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Generalized Adrien numbers

Yiiksel Soykan?

?Department of Mathematics, Faculty of Science, Zonguldak Biilent Ecevit University, 67100, Zonguldak, Turkey

Abstract. In this paper, we introduce and investigate the generalized Adrien sequences and we deal with,
in detail, two special cases, namely, Adrien and Adrien-Lucas sequences. We present Binet’s formulas,
generating functions, Simson formula and the summation formulas for these sequences. Moreover, we
give some identities and matrices related with these sequences. Furthermore, we show that there are close
relations between Adrien, Adrien-Lucas and third order Pell, third order Pell-Lucas numbers.

1. Introduction

Third-order Pell sequence {P,},>0 (OEIS: A077939, [6]) and third-order Pell-Lucas sequence {Qy}n>0
(OEIS: A276225, [6]) are defined, respectively, by the third-order recurrence relations

P,=2P, 1+Py2+Py3 Po=0,P=1P,=2, (1)

and

Qn=2Qn-1+Qn2+Qn3 Q=301=2Q=6. )

Here, OEIS stands for On-line Encyclopedia of Integer Sequences and A077939 is the index entry of third-

order Pell sequence in the site OEIS, A276225 is the index entry of third-order Pell-Lucas sequence in the
site OEIS.

The sequences {P,},>0 and {Qy}s>0 can be extended to negative subscripts by defining
P, = _P—(n—l) - ZP_(n—2) + P—(n—3)/
Q-n = —0Q-@-1—20Q-@-2 + Q-(s-3),

forn =1,2,3, ... respectively. Therefore, recurrences (1) and (2) hold for all integer n. For more information
on generalized third-order Pell numbers, see Soykan [13].

Now, we define two sequences related to third order Pell and third order Pell-Lucas numbers. Adrien
and Adrien-Lucas numbers are defined as

Ay =2A 1 +As2+A3+1, with Ag=0,A1=1,A,=3, n=>3
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and
B, =2B,_1 +B,,_» + Bn_3 -3, with B() =4,B1=3,B, =7, n >3,

respectively.
The first few values of Adrien and Adrien-Lucas numbers are

0,1,3,8,21,54,138,352,897,2285,5820,14823,37752,96148, ...
and
4,3,7,18,43,108,274,696,1771,4509,11482,29241,74470, 189660, ...

respectively.
The sequences {A,} and {B,} satisfy the following fourth order linear recurrences:
Ay = 3Ap1—An2—Aug, A=0A1=1A=3A3=8 nz4
Bn = 3Bn—1 - BH—Z - B‘rl—4/ BO = 4/ Bl = 3/ B2 = 7/ B3 = 18/ n>4.

There are close relations between Adrien, Adrien-Lucas and third order Pell, third order Pell-Lucas
numbers. For example, they satisfy the following interrelations:

Puy1 = Appn — Ay,

87P, = 11B,4» —12B,+1 —14B,, + 15,
Qn = —3Au3 +8Ans2 +3Ann — 8A,,

3Qn = Buiz—2Bui2 — By + 2By,

and

3Ay = Puypo—Pu+P,-1,

B, = -Pup+5P;1—-3P,+1,
87A, = 6Qn+2 + 4Qn+1 - 5Qn =29,
B, = Qu+1

The purpose of this article is to generalize and investigate these interesting sequence of numbers (i.e.,
Adrien, Adrien-Lucas numbers). First, we recall some properties of the generalized Tetranacci numbers.

The generalized (1, s, t, 1) sequence (or generalized Tetranacci sequence or generalized 4-step Fibonacci
sequence) {W,(Wo, W1, Wy, W3; 1,5, t, u)}50 (or shortly {W,},50) is defined as follows:

W, =Wy +sWyo +tWy3+uW,.y, Wo=co, Wi =c;,Wo=c,, Wa=¢3, n>4 3)

where Wy, Wi, W, W3 are arbitrary complex (or real) numbers and 7, s, ¢, u are real numbers.

This sequence has been studied by many authors and more detail can be found in the extensive literature
dedicated to these sequences, see for example [1],[3],[4],[5],[8],[10],[11],[14],[15]. The sequence {W,},5o can
be extended to negative subscripts by defining

t S r 1
W_y=—==W_po1) — = W_u) — =W_uz) + =W_gy
u u u u

forn=1,2,3,... when u # 0. Therefore, recurrence (3) holds for all integers #.
As {W,} is a fourth-order recurrence sequence (difference equation), its characteristic equation is

-1 -5 —tz—u=0 4)



Y. Soykan / AMCS 7 (1) (2023), 37-51 39

whose roots are a, 8, 7, 0. Note that we have the following identities

a+p+y+6 = 7
ap+ay+adb+py+po+yd = -—s,

afy +apd+ayd+pyd = t,
afyd = -u.

Using these roots and the recurrence relation, Binet’s formula can be given as follows:

Theorem 1.1. (Four Distinct Roots Case: a #  # y # 0) For all integers n, Binet’s formula of generalized Tetranacci
numbers is
W, = plan + P2.3" " PSV” + p46n
Ta-pla-ya-0  B-aB-1nE-0 G- -pO-09 ©G-a)E-pHO-Y)

(5)

where

= Wi=(B+y+0)Wa+ By + o+ yo)Wi—pyoW,
p2 = Wi—(a+y+0)Wy+ (ay+ad+yo)Wi —aydWy,
p3 = Wi—=(a+p+0)Wr+ (af+ad+ po)W; —apdW,,
ps = Wiz—(a+B+y)Wo+(af+ay+By)Wi —aByW.

Usually, it is customary to choose ¢, 8, 7, 0 so that the Equ. (4) has at least one real (say a) solution. Note
that the Binet form of a sequence satisfying (4) for non-negative integers is valid for all integers n (see [2]).

Next, we consider two special cases of the generalized (7,s,t, u) sequence {W,} which we call them
(r,s,t,u)-Fibonacci and (r, s, t, u)-Lucas sequences. (r,s, t, u)-Fibonacci sequence {G,},>0 and (7, s, t, u)-Lucas
sequence {H,},>0 are defined, respectively, by the fourth-order recurrence relations

Guia = 71Gu3 +5Gug2 + tGyy1 +uGy, (6)
Go = 0,G1=1,G2=7’,G3=7”2+S,

Hywq = vHyuys +sHypo + tHy + uH,, (7)
Hy = 4,Hy=rHy=2s+7", Hy =7 +3sr+3t

The sequences {G,,},>0 and {H,},>0 can be extended to negative subscripts by defining

t s r 1
Gy = ——=G_ (1) — =G_(n—2) — =G_(n—3) + —=G_(—a),
n u (n-1) u (n-2) u (n-3) u (n—-4)
t

s r 1
H., = H_ -1 — ZH—(n—Z) - ;H—(n—3) + ZH—(H—AL)/

u
forn =1,2,3, ... respectively. Therefore, recurrences (6) and (7) hold for all integers .

For all integers n, (1, s, t, u)-Fibonacci and (r, s, , u)-Lucas numbers (using initial conditions in (6) or (7))
can be expressed using Binet’s formulas as in the following corollary.

Corollary 1.2. (Four Distinct Roots Case: o #  # v # 0) Binet’s formulas of (r,s,t, u)-Fibonacci and (r,s, t, u)-
Lucas numbers are

a'tt? ‘Bn+2 7/n+2 52

O G Pa @0 T F-aE- 69 G- -Pr -0 G-D6 o))

and
H,=a"+p"+y"+0",

respectively.
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Proof. Take W,, = G, and W,, = H,, in Theorem 1.1, respectively. O
Next, we give the ordinary generating function ), W,z" of the sequence W,.
n=0

Lemma 1.3. Suppose that fw,(z) = Y, W,z" is the ordinary generating function of the generalized (r, s, t, 1t) sequence
n=0

{Whtnso. Then, Y, W,z" is given by
n=0

(8)

i W2 = Wy + (W1 — VWO)Z + (W2 —rWp — SWO)Z2 + (W3 — W, —sWy — l’W())Z3
n< = .

1—rz—522 —tz3 —uzt
n=0

Proof. For a proof, see Soykan [8, Lemma 1]. O
The following theorem presents Simson’s formula of generalized (1, 5, t, 1) sequence (generalized Tetranacci
sequence) {W,}.

Theorem 1.4 (Simson’s Formula of Generalized (7, s, t, u) Numbers). For all integers n, we have

Wiz Wia Wipr Wy W; W, W; W

Wiz Wi Wi Wi | _ (=1)"u" W, Wi W, W, )
Wit Wu Wy W, Wi Wo W W, |

Wy Wpa Wy Wy Wo Wi W, Wi

Proof. (9) is given in Soykan [7]. O
The following theorem shows that the generalized Tetranacci sequence W, at negative indices can be
expressed by the sequence itself at positive indices.

Theorem 1.5. For n € Z, for the generalized Tetranacci sequence (or generalized (r,s,t, u)-sequence or 4-step
Fibonacci sequence) we have the following:

1
W_, g(—u)‘”(—6W3n + 6H, Wy, — 3H2W,, + 3H,,W,, + WoH" + 2WH3, — 3WoH,Hy,)

1 1 1
(1) ' (W3, — HyWoy, + §(H5 - Hp)W,, — g(H,% + 2Hz, — 3Ha,H,) Wo).

Proof. For the proof, see Soykan [9, Theorem 1.]. O
Using Theorem 1.5, we have the following corollary, see Soykan [9, Corollary 4].

Corollary 1.6. For n € Z, we have

@ 2(—w)"™* G-y = —(Bru? + 12 = 3stu)>G3 — (2su — 2)2G? ;G — (—rt2 — tu + 2rsu)> G2, Gy, — (—st? + 25%u + 4u? +
rtu)?G? Gy +2(3ru? + 12 = 3stu)((=2su + 12)Gpas + (—rt? — ti + 2rsu) Gz + (=5t + 25%u + 4u® + rtu)Gy11)
G2 +2(2su—12)(—rt? — tu+2rs1)G13Gp12Gp +2(25u — 12)(—st? + 252U+ 4u? + 1) G 113G 11Gp — 2(—st? +25%u +
41? + rtu)(—rt? — tu + 2r51)Gp42Gpi1 Gy — 2Gznu? + u?(=25u + 12)Gpy3Gyp + 1 (—11? — tu + 2rsu)Goyo Gy +
u?(—st? + 25%u + 4u? + rtu)Gon1Gy — 202 (251U — 12)G2pGrys + 2u? (=112 — tu + 2rsu)Goy Gyyp + 2u?(—st> +
25%u + 4u? + rtu) G2, Gpyq — 3u?(3ru? + 13 — 3stu) Gy, G-

(b) Ho = L (~u)™ (Hg +2Hz, — 3H2an).

Note that G_, and H_, can be given as follows by using Gy = 0 and Hy = 4 in Theorem 1.5,

1
G, = g(—u)‘”(—6G3n + 6H,Gy, — 3H2G,, + 3H,,G,), (10)
H, = % (—u) ™" (H3 + 2Hs, — 3H,Hy), (11)



Y. Soykan / AMCS 7 (1) (2023), 37-51 41

respectively.
If we define the square matrix M of order 4 as

M = Mgy =

OO - =
oOR Ow
—_ 0O O
oo

and also define

Gus1 sGy, + tGuo1 + uGy,_o tG, + uG,_1 uGy,
G, sG,1+1tG,o+uG,3 tG,1+uG,» uG,

Sn = Gn—l SGn_z + i’Gn_g, + an_4 th_z + an_3 MGn_z
Gn—Z SGn_3 + th_4 + MGn_5 i’Gn_g, + MGn_4 MGn_g
and
Wi sW, + tW,,_1 + uW,_» tW, + uW, 4 uW,
U, = W, sW,41+tW,+uW,3 tW,1+uW,_» uW,;
n=

W1 sW,_»+ th_3 +uW,_y tW,0+ uWn_g, uW,_»
W, sW,s3+tW, 4+uW, 5 tW, 3+uW, 4 uW,_;

then we get the following Theorem.
Theorem 1.7. For all integers m,n, we have

@ S, =M"1ie,

ros t ouy Gus1  sGy +tGu1 + uGy,_o tG, + uG;,_1 uGy,

1 0 0 O _ G, sGy1 +tGyo + uG,_3 tGyq1 +uGy_, uG,_q
01 0 0 - Gu1 SGuo +tGy3+uG,_y tG,_o+uG,_3 uGu_
0 01 0 Guoo 8Gu_3 +1Gy_y +uG,_5 tGy3 +uGu—y uG,_3

(b) UyM" = M"Uj.
() Upsm = UpSy = Sply.
Proof. For the proof, see Soykan [8, Theorem 19]. O
Theorem 1.8. For all integers m, n, we have
Wism = WuGus1 + Wy—1(sGyy + tG—1 + uGy—2) + W2 (G + uGy—1) + uW, 3Gy, (12)
Proof. For the proof, see Soykan [8, Theorem 20.]. O
In the next sections, we present new results.
2. Generalized Adrien Sequence

In this paper, we consider the case r = 3,s = -1, = 0,u = —-1. A generalized Adrien sequence
{(Wailnso = (W, (Wo, W1, Wa, Wa)}so is defined by the fourth-order recurrence relation

Wy =3W,1 = Wyo — Wiy (13)

with the initial values Wy = cp, W1 = ¢1, W = ¢, W3 = ¢3 not all being zero. The sequence {W,},>0 can be
extended to negative subscripts by defining

W_, = —W_(n_z) + 3W—(n—3) - W—(”_4)
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forn =1,2,3,.... Therefore, recurrence (13) holds for all integers n.

Characteristic equation of {W,} is

232+ 41=(%-222-z2-1)(z-1)=0

whose roots are

o =
1/3
S L 8 I L
p = 3 54 36 54 3
1/3
ro= 3 5247 V36 52~ V36
o6 = 1
where
_1 /
w= %ﬁ = exp(27ti/3).
Note that
a+f+y+06 = 3
ap+ay+adb+py+po+yd = 1,
apy +apd+ayd+pyd = 0,
afyd = 1.
Note also that
a+p+y = 2
ap+ay+py = -1,
afy = 1.

1/3 1/3
2 (e, (2 [el_ 2
3 54 36 54 6

]1/3

1/3

The first few generalized Adrien numbers with positive subscript and negative subscript are given in

the following Table 1.
Table 1. A few generalized Adrien numbers

n W, W_,

0 Wo Wo

1 Wi 3Wy — W1 — W3

2 W, 3W; — Wy — W,

3 W3 3Wp —3W;, + W5

4 3W;5 — W, — W 10W, — 6W; —3W3

5 8W;3 — W —3W, — 3W, 10W; — 6Wy — 3W,

6 21W5 — 3W; — 9W, — 8W, 10Wy + 3W; — 18W, + 6W3
7 54W3 — 8W7 — 24W, — 21W, 3Wp — 28W1 + 36W, — 10W;5
8 138W5; — 21W; — 62W, — 54W) 33W; —28Wy — W, —3Ws
9 352W3 — 54W; — 159W, — 138W) 33Wy + 27W1 — 87W; + 28W;

—_
o

897W3 — 138W; — 406W, — 352W)

11 2285W3; — 352W; — 1035W, — 897W,
12 5820Ws — 897W; — 2637W, — 2285W)
13 14 823W; — 2285W; — 6717W, — 5820W)

27Wy — 120W; + 127W, — 33W;

100W;1 — 120Wy + 48W, — 27Ws3
100Wy + 168W; — 387W, + 120W;
168Wy — 487W; + 420W, — 100W;
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Note that the sequences {A,} and {B,} which are defined in the section Introduction, are the special cases
of the generalized Adrien sequence {W,}. For convenience, we can give the definition of these two special
cases of the sequence {W,}, in this section as well. Adrien sequence {A,},>0 and Adrien-Lucas sequence
{Bu}nso are defined, respectively, by the fourth-order recurrence relations

Ap = 3An1-Ann—Aps, Av=0A1=1A,=3A3=8, n=>4,
B, = 3B,.1—-By,»2—-B,a4, By=4,B1=3,B,=7,B3=18, n>4.
The sequences {A,}y>0 and {B,},>0 can be extended to negative subscripts by defining
Ay = A2 +3A (13— A_(i-a),
By = —B_(-2)+3B_(1-3) — B_(u-9),

forn =1,2,3,... respectively.

Next, we present the first few values of the Adrien and Adrien-Lucas numbers with positive and
negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative subscripts.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
A, 0 1 3 8 21 54 138 352 897 2285 5820 14823 37752 96148
A, 0 0 0 -1 0 1 -3 0 6 -10 -3 28 -33 =27
B, 4 3 7 18 43 108 274 696 1771 4509 11482 29241 74470 189660
B, 4 0 -2 9 -2 -15 31 0 -74 108 43 -330 355 351

(5) canbe used to obtain the Binet formula of generalized Adrien numbers. Binet’s formula of generalized
Adrien numbers can be given as follows:

Theorem 2.1. (Four Distinct Roots Case: o #  # y # 6 = 1) For all integers n, Binet’s formula of generalized
Adrien numbers is

(@W3 —a@ — )W, + (=a? + (3 — Da + 1)W; — 1TWp)a"

W, =
402 +3a -1
+(ﬁW3 - BB = BWa+ (—p*+ B - 1B+ )Wy — 1W,)p"
4 +36-1
LW —yB )W, + (=7 + B =Dy + W1 — 1Wo))"
42 +3y -1
W5 =2 — Wi — W

-3
Adrien and Adrien-Lucas numbers can be expressed using Binet’s formulas as follows.

Corollary 2.2. (Four Distinct Roots Case: « # p # vy # 0 = 1) For all integers n, Binet’s formula of Adrien and
Adrien-Lucas numbers are
_ (2a*+a+1)a" N (2p% + B+ 1)p" . 22 +y+1py" 1
"7 4a2+3a-1 482+ 3 -1 492 +3y-1 3

and
B,=a"+p"+y"+1,
respectively.

Note that Binet’s formulas of third order Pell and third order Pell-Lucas numbers, respectively, are

B 0(”+1 ﬁn+1 yn+1
P = e pa-n TG0 T o0 -p
Qn = a"+p"+9",
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see, Soykan [13] for more details.
So, by using Binet’s formulas of Adrien, Adrien-Lucas and third order Pell, third order Pell-Lucas num-
bers, (or by using mathematical induction), we get the following Lemma which contains many identities:

Lemma 2.3. For all integers n, the following equalities (identities) are true:

(a)
o Puz=An3z— Ao
o Py =Au3-3An0+ A +A,.
® 3A,14 =25P,4p + 14P,,1 + 10P, — 1.
e 3A, =P -Py1+P, -1
o P,=—-A,0+2A,1 +2A, +1.
® Py =Ant1 — Ane
(b)
L 87Pn+3 = 33Bn+3 — 6Bn+1 - 1an+2 - 16Bn.
e 87P, = —5By.3 + 21Bpsa — 7Bys1 — 9B,.
® B,y =17P,1o + 8P, + 6P, + 1.
e B, =—-P,»+5P,.1 —3P, +1.
e 87P, =11B,;4» — 12B,;41 — 14B,, + 15.
e B, +3B, =11P,+; — 10P, + 4.
()
b Qn+3 = 2an+3 + Aps1 — 3A,.
b Qn = _3An+3 + 814;’1+2 + 31471+1 - 8An
o 87A,14 = 2250012 + 121041 + 88Q, — 29.
o 87A, = 6Qn+2 + 4Qn+1 - 5Qn -29.
o Q= 2Au— 114, - 3.
® 3(3Aus1 —8Ay) =2Q, — Qui1 +5.
(d)

® 3Qu4+3 = 4Byy3 — 2Byy2 — By — By,
® 30y = Byyz —2Byy2 — Buy1 + 2B,

® Byis =5Qu42 +3Qn+1 +20Q, + 1.

e B,=Q,+1.

Qn=B,-1

Next, we give the ordinary generating function ), W,z" of the sequence W,.
n=0

Lemma 2.4. Suppose that fw,(z) = Y, W,z" is the ordinary generating function of the generalized Adrien sequence
n=0

{W,}. Then, i W,z" is given by
n=0

i W2 = Wo + (Wl - 3W0)Z + (W2 -3W; + W0)22 + (W3 -3W;, + W1)23

1-3z+22+2z4
n=0
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Proof. Taker =3,s = -1,t =0,u = -1 in Lemma 1.3.
The previous lemma gives the following results as particular examples.

Corollary 2.5. Generating functions of Adrien and Adrien-Lucas numbers are

iA Zt = z = z

ot ! 1-3z+22+zf (-1+2z+22+28)(z-1)’
ian _ 4-9z+22 4 -9z + 222

et 7T 1-3z4 2420 (1422422428 (2 1)

respectively.

3. Simson Formulas
Now, we present Simson'’s formula of generalized Adrien numbers.

Theorem 3.1 (Simson’s Formula of Generalized Adrien Numbers). For all integers n, we have
Wn+3 Wn+2 Wn+1 Wn

Wn+2 Wn+1 Wn Wn—l _ _ _ A3 3 3 3_ _ 2 _
Wit W, W1 W, —(W0+W1+2W2 Wg)( W3+5W2+W1+WO (W0+3W1 7W2)W3+(3W0

Wn Wn—l Wn—2 Wn—3
4Wq - 14W3)W§ + (2W() +W, - 6W3)W% - (W1 + 2W3)W§ + 13W W, W3 + WoW,o W3 + 5Wo W, W3 — 7Wo Wy Wz)
Proof. Taker =3,s = -1,t =0,u = —1 in Theorem 1.4. O

The previous theorem gives the following results as particular examples.

Corollary 3.2. For all integers n, the Simson’s formulas of Adrien and Adrien-Lucas numbers are given as

An+3 An+2 An+1 An
An+2 An+] An An—l = 1
A Ay, Ap-1 An2 ’

An An—l An—Z An—3

Bn+3 Bn+2 Bn+1 Bn

Bn+2 Bn+1 Bn Bn—l

= =783,
Bn+1 Bn Bn—l Bn—2
Bn Bn—l Bn—Z Bn—3

respectively.

4. Some Identities

In this section, we obtain some identities of Adrien and Adrien-Lucas numbers. First, we can give a few
basic relations between {W,,} and {A,}.

Lemma 4.1. The following equalities are true:

(a) Wn = (10W2 —6W; — 3W3)An+5 + (3W0 +18W; —33W, + 10W3)An+4 + (18W2 —-3W; - 10W0 - 6W3)An+3 +
(6W0 —10W7 + 3W2)An+2.

b) W, = (3W0 —3Wh + W3)An+4 + (3W1 —10Wy +8W, — 3W3)An+3 + (6W0 —10W; + 3W2)An+2 + (6W1 —10W, +
3I/\/3)An+1-

(C) W, =(3W1—Wo—Wz)An+3+(3WO—lOW1+6W2—W3)An+2+(6wl—10W2+3W3)An+1+(3W2—3W()—W3)An.
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(d) W, = BWr—Wi—W3)A,12+(Wo+3W1 —9W, +3W3)A,11 + (BWo —3Wy — W3)A, + (Wy —3W1 + Wa)A, 1.
(e) W, = WoA, 41 + (W1 —3WpA, + Wy — 3W1 + Wr)A, -1 + (W1 — 3W, + W3)A, .
Proof. Note that all the identities hold for all integers n. We prove (a). To show (a), writing
Wy=aXAnus+bXAa+cXAz+dXAm

and solving the system of equations

Wo = aXAs+bXAs+cXAs3+dX A,

Wi = aXAg+bXxAs+cXAs+dXAs

Wr = aXA;+bXAg+cXAs+dXAy

W3 = axXAg+bXA;+cXAg+dXAs
we find that a = 10W, — 6W; — 3W3,b = 3Wy + 18W; — 33W, + 10W3,¢c = 18W, — 3W; — 10Wy — 6W3,d =
6Wy — 10W; + 3W,. The other equalities can be proved similarly. O

Note that all the identities in the above Lemma can be proved by induction as well.
Next, we present a few basic relations between {W,} and {B,}.

Lemma 4.2. The following equalities are true:

(@ 261W, = —(16Wy — 110W; + 272W, — 91W3)B,.45 — (43Wy + 346W1 — 835W, + 272W3)B .14 + (256W) +
67W1 — 346W; + 110W3)B,43 — (110Wy — 256 W + 43W, + 16W3)B,,0.

(b) 261W, = —(91 W + 16W; — 19W, — W3)Bra + (272Wo — 43W; — 74 W, + 19W3)Boss — (110Wy — 256 W; +
43W2 + 16W3)Bn+2 + (16W0 - 110W1 + 272W2 - 91W3)Bn+1.

(c) 261Wn = _(WO + 91W1 + 17W2 - 22W3)B,,+3 - (19W0 - 272W1 + 62W2 + 17W3)Bn+2 + (16W0 - 110W1 +
272W, — 91W3)Bn+1 + (91W() + 16W; — 19W, — W3)Bn.

(d) 261W, = —(22Wy + Wi + 113W, — 49W3)B,1a + (17Wo — 19W; + 289W, — 1T13W3)Bus1 + (91 W + 16W; —
19W, — Wg)Bn + (Wo +91W; + 17W, — 22W3)Bn,1.

(&) 261W, = —(49Wy +22W; +50W, — 34W3)Bys1 + (113Wo + 17W; + 94 W, — 50W3)B, + (Wo + 91W; + 17W, —
22W3)Bn,1 + (22W0 + Wi + 113W, — 49W3)Bn,2.

Now, we give a few basic relations between {A,} and {B,}.

Lemma 4.3. The following equalities are true:

261A, = 22By45—17B,44 —91B,13 — Byyo,

261A, = 49B,.s — 113B,s3 — Buso — 22B,i1,
261A, = 34B,.3 —50B,ss — 22B,1 — 49B,,
261A, = 52Bu.o —56B,.1 —49B, — 34B,_1,

261A, = 100B,4+; —101B, —34B, 1 — 52B,,_»,
and

B, = —2Ap5+15A514 —31A513 +15A,42,

Bn - 9An+4 - 29An+3 + 15An+2 + 2An+lr

Bn - _2An+3 + 6An+2 + 214;1+1 - 9An/

B, = 4A,.1-9A,+2A, 4.
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5. Relations Between Special Numbers

In this section, we present identities on Adrien, Adrien-Lucas numbers and third order Pell, third order
Pell-Lucas numbers. We know that

3Ay = Puyo—Pu+P,-1,
B, = Qu+1
Note also that from Lemma 4.1 and Lemma 4.2 , we have the formulas of W,, as
W, = (@BW;-Wy—-W2)Au3+ BWy—10W1 +6Wy — W3)A,40
+(6W1 —10W, + 3W3)An+1 + (3W2 - 3W0 - W3)An,
—(Wo +91W; + 17W, — 22W3)Bn+3 - (19W0 —272W7 + 62W, + 17W3)Bn+2
+(16W0 —110W7 + 272W, — 91W3)Bn+1 + (91W0 + 16W; — 19W, — W3)Bn.

261W,

Using the above identities, we obtain the relation of generalized Adrien numbers and third order Pell, third
order Pell-Lucas numbers in the following forms:

Lemma 5.1. For all integers n, we have the following identities:

(@ 3w, = (—2W3 +7W, —4W; — Wo)Pn+2 + (5W3 —16W, + 7W; + 4W0)Pn+1 + (W3 +8W; —5W, — 4W0)Pn -
W3 +2W, + W1 + W,

(b) 87W,, = (OW3 —32W; + 30W; — 7Wy)Qys2 + (—23W3 + 85W, — 67W1 + 5W()Qyv1 + (W3 — 12W, — 25W; +
30Wp)Q, — 29W5 + 58W, + 29W; + 29W,.
6. On the Recurrence Properties of Generalized Adrien Sequence
Taking r = 3,5 = —=1,t = 0,u = —1 in Theorem 1.5, we obtain the following Proposition.
Proposition 6.1. For n € Z, generalized Adrien numbers (the case r = 3,5 = =1,t = 0,u = —1) have the following
identity:

1
Woy = =(=6Ws, + 6B, Wa, - 3B2W,, + 3B, W, + WoB3 + 2W,Bs, — 3WB,,B2,)

From the above Proposition 6.1 (or by taking G, = A, and H, = B, in (10) and (11) respectively), we
have the following corollary which gives the connection between the special cases of generalized Adrien
sequence at the positive index and the negative index: for Adrien and Adrien-Lucas and Adrien numbers:
take Wn = An with Ao = 0,A1 = 1,A2 = 3,A3 = 8 and take Wn = Bn with Bo = 4,B1 = 3,B2 = 7,B3 = 18,
respectively. Note that in this case H, = B,,.

Corollary 6.2. For n € Z, we have the following recurrence relations:

(a) Adrien sequence:
1
A, = 6(—6143” + 6B, Ay, —3B2A, + 3B2,A,).
(b) Adrien-Lucas sequence:

B_, = (Bi +2Bs, — 3B2nB,,).

Nl =

We can also present the formulas of A_, and B_, in the following forms.
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Corollary 6.3. For n € Z, we have the following recurrence relations:

(a) A—n = %(_6A3n + 6(_2An+3 + 6An+2 + 21471+1 - 9An)A2n - 3(_2An+3 + 6An+2 + 2an+1 - 9An)2An + 3(_2A2n+3 +
6AZn+2 + 2A2n+1 - 9A2n)An)-

(b) A—n = %(313% _BPi_l +3Pi_2 +P2n _P2n—2 +P2n—4 + (Pn+2 _5Pn+1 +5Pn—1 +Pn—2)Pn - (Pn+1 +5Pn—2)Pn—1 - 1)
(©) By = 3(Q2 - Qo +2).
Proof.

(a) By using the identity B, = —2A,43 + 6A.42 + 2An11 — 9A, and Corollary 6.2, (or by using Corollary 1.6
(a)), we get (a).

(b) Since A, = %(sz -Pyy1+P,—1)and P_, = 3P% + Py + Ppio Py — 5Py 41 Py, (see, for example Soykan [12]),
we get (b).

(c) SinceB, =Q,+1and Q_, = %(Qf, — Q2n) (see, for example Soykan [12]), we obtain
1
B, = E(Qﬁ -~ Qu+2). O

7. Sum Formulas
The following Corollary gives sum formulas of third order Pell and third order Pell-Lucas numbers.

Corollary 7.1. For n > 0, third order Pell and third order Pell-Lucas numbers have the following properties:

(a)
@) ZZ:()Pk = %(Pn+3_Pn+2_2Pn+l -1).
Gi) Yo Pox = % (Pows1 + P2 — 1).
Gii) Yj_oPoks1 = 2 (Pans2 + Pons1) -

(b)

() Yioo Q= 3 (Quss — Quiz = 2Qui1 +2).
(i) ZZ:O Qx = % (Qans1 + Qon +4).
(iii) ZI’::O Qoks1 = % (Q2n+2 + Qops1 — 2) .

Proof. It is given in Soykan [13, Corollary 14 and Corollary 15]. O
The following Corollary presents sum formulas of Adrien and Adrien-Lucas numbers.

Corollary 7.2. For n > 0, Adrien and Adrien-Lucas numbers have the following properties:

()
() YiooAx = §(4Pui2 = Py1 + Py =31 =7).
(ii) ZZ:O Agy = %(2P2n+2 + Pypi1 + 2Py, — 3n = 5).
(i) Yj_oAsks1 = 5(5Pons2 + 4Ppus1 + 2Py, — 31 = 5).
(b)

() Yi_oBk = 2(Qui2 = Quit + Qu +3n+5).
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(i) Yo B = 2(Qons1 + Qon + 31+ 7).

(iii) Y7_oBoks1 = 3(Qans2 + Qope1 + 31+ 1).
Proof. The proof follows from Corollary 7.1 and the identities
1
Ay = g(Pn+2_Pn+1+Pn_1)r

B, = Q,+1.0O

8. Matrices and Identities Related With Generalized Adrien Numbers

If we define the square matrix M of order 4 as

3 -1 0 -1
10 0 0
M=l 1 0 o
00 1 0

and also define

An+1 _An - An72 _Anfl _An
An _An—l - An—3 _An—2 _An—l

S, =
" An—l _An—Z - An—4 _An—S _An—Z
An—Z _An—3 - An—5 _An—4 _An—S
and
Wn+1 _Wn - Wn—2 —VVn-1 _Wn
u, = Wn —V¥n-1— Wn—3 —VVn-2 T V¥p-1
" Wn—l —V¥n-2— Wn—4 —VVn-3 —V¥p-2

Wioo Wy =Wys Wy W3

then we get the following Theorem.
Theorem 8.1. For all integers m,n, we have
@ S, =M".
(b) UZM" = M"U;.
(©) Uppm = UpSy = Sy,

Proof. Taker =3,s = —1,t = 0,u = —1 in Theorem 1.7. O
Corollary 8.2. For all integers n, we have the following formulas for the Adrien and Adrien-Lucas numbers.

(@) Adrien Numbers.

3 -1 0 -1 ! An+1 _An - An—Z _An—l _An
M" = 1 0 0 0 — An _An—l - Anf?, _An72 _An—l

0 1 0 0 An—l _An—Z - An—4 _An—3 _An—Z

0 0 1 0 An—Z _An—S - An—S _An—4 _An—3
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(b) Adrien-Lucas Numbers.

a1 a2 M3 Ai4
M" = L az1 Az a3 a4
611 a3 azx a3 a4z
41 Q42 Q43 (44
where

a1 = 34By44 — 50B,13 — 22B,145 — 49B,11
ay; = 34B,+3 — 50B,,+2 — 22B,,41 — 498,
asy = 34Bn+2 - 503,“1 - 223,, - 49Bn,1
asg = 34Bn+1 - 50Bn - ZZBn_l - 49Bn_2

ap =998, +22B,_1 —12B,4+1 + 49B,_» + 508,12 — 34B,,13
ap =99B,1 —12B,, + 50B,4+1 + 22B,,_» — 34B,,.» + 49B,,_3
az =508, —12B,_1 — 34B,+1 + 99B,» + 22B,,_3 + 49B,,_4
a4 =50B,_1 —34B,, — 12B,,_» + 99B,,_3 + 22B,,_4 + 49B,,_5

a3 = —(34By42 — 50By41 — 22B, — 49B,,1)

dz3 = —(34Bn+1 - 5OBn - 22Bn_1 - 49Bn—2)

aszz = —(34Bn - SOBn_l - 22Bn_2 - 4an_3)
ags = —(34Bn_1 - 50Bn_2 - 22Bn_3 - 49Bn_4)

14 = —(34Byys3 — 50B,12 — 22B,.1 — 49B,,)
(4 = —(34B,12 — 50B,41 — 22B, — 49B,_1)
34 = —(34B,41 — 50B,, — 22B,,_1 — 49B,,_5)
a4 = —(34B, — 50B,_1 — 22B,_, — 49B,_3)
Proof.

(a) Itis given in Theorem 8.1 (a).

(b) Note that, from Lemma 4.3, we have

261A, = 34B,+3 — 50B+2 — 22B,,41 — 49B,,.

Using the last equation and (a), we get the required result. O
Using the above last Corollary and the identity
3A;, =Py —Pp + P, -1,
we obtain the following formula for third order Pell numbers.

Corollary 8.3. For all integers n, we have the following formula for third order Pell numbers.
-1 0 -1y b b bz bu

3
M = 1 0 0 O _1| bz b baz by
0 1 0 O 31 bar by by b
0 0 1 0 by by biz by
where

b1y = Puy2 + 2Py + P =1

boy =Py —-Py1+P, -1

b3t = Ppip — Py — 2P, - 1
by = =2Py42 + 5Py + P -1

50
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bip = Ppip —4Ppi1 — 2P, +2
bzz =-2P,s o + 5P, .1 — 2P, +2
b32 =-2P, 2 +2P, 1 +7P,, +2
b42 =7P,» —16P,41 — 5P, +2

bi3 :_(Pn+2_Pn+1 _2Pn_1)
bz = —(=2Py42 + 5Py + P, — 1)
bss = _(Pn+2 — 4P, +4P, — 1)
byz = —(4Py42 — 7Py — 8P, — 1)

biy = =(Pps2 = Ppn + Py = 1)
by = =(Ppsp — Ppn — 2P, - 1)
b3y = =(=2Py4 + 5Py + Py — 1)
by = —(Pys2 — 4Ppq +4P, - 1)

Next, we present an identity for W,,.

Theorem 8.4. For all integers m, n, we have

Wn+m = WnAm+1 + Wn—l(_Am - Am—Z) - Wn—ZAm—l - Wn—SAm'

Proof. Taker =3,s = -1,t =0,u = —1 in Theorem 1.8. O
As particular cases of the above theorem, we give identities for A, and Bj.c.

Corollary 8.5. For all integers m, n, we have

An+m = AnAm+1 + An—l(_Am - Am—Z) - An—ZAm—l - An—SAm/
Busm = BuAmi1 + Buo1(=Am — Am-2) — Bu2Am-1 — Bu3An.
Taking m = n in the last corollary, we obtain the following identities:

Avy = AyAn —AnAu — AvAnz —2A, 1A,
By = BuAuyy1—AuBu1—AuBu3—Au 1By 2 — Ay 2B, .
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