Applied Mathematics and Computer Science 9:1 (2025), 7–14

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/amcs

On linear preservers of submajorization on $\ell^p(I)^+$, where $p \in (1, \infty)$

Martin Ljubenovića

^aFaculty of Mechanical Engineering, Department of Mathematics, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia

Abstract. We study the structure of linear operators that preserve submajorization on the positive cone $\ell^p(I)^+$, where $p \in (1, \infty)$ and I is an arbitrary nonempty set. Using a constructive approach, we show that the set of all linear preservers is norm-closed.

1. Introduction

The theory of majorization has proved to be a powerful framework for deriving and generalizing various classes of mathematical inequalities [1, 6, 12]. Owing to its versatility, it has found deep applications across numerous scientific disciplines [5], most notably in quantum mechanics [13, 14].

In the last decade, substantial progress has been achieved in extending classical majorization concepts to more general settings such as sequence spaces [8, 16] and discrete Lebesgue spaces [2, 3, 9, 11]. Parallel to these developments, the study of linear operators that preserve different types of majorization relations has become an active topic of research [2, 7, 10, 11].

In particular, the notion of submajorization on $\ell^p(I)$ and its linear preservers has been analyzed in [11]. This relation is characterized via increasable doubly substochastic operators, introduced and discussed in [4, 11]. The aim of this paper is to present a constructive proof that the set of all linear preservers $\mathcal{P}_s(\ell^p(I)^+)$ of submajorization ($<_s$) is norm-closed in the set of all bounded linear operators on $\ell^p(I)$, where I is an arbitrary nonempty set and $p \in (1, \infty)$.

When I is finite, the desired result follows directly from the compactness of the set $iDSS(\ell^p(I))$. However, in the infinite case, Example 2.3 demonstrates that $iDSS(\ell^p(I))$ fails to be compact. In this case, closedness of $\mathcal{P}_s(\ell^p(I)^+)$ will be proved in Theorem 2.6 using the auxiliary Lemma 2.5. Although an analogue of Theorem 2.6 appears as a corollary in [11], the aim of this work is to give a constructive proof of the theorem.

Notations and preliminaries

Throughout this paper, unless explicitly stated otherwise, I will denote an arbitrary nonempty set and $p \in (1, \infty)$. The Banach space $\ell^p(I)$ consists of all functions $f: I \longrightarrow \mathbb{R}$ such that $\sum_{i \in I} |f(i)|^p < \infty$, equipped with

2020 Mathematics Subject Classification. Primary 15A86; Secondary 47B60, 15B51.

Keywords. Submajorization; Linear preserver; Increasable doubly substochastic operators; Permutation.

Received: 16 November 2025; Accepted: 24 November 2025

Communicated by Dragan S. Djordjević

This research was financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Contract No. 451-03-136/2025-03/ 200109)

Email address: martinljubenovic@gmail.com (Martin Ljubenović)

ORCID iD: 0000-0003-2321-2615 (Martin Ljubenović)

the standard *p*-norm. Its positive cone is defined as

$$\ell^p(I)^+ := \{ f \in \ell^p(I) : f(i) \ge 0 \text{ for every } i \in I \}.$$

We recall that each function $f \in \ell^p(I)$ may be represented in the following form $f = \sum_{i \in I} f(i)e_i$ using Kronecker delta functions δ_{ij} , where $e_i(j) = \delta_{ij}$, $i \in I$ and $e_i : I \longrightarrow \mathbb{R}$.

We will consider bounded linear operators acting on discrete Lebesgue spaces $\ell^p(I)$. If $A: \ell^p(I) \to \ell^p(I)$ is bounded, it can be represented by a (possibly infinite) matrix $[a_{ij}]_{i,j\in I}$ depending on the cardinality of I. Setting $a_{ij} = \langle Ae_j, e_i \rangle$ for all $i, j \in I$, where the dual pairing $\langle \cdot, \cdot \rangle : \ell^p(I) \times \ell^q(I) \longrightarrow \mathbb{R}$ is given by

$$\langle f, g \rangle = \sum_{i \in I} f(i)g(i),$$

we obtain the matrix form of *A*:

$$Af(i) = \sum_{j \in I} a_{ij} f(j), \quad \forall i \in I, \quad \text{or equivalently,} \quad Af = \sum_{i \in I} \Big(\sum_{j \in I} a_{ij} f(j)\Big) e_i.$$

Definition 1.1. [11, Definition 3.1][2, Definition 2.1][9, Definition 3.1] Let $A : \ell^p(I) \longrightarrow \ell^p(I)$ be a bounded linear operator. The operator A is called:

- positive if $Af \in \ell^p(I)^+$ for each $f \in \ell^p(I)^+$;
- doubly stochastic if A is positive and satisfies

$$\forall i \in I \ \sum_{i \in I} \langle Ae_j, e_i \rangle = 1, \quad \forall j \in I \ \sum_{i \in I} \langle Ae_j, e_i \rangle = 1;$$

• doubly substochastic if A is positive and

$$\forall i \in I \ \sum_{j \in I} \langle Ae_j, e_i \rangle \leq 1, \quad \forall j \in I \ \sum_{i \in I} \langle Ae_j, e_i \rangle \leq 1;$$

• increasable doubly substochastic if there exists a doubly stochastic operator $A_1: \ell^p(I) \longrightarrow \ell^p(I)$ such that

$$\forall i, j \in I : \langle Ae_j, e_i \rangle \leq \langle A_1e_j, e_i \rangle;$$

• a permutation if there exists a bijection $\theta: I \longrightarrow I$ satisfying $Ae_i = e_{\theta(i)}$ for all $i \in I$.

The sets of all doubly substochastic, increasable doubly substochastic, and permutation operators on $\ell^p(I)$ will be denoted by $DSS(\ell^p(I))$, $iDSS(\ell^p(I))$, and $P(\ell^p(I))$, respectively.

It is straightforward that

$$iDSS(\ell^p(I)) \subseteq DSS(\ell^p(I)).$$

For finite index sets I, the equality $iDSS(\ell^p(I)) = DSS(\ell^p(I))$ follows from the classical result of von Neumann [15]. When I is infinite, the inclusion is proper: $iDSS(\ell^p(I)) \subseteq DSS(\ell^p(I))$. Typical examples showing this strictness are the left and right shift operators, which are doubly substochastic but not increasable doubly substochastic.

Definition 1.2. [11, Definition 3.6] For two functions $f, g \in \ell^p(I)^+$, we say that f is submajorized by g if there exists an increasable doubly substochastic operator $D \in iDSS(\ell^p(I))$ such that f = Dg. We denote this relation by $f <_s g$.

Definition 1.3. A bounded linear operator $T: \ell^p(I) \to \ell^p(I)$ is called a preserver of submajorization on $\ell^p(I)^+$ if

$$f \prec_s q \Rightarrow Tf \prec_s Tq, \quad f, g \in \ell^p(I)^+.$$

The set of all such linear preservers is denoted by $\mathcal{P}_s(\ell^p(I)^+)$.

Theorem 1.4. [11, Corollary 3.8] Let $f, g \in \ell^p(I)^+$. The following are equivalent:

- i) $f \prec_s g$ and $g \prec_s f$;
- *ii)* There exists $P \in P(\ell^p(I))$ such that g = Pf.

Next, for an infinite index set *I*, we consider the map $P_{\theta}: \ell^{p}(I) \to \ell^{p}(I)$ defined by

$$P_{\theta}(f) := \sum_{k \in I} f(k)e_{\theta(k)}, \quad f \in \ell^{p}(I),$$

where $\theta: I \to I$ is an injective map. Clearly, P_{θ} is a bounded linear operator on $\ell^p(I)$ with $||P_{\theta}|| = 1$. If θ is bijective, then P_{θ} is a permutation.

For infinite I, the structure of linear preservers of submajorization ($<_s$) was characterized in [11, Corollary 4.5] as follows.

Theorem 1.5. [11, Corollary 4.5] Let I be an infinite set and let $T : \ell^p(I) \to \ell^p(I)$ be a bounded linear operator. The following statements are equivalent:

- i) $T \in \mathcal{P}_s(\ell^p(I)^+)$;
- *ii)* $Te_i \prec_s Te_k$ and $Te_k \prec_s Te_j$ for all $k, j \in I$, and for each $i \in I$ there is at most one $j \in I$ such that $\langle Te_j, e_i \rangle > 0$;
- iii) $T = \sum_{k \in I_0} \lambda_k P_{\theta_k}$, where $(\lambda_k)_{k \in I_0} \in \ell^p(I_0)^+$, $I_0 \subset I$ is at most countable, and

$$\theta_k \in \Theta := \{\theta_k : I \xrightarrow{1-1} I \mid k \in I_0, \ \theta_i(I) \cap \theta_j(I) = \emptyset, \ i \neq j\}.$$

2. Closedness of the set of all linear preservers of submajorization

In this section, the goal is to show that the set of all linear preservers of submajorization on $\ell^p(I)^+$ is norm-closed within the set of all bounded linear operators on $\ell^p(I)$. In the finite-dimensional setting, the proof follows from the compactness of $iDSS(\ell^p(I))$. When the index set I is infinite, Example 2.3 demonstrates that $iDSS(\ell^p(I))$ fails to be compact. Hence, in that case, the closedness of $\mathcal{P}_s(\ell^p(I)^+)$ will be established using Theorem 2.6.

From now on, we assume that $p \in (1, \infty)$.

Lemma 2.1. Let I be an arbitrary nonempty finite set. Then the set $iDSS(\ell^p(I))$ is bounded and norm-closed in the set of all bounded linear operators on $\ell^p(I)$. Moreover, $iDSS(\ell^p(I))$ is compact.

Proof. Since $iDSS(\ell^p(I)) = DSS(\ell^p(I))$ whenever I is finite, the statement follows from the compactness of $DSS(\ell^p(I))$, proved in [10, Corollary 4.1]. For completeness, we present a direct constructive argument.

By [9, Lemma 3.3], every doubly substochastic operator has norm at most 1. Because every increasable doubly substochastic operator is also doubly substochastic, it follows immediately that $iDSS(\ell^p(I))$ is bounded.

Let $(D_k)_{k\in\mathbb{N}}$ be a sequence in $iDSS(\ell^p(I))$ converging in norm to some bounded linear operator $D:\ell^p(I)\to \ell^p(I)$. For fixed $i_0,j_0\in I$, we have

$$|\langle D_k e_{j_0} - D e_{j_0}, e_{i_0} \rangle|^p \leq \sum_{i \in I} |\langle D_k e_{j_0} - D e_{j_0}, e_i \rangle|^p \leq ||D_k e_{j_0} - D e_{j_0}||^p \longrightarrow 0,$$

as $k \to \infty$. Hence,

$$\lim_{k\to\infty}\langle D_k e_j, e_i\rangle = \langle De_j, e_i\rangle, \quad \forall i, j \in I.$$

Since *I* is finite, we can interchange limit and summation directly. Thus,

$$\sum_{i\in I} \langle De_j, e_i \rangle = \sum_{i\in I} \lim_{k\to\infty} \langle D_k e_j, e_i \rangle = \lim_{k\to\infty} \sum_{i\in I} \langle D_k e_j, e_i \rangle \le 1, \quad \forall j \in I,$$

and, analogously, $\sum_{j \in I} \langle De_j, e_i \rangle \leq 1$ for all $i \in I$. Hence, $D \in DSS(\ell^p(I)) = iDSS(\ell^p(I))$, which shows that the set is norm-closed. \square

Alternatively, the compactness of $iDSS(\ell^p(I))$ can be observed more directly: since the unit ball in $\mathcal{B}(\ell^p(I))$ is compact whenever I is finite, and $iDSS(\ell^p(I))$ is a closed subset thereof, the result follows immediately.

Theorem 2.2. Let I be a finite set. Then $\mathcal{P}_s(\ell^p(I)^+)$ is a norm-closed subset of the set of all bounded linear operators on $\ell^p(I)$.

Proof. Let $(T_k)_{k \in \mathbb{N}}$, $T_k \in \mathcal{P}_s(\ell^p(I)^+)$ be a sequence converging in norm to a bounded linear operator $T: \ell^p(I) \to \ell^p(I)$. Fix $f,g \in \ell^p(I)^+$ with $f \prec_s g$. Then $T_k f \prec_s T_k g$ for every k, so there exist operators $D_k \in iDSS(\ell^p(I))$ satisfying

$$D_k T_k g = T_k f.$$

By Lemma 2.1, there exists a subsequence $(D_{k_j})_{j\in\mathbb{N}}$ and an operator $D\in iDSS(\ell^p(I))$ such that $\lim_{j\to\infty}D_{k_j}=D$. Taking limits, we obtain

$$Tf = \lim_{j \to \infty} T_{k_j} f = \lim_{j \to \infty} D_{k_j} T_{k_j} g = DTg.$$

Hence, $Tf \prec_s Tq$, which shows that $T \in \mathcal{P}_s(\ell^p(I)^+)$. \square

When *I* is infinite, the set $iDSS(\ell^p(I))$ is no longer compact.

Example 2.3. Consider a sequence of operators $(D_n)_{n\in\mathbb{N}}$ on $\ell^p(I)$ defined by

$$\langle D_n e_j, e_i \rangle = \begin{cases} 1, & \text{if } i = j = n, \\ 0, & \text{otherwise.} \end{cases}$$

Each D_n acts as a projection onto the one-dimensional subspace generated by e_n , that is,

$$D_n(f_1, f_2, f_3, \dots) = (0, 0, \dots, f_n, 0, 0, \dots),$$

where the only nonzero coordinate is in the n-th position.

In matrix form, whenever $I = \mathbb{N}$, the operator D_n can be represented schematically as

$$D_n = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & \cdots \\ 0 & 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & \cdots \\ \vdots & \vdots & \vdots & & \vdots & \ddots \end{bmatrix}$$
 (the 1 lies in the *n*-th row and *n*-th column).

Clearly, $D_n \in iDSS(\ell^p(I))$ for every $n \in \mathbb{N}$. However, $(D_n)_{n \in \mathbb{N}}$ is not norm-convergent, and no subsequence of it converges in the operator norm. Consequently, $iDSS(\ell^p(I))$ cannot be compact when I is infinite.

We note that the set $iDSS(\ell^p(I))$ is not norm-closed.

Example 2.4. Consider a sequence of operators $(D_n)_{n\in\mathbb{N}}$ on $\ell^p(\mathbb{N})$ with matrix representations $D_n = [d_{ij}^n]_{i,j\in\mathbb{N}}$, defined by

$$d_{ij}^{n} = \begin{cases} \frac{1}{n}, & \text{if } i = 1 \text{ and } j \in \{1, \dots, n\}, \\ 0, & \text{if } i = 1 \text{ and } j \notin \{1, \dots, n\}, \\ 1 - \frac{1}{n}, & \text{if } i = k \text{ for some } k \ge 2 \text{ and } j = k - 1, \\ \frac{1}{n}, & \text{if } i = k \text{ for some } k \ge 2 \text{ and } j = n + k - 1 \end{cases}$$

The corresponding infinite matrices have the form

Clearly, each D_n is an increasable doubly substochastic operator (in fact doubly stochastic). It is straightforward to verify that $(D_n)_{n\in\mathbb{N}}$ converges in norm to the right shift operator

$$D_R = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix},$$

which is not an increasable doubly substochastic operator.

More generally, the same conclusion holds if we consider a sequence of increasable doubly substochastic operators $(D_n)_{n\in\mathbb{N}}$ on $\ell^p(I)$, where I is an arbitrary infinite set, with matrix representations $D_n = [d^n_{ij}]_{i,j\in I}$ defined by

$$d_{ij}^{n} = \begin{cases} \frac{1}{n}, & \text{if } i = i_{1} \text{ and } j \in \{i_{1}, \dots, i_{n}\}, \\ 0, & \text{if } i = i_{1} \text{ and } j \notin \{i_{1}, \dots, i_{n}\}, \\ 1 - \frac{1}{n}, & \text{if } i = i_{k} \text{ for some } k \ge 2 \text{ and } j = i_{k-1}, \\ \frac{1}{n}, & \text{if } i = i_{k} \text{ for some } k \ge 2 \text{ and } j = i_{n+k-1}, \\ 1, & \text{if } i \notin J \text{ and } j = i, \\ 0, & \text{if } i \notin J \text{ and } j \ne i, \end{cases}$$

where $J = \{i_k \mid k \in \mathbb{N}\}$ is a countably infinite subset of I. Again, $(D_n)_{n \in \mathbb{N}}$ converges in norm to the right shift operator on $\ell^p(I)$, which is not increasable doubly substochastic. Therefore, the set $iDSS(\ell^p(I))$ is not closed in the operator norm.

In the finite case, we relied on the fact that every sequence of increasable doubly substochastic operators admits a convergent subsequence whose limit remains in $iDSS(\ell^p(I))$. Example 2.3 demonstrates that this property no longer holds when I is infinite. Hence, the argument used for compactness in the finite-dimensional setting does not extend to this case. Nevertheless, we shall now establish that $\mathcal{P}_s(\ell^p(I)^+)$ remains norm-closed even for infinite index sets. In order to prove this, we need the following lemma.

Lemma 2.5. Let I be an infinite set and let $(f_k)_{k\in\mathbb{N}}$ and $(g_k)_{k\in\mathbb{N}}$ be two sequences in $\ell^p(I)^+$ such that

$$\lim_{k \to \infty} f_k = f \in \ell^p(I)^+ \quad and \quad \lim_{k \to \infty} g_k = g \in \ell^p(I)^+.$$

Assume $f_k \prec_s g_k$ and $g_k \prec_s f_k$ for every $k \in \mathbb{N}$. Then there exists a bijection

$$\Omega^+: I_f^+ \longrightarrow I_g^+$$

such that

$$f(i) = g(\Omega^+(i)), \quad \forall i \in I_f^+.$$

Moreover, if $I_{q_k}^+ \cap I_{q_k}^+ = \emptyset$ *for every* $k \in \mathbb{N}$ *, then*

$$f \prec_s g$$
 and $g \prec_s f$.

Proof. Since $f,g \in \ell^p(I)$ their supports $I_f^+ = \{i \in I : f(i) > 0\}$ and I_g^+ are at most countable, and consequently the sets of their values $f(I_f^+)$ and $g(I_g^+)$ are at most countable. Therefore we may choose a strictly decreasing sequence of positive reals

$$\alpha_0 > \alpha_1 > \alpha_2 > \cdots \longrightarrow 0$$

such that

$$\alpha_k \notin f(I_f^+) \cup g(I_g^+), \quad \forall k \in \mathbb{N}_0.$$
 (1)

For $m \in \mathbb{N}$ define the level sets

$$I_f^m := \{i \in I_f^+: \ \alpha_m < f(i) < \alpha_{m-1}\}, \qquad I_g^m := \{i \in I_g^+: \ \alpha_m < g(i) < \alpha_{m-1}\}.$$

By construction, each I_f^m and I_q^m is finite and pairwise disjoint with respect to m, and

$$I_f^+ = \bigcup_{m \in \mathbb{N}} I_f^m, \qquad I_g^+ = \bigcup_{m \in \mathbb{N}} I_g^m,$$

so they form partitions of I_f^+ and I_g^+ , respectively. Fix $m \in \mathbb{N}$. Because I_f^m is finite, there exists $\varepsilon > 0$ such that

$$f(i) \in (\alpha_m + \varepsilon, \alpha_{m-1} - \varepsilon) \subset (\alpha_m, \alpha_{m-1}), \quad \forall i \in I_f^m$$

Since $f_k \to f$ in $\ell^p(I)$ we have $||f_k - f|| \to 0$, hence there is N_1 with

$$|f_k(i) - f(i)| < \varepsilon, \qquad \forall k > N_1, \ \forall i \in I_f^m.$$

Therefore, $I_f^m \subseteq I_{f_k}^m$ for all $k > N_1$.

Next, because the values of f on different level-sets are separated by the gaps chosen in (1), there exists r > 0 such that the enlarged interval $(\alpha_m - r, \alpha_{m-1} + r)$ does not meet the values of f coming from other levels:

$$(\alpha_m-r,\alpha_{m-1}+r)\cap\bigcup_{j\neq m}f(I_f^j)=\emptyset.$$

Since $f_k \to f$ uniformly on the finite set I_f^+ (in the sense $|f_k(i) - f(i)| \le ||f_k - f||$) there is N_2 with

$$|f_k(i) - f(i)| < r$$
, $\forall k > N_2$, $\forall i \in I_f^+$

which imply

$$(\alpha_m, \alpha_{m-1}) \cap \bigcup_{i \neq m} f_k(I_f^i) = \emptyset$$
 and $I_{f_k}^m \subseteq I_f^m$.

Combining these two facts yields that for every $k > \max\{N_1, N_2\}$ one has

$$I_{f_k}^m = I_f^m. (2)$$

The same argument applied to the sequence (g_k) provides \widetilde{N} so that for all $k > \widetilde{N}$ we have $I_{g_k}^m = I_g^m$. Put $N_m := \max\{N_1, N_2, \widetilde{N}\}$ so (2) and its g-analogue hold for all $k > N_m$.

Choose an arbitrary $\epsilon > 0$. By the convergence of (f_k) and (g_k) to f and g, respectively, there exists $k_0 > N_m$ such that for every $i \in I$ we have

$$|f(i) - f_k(i)| < \frac{\epsilon}{2}$$
 and $|g(i) - g_k(i)| < \frac{\epsilon}{2}$, $k > k_0$.

By the assumption $f_k \prec_s g_k$ and $g_k \prec_s f_k$, Theorem 1.4 provides a bijection

$$\omega_k: I_{f_k}^+ \longrightarrow I_{g_k}^+,$$

satisfying $f_k(i) = g_k(\omega_k(i))$ for all $i \in I_{f_k}^+$. Restricting ω_k to the level $I_f^m = I_{f_k}^m$ yields a bijection

$$\widetilde{\omega}^m := \omega_k|_{I_f^m} : I_f^m \longrightarrow I_g^m.$$

Fix $i \in I_f^m$. Using $f_k(i) = g_k(\widetilde{\omega}^m(i))$ and the convergence of f_k and g_k , we obtain

$$|f(i) - g(\widetilde{\omega}^m(i))| \le |f(i) - f_k(i)| + |g_k(\widetilde{\omega}^m(i)) - g(\widetilde{\omega}^m(i))| < \epsilon.$$

Since $\epsilon > 0$ was arbitrary, it follows that

$$f(i) = g(\widetilde{\omega}^m(i)), \quad \forall i \in I_f^m.$$

Consequently, for each $m \in \mathbb{N}$ we have bijections

$$\widetilde{\omega}^m: I_f^m \longrightarrow I_a^m$$

satisfying $f(i) = g(\widetilde{\omega}^m(i))$ for all $i \in I_f^m$. Assembling these levelwise bijections, we define

$$\Omega^+: I_f^+ \longrightarrow I_g^+, \qquad \Omega^+(i) := \widetilde{\omega}^m(i) \quad \text{whenever } i \in I_f^m.$$

By construction, Ω^+ is a bijection and $f(i) = g(\Omega^+(i))$ for every $i \in I_f^+$.

Finally, assume $I_{f_k}^+ \cap I_{g_k}^+ = \emptyset$ for all k. We claim $I_f^+ \cap I_g^+ = \emptyset$. Indeed, if $i_0 \in I_f^+ \cap I_g^+$ then for large k we would have $i_0 \in I_{f_k}^+ \cap I_{g_k}^+$ by convergence, which is a contradiction. Hence $I_f^0 := I \setminus I_f^+$ and $I_g^0 := I \setminus I_g^+$ have the same cardinality, so there exists a bijection

$$\Omega^0: I_f^0 \longrightarrow I_q^0.$$

Merging Ω^+ and Ω^0 we obtain a bijection $\Omega: I \to I$ such that

$$f(i) = g(\Omega(i)), \quad \forall i \in I.$$

Thus f = Pg for the permutation P induced by Ω , and by Theorem 1.4 we conclude $f <_s g$ and $g <_s f$. \square

Theorem 2.6. Let I be an infinite set. Then $\mathcal{P}_s(\ell^p(I)^+)$ is norm-closed in the set of all bounded linear operators on $\ell^p(I)$.

Proof. Let $(T_k)_{k \in \mathbb{N}}$, $T_k \in \mathcal{P}_s(\ell^p(I)^+)$ be a sequence converging in operator norm to $T \in \mathcal{B}(\ell^p(I))$. For any $i, j \in I$ we have $e_i \prec_s e_j$ and $e_j \prec_s e_i$, hence $T_k e_i \prec_s T_k e_j$ and $T_k e_j \prec_s T_k e_i$ for every k. Passing to the limit and applying Lemma 2.5 (to the sequences $T_k e_i$ and $T_k e_j$) we deduce

$$Te_i \prec_s Te_j$$
 and $Te_j \prec_s Te_i$, $\forall i, j \in I$.

Next we show that for each $r \in I$ there is at most one $s \in I$ with $\langle Te_s, e_r \rangle > 0$. Otherwise, suppose there exist $j_1 \neq j_2$ with

$$\langle Te_{i_1}, e_r \rangle > 0$$
 and $\langle Te_{i_2}, e_r \rangle > 0$.

By norm convergence $T_k \to T$ we would have for sufficiently large k also $\langle T_k e_{j_1}, e_r \rangle > 0$ and $\langle T_k e_{j_2}, e_r \rangle > 0$, contradicting the characterization of preservers in Theorem 1.5, since each $T_k \in \mathcal{P}_s(\ell^p(I)^+)$. Therefore for every r there is at most one such s.

Finally, Theorem 1.5 implies that $T \in \mathcal{P}_s(\ell^p(I)^+)$, i.e. the set of preservers is norm-closed. \square

References

- [1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989) 163-248.
- [2] F. Bahrami, A. Bayati, S. M. Manjegani, Linear preservers of majorization on ℓ^p(I), Linear Algebra Appl. 436 (2012) 3177-3195.
- [3] A. B. Eshkaftaki, Doubly (sub)stochastic operators on ℓ^p spaces, J. Math. Anal. Appl. 498(1) (2021), article:124923.
- [4] A. B. Eshkaftaki, Increasable doubly substochastic matrices with application to infinite linear equations, Linear Multilinear Algebra 70(20) (2021) 5902–5912
- [5] G. Gour, D. Jennings, F. Buscemi, R. Duan and I. Marvian, *Quantum majorization and a complete set of entropic conditions for quantum thermodynamics*, Nature Communications 9 5352 (2018).
- [6] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press, London and New York, 1952.
- [7] A. M. Hasani, M. A. Vali, Linear maps which preserve or strongly preserve weak majorization, J. Inequal. Appl. 2007:082910 (2008).
- [8] V. Kaftal, G. Weiss, An infinite dimensional Schur-Horn Theorem and majorization theory, J. Funct. Anal. 259 (2010) 3115-3162.
- [9] M. Ljubenović, Weak majorization and doubly substochastic operators on $\ell^p(I)$, Linear Algebra Appl. 486 (2015) 295-316.
- [10] M. Ljubenović, D. S. Djordjević, *Linear preservers of weak majorization on* ℓ^p(I)⁺, when p ∈ (1,∞), Linear Algebra Appl. 497 (2016) 181-198.
- [11] M.Z. Ljubenović, D.S. Rakić, Submajorization on $\ell^p(I)^+$ determined by increasable doubly substochastic operators and its linear preservers, Banach J. Math. Anal. 15 60 (2021).
- [12] A. W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of majorization and its applications, second ed., Springer, 2011.
- [13] S.M. Manjegani, S. Moein, Quasi doubly stochastic operator on ℓ^1 and Nielsen's theorem, J. Math. Phys. 60 103508 (2019).
- [14] M. A. Nielsen, An introduction of majorization and its applications to quantum mechanics, Lecture Notes, Department of Physics, University of Queensland, Australia; 2002. Available at http://michaelnielsen.org/blog/talks/2002/maj/book.ps.
- [15] J. von Neumann, A certain zero-sums two-person game equivalent to the optimal assignment problem, Contributions to the Theory of Games 2 (1953) 5-12.
- [16] R. Pereira, S. Plosker, Extending a characterisation of majorization to infinite dimensions, Linear Algebra Appl. 468 (2015) 80-86.