 4.3. Let φ : ∆ ×Ω → Ω be a semiflow. Then (Tφ(t))t∈∆ is a strongly continuous semigroup in C0,ρ(Ω) iff
the following holds:

(i) ∃M, ω ∈ R ∀t ∈ ∆, x ∈ Ω : ρ(x) ≤Meω|t|ρ(φ(t, x)) and

(ii) for every compact set K ⊂ Ω and for every δ > 0 and t ∈ ∆ :

φ(t, ·)−1(K) ∩ {x ∈ Ω : ρ(x) ≥ δ} is a compact subset of Ω. (10)

We need to introduce the following condition:

(D) For every compact subset K of Ω, there exists t0 > 0 such that φ(t,Ω) ∩ K = ∅, t ≥ t0.

Then, for every f ∈ X0 := Cc(Ω), there exists t0 > 0 such that Tφ(t) f = 0 for t ≥ t0. By the argumentation
given in the proof of Theorem 4.1, it readily follows that the strongly continuous semigroup (Tφ(t))t≥0 is not
(densely) Li-Yorke chaotic iff there exists a finite constant M ≥ 1 such that ∥Tφ(t)∥ ≤ M, t ≥ 0. Bearing in
mind also [14, Theorem 2.1, Theorem 2.2] and Lemma 4.2-Lemma 4.3, the above implies:

Theorem 4.4. (i) Suppose φ : [0,∞) ×Ω→ Ω is a semiflow, φ(t, ·) is a continuously differentiable function for
all t ≥ 0, (D) holds, and (9) holds with ∆ = [0,∞). Set Ct := {x ∈ Ω : Det Dφ(t, ·) = 0} and Ωt := Ω \ Ct
(t ≥ 0). Then the strongly continuous semigroup (Tφ(t))t≥0 is (densely) Li-Yorke chaotic on Lp

ρ1
(Ω) iff

lim sup
t→+∞

∥∥∥∥∥∥χφ(t,Ωt)(·)ρ1(φ(−t, ·))Det Dφ(−t, ·)
ρ1(·)

∥∥∥∥∥∥
L∞(Ω,ρ1(x)dx)

= +∞.

(ii) Let φ : [0,∞) ×Ω→ Ω be a semiflow, let the conditions (i)-(ii) from Lemma 4.3 hold with ∆ = [0,∞), and let
(D) hold. Then the strongly continuous semigroup (Tφ(t))t≥0 is (densely) Li-Yorke chaotic on C0,ρ(Ω) iff

lim sup
t→+∞

inf
C>0

{
ρ(x)

ρ(φ(t, x))
≤ C for all x ∈ Ω

}
= +∞.

There exists a great number of concrete examples in which the condition (D) does not hold; see e.g. [14,
Example 3.19, Example 3.20]. We would like to address the problem of finding necessary and sufficient
conditions characterizing the (dense) Li-Yorke chaoticity of (Tφ(t))t≥0 on Lp

ρ1
(Ω) and C0,ρ(Ω), in terms of

weight ρ and semiflow φ.
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