On the average value of a function of generalized mean

Dragan S. Rakića ${ }^{\text {a }}$
${ }^{a}$ Faculty of Mechanical Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia

Abstract

In this short note we find the exact formula for $$
\lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} f\left(M_{n, p}\left(x_{1}, \ldots, x_{n}\right)\right) d x_{1} \ldots d x_{n}
$$

where $M_{n, p}\left(x_{1}, \ldots, x_{n}\right), p \in[-\infty, \infty]$ is the generalized mean and f is an arbitrary continuous function.

1. Introduction and preliminaries

The Miklós Schweitzer competition is an annual Hungarian mathematics competition for university students, established in 1949. It is named after Miklós Schweitzer, a young mathematician who died in the Second World War. The competition consists of ten to twelve problems written by prominent Hungarian mathematicians. Competitors are allowed ten days to come up with solutions and they can use any tools and literature they want. The Schweitzer competition is one of the most unique in the world. Winners of the contests have gone on to become world-class scientists. The contests serve as reflections of Hungarian mathematical trends and as starting points for many interesting research problems in mathematics, [1]. In 1967 competition the following problem was given.

Problem 1.1. (See problem P. 6 in [1].) Let f be a continuous function on the unit interval $[0,1]$. Show that

$$
\lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) d x_{1} \ldots d x_{n}=f\left(\frac{1}{2}\right)
$$

and

$$
\lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} f\left(\sqrt[n]{x_{1} \cdots x_{n}}\right) d x_{1} \ldots d x_{n}=f\left(\frac{1}{e}\right)
$$

The problem is solved in [1] in two different ways. The first one uses some combinatorial arguments among others, while the other one is based on the strong law of large numbers and Lebesgue's theorem of dominant

[^0]convergence. Our aim is to solve the problem in the most general case when the arithmetic (geometric) mean is replaced by the generalized mean with exponent $p \in[-\infty, \infty]$. Our proof is quite elementary and it is intended to be accessible to undergraduate students of mathematics.

Recall some definitions and notations. The generalized mean with exponent $p \in[-\infty, \infty]$ of positive real numbers x_{1}, \ldots, x_{n} is defined by

$$
M_{n, p}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{lc}
\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{1 / p}, & p \in \mathbb{R} \backslash\{0\} \tag{1}\\
\sqrt[n]{x_{1} \cdots x_{n}}, & p=0 \\
\min \left\{x_{1}, \ldots, x_{n}\right\}, & p=-\infty \\
\max \left\{x_{1}, \ldots, x_{n}\right\}, & p=\infty
\end{array} .\right.
$$

As we know, $\lim _{p \rightarrow 0} M_{n, p}=M_{n, 0}, \lim _{p \rightarrow \infty} M_{n, p}=M_{n, \infty}$ and $\lim _{p \rightarrow-\infty} M_{n, p}=M_{n,-\infty}$
For $k \in \mathbb{N} \cup\{0\}$, denote by p_{k} the power function $p_{k}(x)=x^{k}, p_{0}(x)=1, x \in \mathbb{R}$.
As usual, for a compact set $K \subset \mathbb{R}$ we denote by $C(K)$ the Banach space of all real-valued continuous functions $f: K \rightarrow \mathbb{R}$ with the supremum norm $\|f\|=\sup _{x \in K}|f(x)|$.

2. Main result

We need the following result. Its proof is quite elementary and can be found in [3] Theorem 7.9 or in [2] Lemma 8.14. Note that its converse is a consequence of the uniform boundedness principle.

Lemma 2.1. Let X be a normed space and Y be a Banach space and let M be a subset of X whose linear span is dense in X. Suppose for a sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset B(X, Y)$ the following hold:

1. The sequence $\left(\left\|A_{n}\right\|\right)_{n \in \mathbb{N}}$ is bounded.
2. For each $x \in M, \lim _{n} A_{n} x$ exists.

Then $\left(A_{n} x\right)_{n \in \mathbb{N}}$ converges for each $x \in X$ and the map $A x:=\lim _{n} A_{n} x$ belongs to $B(X, Y)$.
Corollary 2.2. Let $K \subset \mathbb{R}$ be a compact set and let I be an interval of length one. For a sequence of continuous functions $\varphi_{n}: I^{n} \rightarrow K$, let $A_{n}: C(K) \rightarrow \mathbb{R}$ be the sequence of maps defined by

$$
A_{n} f=\int \cdots \int_{I^{n}} f\left(\varphi_{n}\left(x_{1}, \ldots, x_{n}\right)\right) d x_{1} \ldots d x_{n}, \quad f \in C(K)
$$

Suppose there is a constant $c \in \mathbb{R}$ such that $\lim _{n} A_{n} p_{k}=p_{k}(c)$, for every $k=0,1,2, \ldots$ Then the map $A f:=\lim _{n} A_{n} f$ is well defined, $A \in B(C(K), \mathbb{R})$ and $A f=f(c)$ for every $f \in C(K)$.

Proof. By Weierstrass approximation theorem we know that the set of polynomials $\operatorname{span}\left\{p_{k}: k \in \mathbb{N} \cup\{0\}\right\}$ is dense in $C(K)$. Since the length of interval I is equal to one we have

$$
\begin{aligned}
\left\|A_{n} f\right\| & =\left|A_{n} f\right| \leq \int \cdots \int_{I^{n}}\left|f\left(\varphi_{n}\left(x_{1}, \ldots x_{n}\right)\right)\right| d x_{1} \ldots d x_{n} \\
& \leq \int \cdots \int_{I^{n}} \sup _{x \in K}|f(x)| d x_{1} \ldots d x_{n}=\|f\|
\end{aligned}
$$

so $\left\|A_{n}\right\| \leq 1$. Also, \mathbb{R}, as a vector space over \mathbb{R}, is a Banach space. We can now apply Lemma 2.1 to conclude that the functional $A f=\lim _{n} A_{n} f$ is well defined and $A \in B(C(K), \mathbb{R})$. Since A_{n} is linear and $\lim _{n} A_{n} p_{k}=p_{k}(c)$, we have $A q=\lim _{n} A_{n} q=q(c)$ for every polynomial q. For arbitrary $f \in \mathcal{C}(K)$ there exists a sequence of polynomials $\left(f_{n}\right)_{n}$ such that $f_{n} \rightarrow f$ in the supremum norm. By the continuity of A we obtain

$$
A f=A\left(\lim _{n} f_{n}\right)=\lim _{n} A f_{n}=\lim _{n} f_{n}(c)=f(c)
$$

Theorem 2.3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function and let $M_{n, p}\left(x_{1}, \ldots, x_{n}\right),-\infty \leq p \leq \infty$ be the generalized mean defined by (1). Then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} f\left(M_{n, p}\left(x_{1}, \ldots, x_{n}\right)\right) d x_{1} \ldots d x_{n} \\
& = \begin{cases}f(1), & p=\infty \\
f\left(\frac{1}{(p+1)^{1 / p}}\right), & -1<p<\infty, p \neq 0 \\
f\left(\frac{1}{e}\right), & p=0 \\
f(0), & -\infty \leq p \leq-1\end{cases} \tag{2}
\end{align*}
$$

Proof. Depending on the value of the parameter p, we will divide the proof in five cases. In all cases we will first prove the adequate formula for the power function $p_{k}: x \rightarrow x^{k}$ and then we will apply Corollary 2.2.
$p=0$: This case is quite simple. By Fubini's theorem, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}}\left(\sqrt[n]{x_{1} \cdots x_{n}}\right)^{k} d x_{1} \ldots d x_{n} \\
& =\lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} x_{1}^{k / n} \cdots x_{n}^{k / n} d x_{1} \ldots d x_{n}=\lim _{n \rightarrow \infty}\left(\int_{0}^{1} x^{k / n} d x\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{k / n+1}\right)^{n}=\lim _{n \rightarrow \infty} \frac{1}{\left((1+k / n)^{n / k}\right)^{k}}=\frac{1}{e^{k}}
\end{aligned}
$$

Let $K=I=[0,1], \varphi_{n}\left(x_{1}, \ldots, x_{n}\right)=\sqrt[n]{x_{1} \cdots x_{n}} \in[0,1], x_{i} \in[0,1], c=1 / e$ and

$$
A_{n} f:=\int \cdots \int_{[0,1]^{n}} f\left(\sqrt[n]{x_{1} \cdots x_{n}}\right) d x_{1} \ldots d x_{n}, \quad f \in C(K)
$$

Then $\lim _{n \rightarrow \infty} A_{n} p^{k}=p_{k}(1 / e), \forall k \in \mathbb{N} \cup\{0\}$. The assumptions of Corollary 2.2 are satisfied, so it follows that for every $f \in C[0,1], \lim _{n} A_{n} f=f\left(\frac{1}{e}\right)$.
$p=\infty$: Note that

$$
\begin{equation*}
[0,1]^{n}=\bigcup_{\sigma \in S_{n}}\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}: 0 \leq x_{\sigma_{1}} \leq x_{\sigma_{2}} \leq \cdots \leq x_{\sigma_{n}} \leq 1\right\} \tag{3}
\end{equation*}
$$

where S_{n} is the set of all permutations of $\{1,2, \ldots, n\}$. Because the (n-dimensional Lebesgue) measure of the intersection of any two sets on the right hand side of (3) is equal to zero, we have

$$
\begin{aligned}
I_{n, k}:= & \int \cdots \int_{[0,1]^{n}}\left(\max \left\{x_{1}, \ldots, x_{n}\right\}\right)^{k} d x_{1} \ldots d x_{n} \\
& =n!\int \cdots \int_{0 \leq x_{1} \leq \cdots \leq x_{n} \leq 1} x_{n}^{k} d x_{1} \ldots d x_{n} \\
& =n!\int_{0}^{1} x_{n}^{k} d x_{n} \int_{0}^{x_{n}} d x_{n-1} \int_{0}^{x_{n-1}} d x_{n-2} \cdots \int_{0}^{x_{2}} d x_{1}
\end{aligned}
$$

By induction on $n \geq 2$ it is easy to show that

$$
\int_{0}^{x_{n}} d x_{n-1} \int_{0}^{x_{n-1}} d x_{n-2} \cdots \int_{0}^{x_{2}} d x_{1}=\frac{x_{n}^{n-1}}{(n-1)!}
$$

so we obtain

$$
I_{n, k}=n!\int_{0}^{1} x_{n}^{k} \frac{x_{n}^{n-1}}{(n-1)!} d x_{n}=\frac{n}{n+k}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}}\left(\max \left\{x_{1}, \ldots, x_{n}\right\}\right)^{k} d x_{1} \ldots d x_{n}=1=1^{k}
$$

In the same way as in the previous case, let $K=I=[0,1], \varphi_{n}\left(x_{1}, \ldots, x_{n}\right)=\max \left\{x_{1}, \ldots, x_{n}\right\} \in[0,1]$, $x_{i} \in[0,1]$ and $c=1$. The assumptions of Corollary 2.2 are satisfied, so for every $f \in C[0,1]$,

$$
\lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} f\left(\max \left\{x_{1}, \ldots, x_{n}\right\}\right) d x_{1} \ldots d x_{n}=f(1) .
$$

$p=-\infty$: As in the previous case, we have

$$
\begin{aligned}
& \int \cdots \int_{[0,1]^{n}}\left(\min \left\{x_{1}, \ldots, x_{n}\right\}\right)^{k} d x_{1} \ldots d x_{n} \\
& =n!\int \cdots \int_{0 \leq x_{1} \leq \cdots \leq x_{n} \leq 1} x_{1}^{k} d x_{1} \ldots d x_{n} \\
& =n!\int_{0}^{1} d x_{n} \int_{0}^{x_{n}} d x_{n-1} \cdots \int_{0}^{x_{3}} d x_{2} \int_{0}^{x_{2}} x_{1}^{k} d x_{1} \\
& =n!\int_{0}^{1} \frac{k!}{(n+k-1)!} x_{n}^{k+n-1} d x_{n}=\frac{n!k!}{(n+k)!} .
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}}\left(\min \left\{x_{1}, \ldots, x_{n}\right\}\right)^{k} d x_{1} \ldots d x_{n}=0=0^{k}
$$

From the same reasons as in the case $p=\infty$, we conclude that

$$
\lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} f\left(\min \left\{x_{1}, \ldots, x_{n}\right\}\right) d x_{1} \ldots d x_{n}=f(0)
$$

$0<p<\infty$: Let

$$
I_{p}(n, k)=\int \cdots \int_{[0,1]^{n}}\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{k} d x_{1} \ldots d x_{n}, \quad k \in \mathbb{N} \cup\{0\} .
$$

We want to derive a recurrent relation for $\left(I_{p}(n, k)\right)_{k}$ but in such a way that after passage to the limit as
$n \rightarrow \infty$ we obtain a useable relation. By the symmetry and the Fubini's theorem, we have

$$
\begin{aligned}
I_{p}(n, k) & :=\int \cdots \int_{[0,1]^{n}} \frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{k-1} d x_{1} \ldots d x_{n} \\
& =\frac{1}{n} \sum_{i=1}^{n} \int \cdots \int_{[0,1]^{n}} x_{i}^{p}\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{k-1} d x_{1} \ldots d x_{n} \\
& =\int \cdots \int_{[0,1]^{n}} x_{n}^{p}\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{k-1} d x_{1} \ldots d x_{n} \\
& =\int \cdots \int_{[0,1]^{n}} \frac{x_{n}^{p}}{n^{k-1}} \sum_{i=0}^{k-1}\binom{k-1}{i}\left(x_{1}^{p}+\cdots+x_{n-1}^{p}\right)^{i}\left(x_{n}^{p}\right)^{k-1-i} d x_{1} \ldots d x_{n} \\
& =\sum_{i=0}^{k-1} \frac{(n-1)^{i}}{n^{k-1}}\binom{k-1}{i} \int \cdots \int_{[0,1]^{n-1}}\left(\frac{x_{1}^{p}+\cdots+x_{n-1}^{p}}{n-1}\right)^{i} d x_{1} \ldots d x_{n-1} \cdot \int_{0}^{1} x_{n}^{p(k-i)} d x_{n} \\
& =\sum_{i=0}^{k-1} \frac{(n-1)^{i}}{n^{k-1}}\binom{k-1}{i} \frac{1}{p(k-i)+1} I_{p}(n-1, i) \\
& =\left(\frac{n-1}{n}\right)^{k-1} \frac{1}{p+1} I_{p}(n-1, k-1)+\sum_{i=0}^{k-2} \frac{(n-1)^{i}}{n^{k-1}}\binom{k-1}{i} \frac{1}{p(k-i)+1} I_{p}(n-1, i)
\end{aligned}
$$

where in the last row we extracted the last term from the sum. Since $0 \leq x_{i} \leq 1$ we have $0 \leq\left(\left(x_{1}^{p}+\cdots+x_{n}^{p}\right) / n\right)^{k} \leq$ 1 , so $0 \leq I_{p}(n, k) \leq 1$, for every $n \in \mathbb{N}$ and every $k \in \mathbb{N} \cup\{0\}$. It follows that

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{k-2} \frac{(n-1)^{i}}{n^{k-1}}\binom{k-1}{i} \frac{1}{p(k-i)+1} I_{p}(n-1, i)=0
$$

as $\lim _{n}(n-1)^{i} / n^{k-1}=0$, for $i \in\{0,1, \ldots k-2\}$. Note that $\lim _{n}((n-1) / n)^{k-1}=1$ and $I_{p}(n, 0)=1$, for every $n \in \mathbb{N}$, thus, $\lim _{n} I_{p}(n, 0)=1$. It is now easy to show by induction on $k \geq 0$ that the sequence $\left(I_{p}(n, k)\right)_{n}$ is convergent for every k and

$$
\lim _{n \rightarrow \infty} I_{p}(n, k)=\frac{1}{(p+1)^{k}}, \quad k \in \mathbb{N} \cup\{0\}
$$

Let $K=I=[0,1], \varphi_{n}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}^{p}+\cdots+x_{n}^{p}\right) / n \in[0,1], x_{i} \in[0,1]$ and $c=1 /(p+1)$. By Corollary 2.2, it follows that for every $g \in C[0,1]$

$$
\lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} g\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right) d x_{1} \ldots d x_{n}=g\left(\frac{1}{p+1}\right)
$$

For arbitrary $f \in C[0,1]$, let $g: x \rightarrow f\left(x^{1 / p}\right), x \in[0,1]$. We obtain the desired formula (2) for $0<p<\infty$.
$-\infty<p<0$: The proof of the previous case is not applicable here because $\int_{0}^{1} x^{p(k-i)} d x=\infty$ when $p(k-i)+1 \leq 0$. Let

$$
I_{p}(n, k, \varepsilon)=\int \cdots \int_{[\varepsilon, 1+\varepsilon]^{n}}\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{k} d x_{1} \ldots d x_{n}
$$

where $\varepsilon>0$ is an arbitrary positive real and $k \in \mathbb{N} \cup\{0\}$. In the same way as in the case $p>0$ we obtain

$$
\begin{aligned}
I_{p}(n, k, \varepsilon)= & \left(\frac{n-1}{n}\right)^{k-1} \int_{\varepsilon}^{1+\varepsilon} x^{p} d x \cdot I_{p}(n-1, k-1, \varepsilon) \\
& +\sum_{i=0}^{k-2} \frac{(n-1)^{i}}{n^{k-1}}\binom{k-1}{i} \int_{\varepsilon}^{1+\varepsilon} x^{p(k-i)} d x \cdot I_{p}(n-1, i, \varepsilon)
\end{aligned}
$$

Since $\varepsilon \leq x_{i} \leq 1+\varepsilon$ and $p<0$ we have $(1+\varepsilon)^{p k} \leq\left(\left(x_{1}^{p}+\cdots x_{n}^{p}\right) / n\right)^{k} \leq \varepsilon^{p k}$, so $(1+\varepsilon)^{p k} \leq I_{p}(n, k, \varepsilon) \leq \varepsilon^{p k}$, for every $p<0$, every $k \in \mathbb{N} \cup\{0\}$ and every $n \in \mathbb{N}$. It follows that

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{k-2} \frac{(n-1)^{i}}{n^{k-1}}\binom{k-1}{i} \int_{\varepsilon}^{1+\varepsilon} x^{p(k-i)} d x \cdot I_{p}(n-1, i, \varepsilon)=0
$$

Note that $I_{p}(n, 0, \varepsilon)=1, \forall n \in \mathbb{N}$, so $\lim _{n} I_{p}(n, 0, \varepsilon)=1$. We can now show by induction on $k \geq 0$ that the sequence $\left(I_{p}(n, k, \varepsilon)\right)_{n}$ converges and that

$$
\lim _{n \rightarrow \infty} I_{p}(n, k, \varepsilon)=\left(a_{p}(\varepsilon)\right)^{k}
$$

where

$$
a_{p}(\varepsilon)=\int_{\varepsilon}^{1+\varepsilon} x^{p} d x=\left\{\begin{array}{ll}
\frac{1}{p+1}\left((1+\varepsilon)^{p+1}-\varepsilon^{p+1}\right), & p<0, p \neq-1 \\
\ln \frac{1+\varepsilon}{\varepsilon}, & p=-1
\end{array} .\right.
$$

Let $I=[\varepsilon, 1+\varepsilon], K=\left[(1+\varepsilon)^{p}, \varepsilon^{p}\right]$ and $c=a_{p}(\varepsilon)$. Then $\varphi_{n}\left(x_{1}, \ldots, x_{n}\right):=\left(x_{1}^{p}+\cdots+x_{n}^{p}\right) / n \in K$ when $x_{i} \in I$. Let

$$
A_{n} f=\int \cdots \int_{I^{n}} f\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right) d x_{1} \ldots d x_{n}, \quad f \in \mathcal{C}(K) .
$$

We have proved that $\lim _{n} A_{n} p_{k}=c^{k}$ for every $k \in \mathbb{N} \cup\{0\}$. From Corollary 2.2, we conclude that $\lim _{n} A_{n} f=$ $f(c)$, for every $f \in C(K)$. In the special case when $f(x)=x^{k / p}$ we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J_{p}(n, k, \varepsilon)=\left(a_{p}(\varepsilon)\right)^{\frac{k}{p}} \tag{4}
\end{equation*}
$$

where

$$
J_{p}(n, k, \varepsilon)=\int \cdots \int_{[\varepsilon, 1+\varepsilon]^{n}}\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{\frac{k}{p}} d x_{1} \ldots d x_{n}
$$

Let us prove that the function $J_{p}(n, k, \varepsilon)$ is increasing with respect to the argument $\varepsilon>0$. Let $0<\varepsilon_{1} \leq \varepsilon_{2}$. After the change of variables $x_{i}=t_{i}+\varepsilon_{2}-\varepsilon_{1}, i=\overline{1, n}$, whose Jacobian is equal to one, we obtain

$$
\begin{aligned}
J_{p}\left(n, k, \varepsilon_{2}\right) & =\int \cdots \int_{\left[\varepsilon_{1}, 1+\varepsilon_{1}\right]^{n}}\left(\frac{\left(t_{1}+\left(\varepsilon_{2}-\varepsilon_{1}\right)\right)^{p}+\cdots+\left(t_{n}+\left(\varepsilon_{2}-\varepsilon_{1}\right)\right)^{p}}{n}\right)^{\frac{k}{p}} d t_{1} \ldots d t_{n} \\
& \geq \int \cdots \int_{\left[\varepsilon_{1}, 1+\varepsilon_{1}\right]^{n}}\left(\frac{t_{1}^{p}+\cdots+t_{n}^{p}}{n}\right)^{\frac{k}{p}} d t_{1} \ldots d t_{n}=J_{p}\left(n, k, \varepsilon_{1}\right)
\end{aligned}
$$

since the functions $x \rightarrow x^{p}$ and $x \rightarrow x^{k / p}$ are both decreasing when $p<0$. For $\varepsilon \leq x_{i} \leq 1+\varepsilon$ it is easy to see that $\varepsilon^{k} \leq\left(M_{n, p}\left(x_{1}, \ldots, x_{n}\right)\right)^{k} \leq(1+\varepsilon)^{k}$, so

$$
\begin{equation*}
\varepsilon^{k} \leq J_{p}(n, k, \varepsilon) \leq(1+\varepsilon)^{k} \tag{5}
\end{equation*}
$$

Also $J_{p}(n, k, \varepsilon)$ is increasing in ε, so the limit

$$
J_{p}(n, k, 0):=\lim _{\varepsilon \rightarrow 0+} J_{p}(n, k, \varepsilon)=\int \cdots \int_{[0,1]^{n}}\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{\frac{k}{p}} d x_{1} \ldots d x_{n}
$$

exists,

$$
\begin{equation*}
0 \leq J_{p}(n, k, 0) \leq 1 \tag{6}
\end{equation*}
$$

by (5) and

$$
\begin{equation*}
J_{p}(n, k, 0) \leq J_{p}(n, k, \varepsilon), \forall n \in \mathbb{N} \tag{7}
\end{equation*}
$$

From (6) it follows that the sequence $\left(J_{p}(n, k, 0)\right)_{n}$ has an accumulation point. Let a be an arbitrary one. From (7) and (4) we conclude that

$$
a \leq \lim _{n \rightarrow \infty} J_{p}(n, k, \varepsilon)=\left(a_{p}(\varepsilon)\right)^{k / p}
$$

This is valid for every $\varepsilon>0$ so

$$
\begin{equation*}
0 \leq a \leq \lim _{\varepsilon \rightarrow 0+}\left(a_{p}(\varepsilon)\right)^{k / p} \tag{8}
\end{equation*}
$$

It is easy to show that

$$
\lim _{\varepsilon \rightarrow 0+}\left(a_{p}(\varepsilon)\right)^{k / p}=\left\{\begin{array}{ll}
\frac{1}{(p+1)^{k / p}}, & -1<p<0 \\
0, & -\infty<p \leq-1
\end{array} .\right.
$$

Hence, $a=0$ in the case $-\infty<p \leq-1$. Therefore, for $-\infty<p \leq-1$, the sequence $\left(J_{p}(n, k, 0)\right)_{n}$ is convergent and

$$
\begin{equation*}
\lim _{n} \int \cdots \int_{[0,1]^{n}}\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{\frac{k}{p}} d x_{1} \ldots d x_{n}=0 . \tag{9}
\end{equation*}
$$

Suppose now that $-1<p<0$. Form (8) we have

$$
a \leq \frac{1}{(p+1)^{k / p}}
$$

On the other hand, the function $x \rightarrow x^{k / p},(1+\varepsilon)^{p} \leq x \leq \varepsilon^{p}$ is convex, the set $[\varepsilon, 1+\varepsilon]^{n}$ is of the measure equal to one and the function $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}^{p}+\cdots+x_{n}^{p}\right) / n, \varepsilon \leq x_{i} \leq 1+\varepsilon$ is continuous, so by Jensen's inequality we obtain

$$
\begin{aligned}
J_{p}(n, k, \varepsilon) & \geq\left(\int \cdots \int_{[\varepsilon, 1+\varepsilon]^{n}} \frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n} d x_{1} \ldots d x_{n}\right)^{\frac{k}{p}} \\
& =\left(\int \cdots \int_{[\varepsilon, 1+\varepsilon]^{n}} x_{1}^{p} d x_{1} \ldots d x_{n}\right)^{\frac{k}{p}}=\left(a_{p}(\varepsilon)\right)^{k / p} .
\end{aligned}
$$

This is valid for every $\varepsilon>0$, so

$$
J_{p}(n, k, 0) \geq \lim _{\varepsilon \rightarrow 0+}\left(a_{p}(\varepsilon)\right)^{k / p}=\frac{1}{(p+1)^{k / p}}
$$

and hence $a \geq 1 /(p+1)^{k / p}$. It follows that $a=1 /(p+1)^{k / p}$. Therefore, for $-1<p<0,\left(J_{p}(n, k, 0)\right)_{n}$ is convergent and

$$
\begin{equation*}
\lim _{n} \int \cdots \int_{[0,1]^{n}}\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{\frac{k}{p}} d x_{1} \ldots d x_{n}=\frac{1}{(p+1)^{k / p}} \tag{10}
\end{equation*}
$$

In the same way as before, let $K=I=[0,1], \varphi_{n}\left(x_{1}, \ldots, x_{n}\right)=M_{n, p}\left(x_{1}, \ldots, x_{n}\right) \in[0,1], x_{i} \in[0,1]$ and

$$
c= \begin{cases}0, & -\infty<p \leq-1 \\ 1 /(p+1)^{1 / p}, & -1<p<0\end{cases}
$$

The formula (2) follows from (9), (10) and Corollary 2.2.
We conclude this note with some remarks. We have proved the nontrivial extension of formula (2) from the cases $p=1$ and $p=0$ to the general case $p \in[-\infty, \infty]$. We gave a proof based on elementary facts. Theorem 2.3 also holds in the case when f is a complex-valued continuous function on [0,1]. Indeed, suppose that $f(x)=u(x)+i v(x)$. Then we can apply Theorem 2.3 on functions $u, v \in C([0,1])$. The claim now follows from the linearity of the map

$$
f \rightarrow \lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} f\left(M_{n, p}\left(x_{1}, \ldots, x_{n}\right)\right) d x_{1} \ldots d x_{n}, \quad f \in C([0,1])
$$

Note that

$$
\lim _{p \rightarrow-1+} \frac{1}{(p+1)^{1 / p}}=0 \text { and } \lim _{p \rightarrow 0} \frac{1}{(p+1)^{1 / p}}=\frac{1}{e}
$$

Let $h(p)=(1+p)^{1 / p}$. Then

$$
\lim _{p \rightarrow \infty} \ln h(p)=\lim _{p \rightarrow \infty} \frac{\ln (1+p)}{p}=\lim _{p \rightarrow \infty} \frac{1 /(1+p)}{1}=0
$$

so

$$
\lim _{p \rightarrow \infty} \frac{1}{(p+1)^{1 / p}}=1
$$

It follows that for $f \in C([0,1])$, the function

$$
p \rightarrow \lim _{n \rightarrow \infty} \int \cdots \int_{[0,1]^{n}} f\left(M_{n, p}\left(x_{1}, \ldots, x_{n}\right)\right) d x_{1} \ldots d x_{n}, \quad-\infty \leq p \leq \infty
$$

is continuous.

Acknowledgment. I wish to express my thanks to my friend Mihailo Krstić who suggested the problem to me.

References

[1] G. J. Székely, Contests in higher mathematics, Springer, New York, 1996.
[2] R. Meise, D. Vogt, Introduction to functional analysis, Clarendon Press, 1997.
[3] M. Arsenović, M. Dostanić, D. Jocić, Teorija mere, funkcionalna analiza, teorija operatora, Zavod za udžbenike, 2012.

[^0]: 2020 Mathematics Subject Classification. 26B15.
 Keywords. Generalized mean; Multiple integral.
 Received: 4 November 2022; Accepted: 10 December 2022
 Communicated by Dragan S. Djordjević
 The research is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, Grant No. 451-03-68/2022-14/200109.

 Email address: rakic.dragan@gmail. com (Dragan S. Rakić)

