Remark on general sum-connectivity index

M. M. Matejića ${ }^{\text {a }}$, E. I. Milovanovića ${ }^{\text {a }}$, I. Ž. Milovanovića ${ }^{\text {a }}$
${ }^{a}$ Faculty of Electronic Engineering, Niš, Serbia

Abstract

Let $G=(V, E), V=\{1,2, \ldots, n\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, be a simple connected graph with n vertices and m edges with vertex degree sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$. If i th and j th vertices are adjacent, it is denoted as $i \sim j$. Topological degree-based index of graph $H_{\alpha}=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}$, where α is an arbitrary real number, is referred to as general sum-connectivity index. In this paper we prove inequality that connects invariants $H_{\alpha}, H_{\alpha-1}$ and $H_{\alpha-2}$. Using that inequality, in some special cases we obtain lower bounds for some other graph invariants.

1. Introduction

Let $G=(V, E), V=\{1,2, \ldots, n\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, be a simple connected graph with n vertices and m edges. Denote by $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$, and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq \cdots \geq d\left(e_{m}\right)$, sequences of vertex and edge degrees, respectively. Throughout this paper we use standard notation: $\Delta_{e}=d\left(e_{1}\right)+2, \Delta_{e_{2}}=d\left(e_{2}\right)+2$, and $\delta_{e}=d\left(e_{m}\right)+2$. If two vertices are adjacent we denote it as $i \sim j$. As usual, $L(G)$ denotes a line graph.

In [9] Gutman and Trinajstić defined vertex-degree-based topological indices, named the first and the second Zagreb indices M_{1} and M_{2}, as

$$
M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2} \quad \text { and } \quad M_{2}=M_{2}(G)=\sum_{i \sim j} d_{i} d_{j}
$$

It is noticed (see [3]) that the first Zagreb index can be also expressed as

$$
\begin{equation*}
M_{1}=\sum_{i \sim j}\left(d_{i}+d_{j}\right) \tag{1}
\end{equation*}
$$

Details on the first Zagreb index and its applications can be found in [1, 2, 8, 10, 11].
In [7], in analogy to the first Zagreb index, the vertex-degree-based topological index F was defined as

$$
F=F(G)=\sum_{i=1}^{n} d_{i}^{3}
$$

[^0]For historical reasons [8] it was named forgotten topological index and can be expressed as

$$
\begin{equation*}
F=\sum_{i \sim j}\left(d_{i}^{2}+d_{j}^{2}\right) \tag{2}
\end{equation*}
$$

A further degree-based graph invariant was defined in [17] and named general sum-connectivity index, H_{α}, as

$$
\begin{equation*}
H_{\alpha}=H_{\alpha}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha} \tag{3}
\end{equation*}
$$

where α is an arbitrary real number.
It can easily be seen that $H_{1}=M_{1}$ and $H_{2}=F+2 M_{2}$. We are also interested in another topological index, named harmonic index $H=2 H_{-1}$.

In this paper we prove some inequalities for invariants $H_{\alpha}, H_{\alpha-1}$ and $H_{\alpha-2}$. In special cases we obtain lower bounds for topological indices F and M_{1}.

2. Preliminaries

In this section we recall some inequalities for topological indices M_{1}, M_{2}, F and H that will be needed for our work.

In [7] the following two inequalities for topological index F were proved

$$
\begin{equation*}
F \geq \frac{M_{1}^{2}}{2 m} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
F \geq \frac{M_{1}^{2}}{m}-2 M_{2} \tag{5}
\end{equation*}
$$

Equality in (4) holds if and only if G is a regular graph, and in (5) if and only if $L(G)$ is regular graph. We mention that inequality (5) was proved in [6] too.
In [16] and [13] the inequality for graph invariants M_{1} and H was proved

$$
\begin{equation*}
H M_{1} \geq 2 m^{2} \tag{6}
\end{equation*}
$$

with equality if and only if $L(G)$ is regular graph.

3. Main result

The following theorem establishes the nonlinear relation between invariants $H_{\alpha}, H_{\alpha-1}$ and $H_{\alpha-2}$.
Theorem 1. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then, for any real α

$$
\begin{equation*}
H_{\alpha-2} H_{\alpha} \geq H_{\alpha-1}^{2}+\Delta_{e_{2}}^{\alpha-2} \Delta_{e}^{\alpha-2}\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2} \tag{7}
\end{equation*}
$$

Equality holds if and only if $L(G)$ is regular graph.
Proof Let $p=\left(p_{i}\right), i=1,2, \ldots, m$, be positive real number sequence, and $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$, $i=1,2, \ldots, m$, sequences of non-negative real numbers of similar monotonicity. Then (see [14, 15])

$$
\begin{equation*}
T_{m}(a, b ; p) \geq T_{m-1}(a, b ; p), \quad m \geq 2 \tag{8}
\end{equation*}
$$

where

$$
T_{m}(a, b ; p)=\sum_{i=1}^{m} p_{i} \sum_{i=1}^{m} p_{i} a_{i} b_{i}-\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} p_{i} b_{i}
$$

From (8) we have that $T_{m}(a, b ; p) \geq T_{2}(a, b ; p)$, i.e.

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} \sum_{i=1}^{m} p_{i} a_{i} b_{i}-\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} p_{i} b_{i} \geq p_{1} p_{2}\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right) \tag{9}
\end{equation*}
$$

For $p_{i}=\left(d\left(e_{i}\right)+2\right)^{\alpha-2}, a_{i}=b_{i}=d\left(e_{i}\right)+2, i=1,2, \ldots, m$, inequality (9) becomes

$$
\begin{align*}
& \sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha-2} \sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}-\left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha-1}\right)^{2} \tag{10}\\
& \geq \Delta_{e_{2}}^{\alpha-2} \Delta_{e}^{\alpha-2}\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2} .
\end{align*}
$$

It easily can be seen that the following is valid

$$
\begin{equation*}
H_{\alpha}=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha} . \tag{11}
\end{equation*}
$$

Now, from (10) and (11) we get

$$
H_{\alpha-2} H_{\alpha}-H_{\alpha-1}^{2} \geq \Delta_{e_{2}}^{\alpha-2} \Delta_{e}^{\alpha-2}\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}
$$

wherefrom we obtain the required result.

Corollary 1. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
H M_{1} \geq 2 m^{2}+\frac{2\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}}{\Delta_{e_{2}} \Delta_{e}} \tag{12}
\end{equation*}
$$

with equality if and only if $L(G)$ is regular.
Proof Inequality (12) is a direct consequence of (7) for $\alpha=1$ and the following equalities

$$
M_{1}=\sum_{i \sim j}\left(d_{i}+d_{j}\right)=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)
$$

and

$$
H=2 H_{-1}=\sum_{i \sim j} \frac{2}{d_{i}+d_{j}}=\sum_{i=1}^{m} \frac{2}{d\left(e_{i}\right)+2} .
$$

Remark 1. Since

$$
H M_{1} \geq 2 m^{2}+\frac{2\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}}{\Delta_{e_{2}} \Delta_{e}} \geq 2 m^{2}
$$

the inequality (12) is stronger than (6).
Corollary 2. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
F \geq \frac{M_{1}^{2}}{m}-2 M_{2}+\frac{\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}}{m} \tag{13}
\end{equation*}
$$

with equality if and only if $L(G)$ is regular.
Proof The above inequality is obtained from (7) for $\alpha=2$ and equality

$$
H_{2}=F+2 M_{2}=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{2}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{2} .
$$

Remark 2. Since

$$
F \geq \frac{M_{1}^{2}}{m}-2 M_{2}+\frac{\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}}{m} \geq \frac{M_{1}^{2}}{m}-2 M_{2}
$$

the inequality (13) is stronger than (5).
Corollary 3. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
F \geq \frac{M_{1}^{2}}{2 m}+\frac{\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}}{2 m} \tag{14}
\end{equation*}
$$

Equality holds if and only if G is regular.
Proof The inequality (14) is obtained from (13) and inequality $F \geq 2 M_{2}$.
Remark 3. Since

$$
F \geq \frac{M_{1}^{2}}{2 m}+\frac{\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}}{2 m} \geq \frac{M_{1}^{2}}{2 m}
$$

the inequality (14) is stronger than (4).
Theorem 2. Let G be a simple connected graph with n vertices and $m \geq 3$ edges. Then

$$
\left(H_{\alpha-2}-\delta_{e}^{\alpha-2}\right)\left(H_{\alpha}-\delta_{e}^{\alpha}\right) \geq\left(H_{\alpha-1}-\delta_{e}^{\alpha-1}\right)^{2}+\Delta_{e_{2}}^{\alpha-2} \Delta_{e}^{\alpha-2}\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2} .
$$

Equality holds if and only if $L(G)$ is regular graph.
Proof According to (9) we have that

$$
\sum_{i=1}^{m-1} p_{i} \sum_{i=1}^{m-1} p_{i} a_{i} b_{i}-\sum_{i=1}^{m-1} p_{i} a_{i} \sum_{i=1}^{m-1} p_{i} b_{i} \geq p_{1} p_{2}\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right)
$$

Putting $p_{i}=\left(d\left(e_{i}\right)+2\right)^{\alpha-2}, a_{i}=b_{i}=d\left(e_{i}\right)+2, i=1,2, \ldots, m-1$, in this inequality, we get what is stated.
Corollary 4. Let G be a simple connected graph with n vertices and $m \geq 3$ edges. Then

$$
F \geq \delta_{e}^{2}+\frac{\left(M_{1}-\delta_{e}\right)^{2}}{m-1}-2 M_{2}+\frac{\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}}{m-1}
$$

with equality if and only if $L(G)$ is regular.
Corollary 5. Let G be a simple connected graph with n vertices and $m \geq 3$ edges. Then

$$
F \geq \frac{1}{2} \delta_{e}^{2}+\frac{\left(M_{1}-\delta_{e}\right)^{2}}{2(m-1)}+\frac{\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}}{2(m-1)}
$$

with equality if and only if G is regular.
Corollary 6. Let G be a simple connected graph with n vertices and $m \geq 3$ edges. Then

$$
\left(\frac{1}{2} H-\frac{1}{\delta_{e}}\right)\left(M_{1}-\delta_{e}\right) \geq(m-1)^{2}+\frac{\left(\Delta_{e}-\Delta_{e_{2}}\right)^{2}}{\Delta_{e} \Delta_{e_{2}}},
$$

with equality if and only if $L(G)$ is regular.

References

[1] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds and Extremal graphs, In: Bounds in Chemical Graph Theory - Basics, (I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović, Eds.), Mathematical Chemistry Monographs, MCM 19, Univ. Kragujevac, Kragujevac, 2017, pp. 67-153.
[2] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.
[3] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.
[4] C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. London Math. Soc. 9 (1977) 203-208.
[5] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987) 187-197.
[6] F. Falahati-Nezhad, M. Azari, Bounds on the hyper-Zagreb index, J. Appl. Math. Inform. 34 (2016) 319-330.
[7] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[8] I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serbie Sci. Arts (Ch. Sci. Math. Natur.) 146 (2014) 39-52.
[9] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[10] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[11] I. Gutman, B. Furtula, Ž. Kovijanić Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
[12] A. Ilić, D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 681-687.
[13] A. Ilić, Note on the harmonic index of a graph, Ars. Comb. 128 (2016), 295-299.
[14] D. S. Mitrinović, P. M. Vasić, History, variations and generalisations of the Čebyšev inequality and the question of some priorities, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 461-497 (1974), 1-30.
[15] P. M. Vasić, R. Z. Djordjević, Cebyšev inequality for convex sets, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 412-460 (1973), 17-20.
[16] X. Xu, Relationships between harmonic index and other topological indices, Appl. Math. Sci. 6 (2012), 2013-2018.
[17] B. Zhou, N. Trinajstić, On general sum-connecivity index, J. Math. Chem. 47 (2010), 210-218.

[^0]: 2010 Mathematics Subject Classification. 05C07.
 Keywords. General sum-connectivity index; vertex degree; edge degree.
 Received: 25 February 2017; Accepted: 3 March 2017
 Communicated by Dragan S. Djordjević
 This work was supported by the Ministry of Education, Science and Technoogical Develompent, Republic of Serbia, Grants No. TR-32009 and TR-32012.

 Email addresses: marjan.matejic@elfak.ni.ac.rs (M. M. Matejić), ema@elfak.ni.ac.rs (E. I. Milovanović), igor.milovanovic@elfak.ni.ac.rs (I. Ž. Milovanović)

