REGULAR AND T-FREDHOLM ELEMENTS IN BANACH ALGEBRAS

Dragan Djordjević

ABSTRACT. Let $T: A \to B$ be an algebra homomorphism of a Banach algebra A to an algebra B. An element $a \in A$ is T-Fredholm [2] if $T(A) \in B^{-1}$ and $a \in A$ is regular [3] provided there is an element $a' \in A$ such that a = aa'a. We investigate regular and T-Fredholm elements in Banach algebras. As a corollary, we get a well known result [5, Theorem 3].

Let A be an additive category. We say that a morphism $a \in A$ is 0. Introduction. invertible provided there is a morphism $a' \in A$ such that aa' = 1 and a'a = 1. The class of all invertible morphisms is denoted by A^{-1} . If $a \in A$, then a generalised inverse for a is a morphism $a' \in A$ such that a = aa'a. The regular morphisms of a category A form a class $\hat{A} = \{a \in A : a \in aAa\}$. The class of all idempotents is denoted by $\dot{A} = \{a \in A : a^2 = a\}$ [3, Definition 1.1]. If B is an additive category and $T : A \to B$ is an additive functor, then a morphism $a \in A$ is T-Fredholm if $T(a) \in B^{-1}$. The class of all T-Fredholm morphisms is denoted by $\Phi_T(A)$ [3, Definition 2.1]. We shall use \mathbb{C} to denote the complex plane. For a subset S of \mathbb{C} , let S' denote the set of all points of accumulation of S. Let $T: A \to B$ be an algebra homomorphism of a Banach algebra A to an algebra B. For a subset M of A let clM denote the closure of M. If $a \in A$, then $\sigma(a)$ denotes the spectrum of a. Recall [1] that an ideal I of A is inessential, if $x \in I \Leftrightarrow \sigma(x)' \subseteq \{0\}$. We allways assume that there are identities in A and B and T(1) = 1. Recall [2, 1.6] that a homomorphism T has the Riesz property if $T^{-1}(0)$ is an inessential ideal of A. Since A is a Banach algebra, then [4, 1.1]

$$\dot{A}A^{-1} = \hat{A} \cap \operatorname{cl}(A^{-1}).$$

In this note we investigate regular and T-Fredholm elements in Banach algebras. As a corollary, we get a well known result [5, Theorem 3].

1. Results. Let $T: A \to B$ be an algebra homomorphism of a Banach algebra A to an algebra B.

Lemma 1. If T has the Riesz property and $a^2 - a \in T^{-1}(0)$, then there are $p \in \dot{A}$ and $a', a'' \in A$ such that

$$p = a'a = aa',$$
 $1 - p = a''(1 - a) = (1 - a)a'',$ $a - p \in T^{-1}(0).$

Typeset by \mathcal{AMS} -T_EX

AMS Subject Classification (1990): Primary 47A53

Proof. If $a^2 - a \in T^{-1}(0)$, then $\sigma(a^2 - a)' \subseteq \{0\}$ and $\sigma(a)' \subseteq \{0, 1\}$. There are open subsets U_1 and U_2 of \mathbb{C} such that $1 \in U_1, 0 \in U_2$, $\operatorname{cl} U_1 \cap \operatorname{cl} U_2 = \emptyset$ and $\sigma(a) \subseteq U_1 \cup U_2$. Now, if

$$f(z) = \begin{cases} 1, & \text{for } z \in U_1 \\ 0, & \text{for } z \in U_2 \end{cases}, \qquad h(z) = \begin{cases} 1/z, & \text{for } z \in U_1 \\ 0, & \text{for } z \in U_2 \end{cases}, \\ f_1(z) = \begin{cases} 0, & \text{for } z \in U_1 \\ 1, & \text{for } z \in U_2 \end{cases}, \qquad h_1(z) = \begin{cases} 0, & \text{for } z \in U_1 \\ 1/(1-z), & \text{for } z \in U_2 \end{cases}, \\ g_1(z) = 1-z & \text{for } z \in U_1 \cup U_2, \end{cases}$$

then f(a) = p, g(a) = a, h(a) = a', $f_1(a) = 1 - p$, $g_1(a) = 1 - a$, $h_1(a) = a''$, $p^2 = p$ and

$$p = aa' = a'a, \qquad 1 - p = a''(1 - a) = (1 - a)a''$$

Hence $a - p = a(1 - p) + (a - 1)p = (a^2 - a)(a' - a'') \in T^{-1}(0).$

Lemma 2. If T has the Riesz property, then

(1.1)
$$\dot{A} + T^{-1}(0) = T^{-1}(\dot{B}).$$

Proof. Since the inclusion \subseteq in (1.1) is obvious, it is enough to prove the opposite inclusion. If $T(a) \in \dot{B}$, then $T(a) = T(a^2)$ and $a^2 - a \in T^{-1}(0)$. By Lemma 1 there is a $p \in \dot{A}$ such that $a - p \in T^{-1}(0)$. Hence

$$a = p + (a - p) \in \dot{A} + T^{-1}(0).$$

Theorem 3. If T(A) = B and T has the Riesz property, then

(1.2)
$$\hat{A} + T^{-1}(0) = T^{-1}(\hat{B}).$$

Proof. The inclusion \subseteq in (1.2) is obvious, so we have to prove the opposite inclusion. If $T(a) \in \hat{B}$, there is $b \in A$ such that T(a)T(b)T(a) = T(a). For c = ba, we have

$$T(c^{2}-c) = T(baba - ba) = T(b)[T(aba) - T(a)] = 0.$$

There are $p \in \dot{A}$ and $a' \in A$ such that p = cc' = c'c and $p - c \in T^{-1}(0)$. We have ap(c'b)ap = apc'cp = ap and $ap \in \hat{A}$. Thus $ba - p \in T^{-1}(0)$ and T(aba - ap) = 0, so $a - ap \in T^{-1}(0)$. We get

$$a = ap + (a - ap) \in \hat{A} + T^{-1}(0).$$

Theorem 4. If T(A) = B and T has the Riesz property, then

(1.3)
$$\dot{A}\Phi_T(A) + T^{-1}(0) = T^{-1}(\dot{B}B^{-1}).$$

Proof. The inclusion \subseteq in (1.3) is obvious. To prove the opposite inclusion, suppose that $T(a) \in \dot{B}B^{-1}$. By Lemma 2, there are $b \in \dot{A}, d \in T^{-1}(0)$ and $c \in \Phi_T(A)$ such that T(a) = T(b+d)T(c). We get $a-bc \in T^{-1}(0)$ and $a = bc + (a-bc) \in \dot{A}\Phi_T(A) + T^{-1}(0)$.

Theorem 5. If B is a Banach algebra, T(A) = B, T is continuous, T has the Riesz poroperty and the norm $\|.\|_B$ on B and the quotient norm $\|.\|_q$ are equivalent, then

(1.4)
$$\hat{A} \cap cl(\Phi_T(A)) + T^{-1}(0) = T^{-1}(\hat{B} \cap clB^{-1}).$$

Proof. If $a = b + c, b \in \hat{A} \cap cl(\Phi_T(A))$ and T(c) = 0, then $T(a) = T(b) \in \hat{B}$. Hence there is a sequence $(b_n), b_n \in \Phi_T(A)$, such that $\lim b_n = b$. Thus from $T(b_n) \in B^{-1}$ and $\lim T(b_n) = T(b)$ we get $T(a) \in clB^{-1}$.

To prove the opposite inclusion in (1.4), let $T(a) \in \hat{B} \cap clB^{-1}$. Then $a = b + c, b \in \hat{A}, T(c) = 0$ (Lemma 2) and $T(a) = T(b) \in clB^{-1}$. There is a sequence $(b_n), b_n \in \Phi_T(A)$, such that $||T(b - b_n)||_B \to 0, n \to \infty$. Hence $||b - b_n + T^{-1}(0)||_q \to 0, n \to \infty$. Let $\epsilon > 0$ and let n be a positive integer such that $1/n < \epsilon/2$ and $||b - b_n + T^{-1}||_q < \epsilon/2$. There is $t \in T^{-1}(0)$ such that

$$||b - b_n + t|| \le ||b - b_n + T^{-1}||_q + 1/n$$

and $||b - b_n + t|| < \epsilon$. From $b_n - t \in \Phi_T(A)$ we have $b \in cl(\Phi_T(A))$.

Let us remark that from (0.1), Theorem 4 and Theorem 5 we have

$$\hat{A} \cap \operatorname{cl}(\Phi_T(A)) + T^{-1}(0) = \dot{A}\Phi_T(A) + T^{-1}(0).$$

Theorem 6. If B is a Banach algebra, T(A) = B and

$$(1.5) \qquad \qquad \dot{A}\Phi_T(A) \subseteq \hat{A}$$

then

(1.6)
$$\hat{A} \cap cl(\Phi_T(A)) = \dot{A}\Phi_T(A).$$

Proof. If $a \in \hat{A} \cap cl(\Phi_T(A))$, there is $a' \in A$, such that a = aa'a and a' = a'aa'. Let $b \in \Phi_T(A)$ and ||b - a|| ||a'|| < 1. Then

$$1 + (b-a)a' \in A^{-1}, \qquad T(1 + (b-a)a') \in B^{-1}.$$

There is $b' \in \Phi_T(A)$ such that T(b)T(b') = 1 and bb' = 1 + t for some $t \in T^{-1}(0)$. If a'' = a' + (1 - a'a)b'(1 - aa'), then a = aa''a. Let us remark that from the proof of (0.1) we get $T(a'') \in B^{-1}$, hence $a'' \in \Phi_T(A)$. Thus $\hat{A} \cap \operatorname{cl}(\Phi_T(A)) \subseteq \{a \in A : a \in a\Phi_T(A)a\}$. Now if a = asa and $s \in \Phi_T(A)$, then there are $s_1 \in \Phi_T(A)$ and $t_1 \in T^{-1}(0)$ such that $ss_1 = 1 + t_1$. Now $a = a(ss_1 - t_1) = as(s_1 - at_1)$, $asas = as \in A$, $T(s_1 - at_1) = T(s_1) \in B^{-1}$ and $a \in \dot{A}\Phi_T(A)$.

To prove the opposite inclusion in (1.6), let $a = bc, b \in A$ and $T(c) \in B^{-1}$. For $a_n = (b + (1-b)/n)c$ we have $\lim a_n = a, (b + (1-b)/n)(b + n(1-b)) = 1$ and $a_n \in \Phi_T(A)$. Hence $a \in cl(\Phi_T(A))$.

We cann't say anything about the implication

T has the Riesz property $\Rightarrow \dot{A}\Phi_T(A) \subseteq \hat{A}$.

Let $S: C \to D$ be an additive functor from an additive category C to an additive category D. S is finitely regular [3, Definition 2.4], if $S^{-1}(0) \subseteq \hat{C}$.

DRAGAN DJORDJEVIĆ

Lemma 7. If S(C) = D and S is finitely regular, then $\dot{C}\Phi_S(C) \subseteq \hat{C}$.

Proof. If $a = bc, b \in \dot{C}$ and $S(c) \in D^{-1}$, there is $c' \in \Phi_S(C)$ such that S(c)S(c') = 1Hence $S(b)S(c)S(c')S(b)S(c) = S(b)S(c) \in \dot{D}$. By [3, Theorem 2.5], we have $a = bc \in S^{-1}(\dot{D}) = \dot{C}$.

Corollary 8. If B is a Banach algebra, T(A) = B and T is finitely regular, then

$$\hat{A} \cap cl(\Phi_T(A)) = \dot{A}\Phi_T(A).$$

Proof. follows from Lemma 7 and Theorem 6. \blacksquare

We can not conclude that [5, Theorem 3] follows from our Corollary 8.

Corollary 9. If T(A) = B and T is finitely regular, then

$$A\Phi_T(A) \subseteq A \cap cl(\Phi_T(A)).$$

Proof. follows from Lemma 7 and Theorem 6. \blacksquare

Theorem 10. Suppose that the inessential ideals I and J of A have the same sets of idempotents and J is closed. Let $P_0: A \to A/I$ and $P: A \to A/J$ respectively, be the natural homomorphisms of A onto A/I and A/J. If P_0 is finitely regular, then

$$\hat{A} \cap cl(\Phi_P(A)) = \dot{A}\Phi_P(A).$$

Proof. From Theorem 6 it follows $\hat{A} \cap cl(\Phi_P(A)) \subseteq \dot{A}\Phi_P(A)$. From [1, Proposition 2.2] we get $\Phi_{P_0}(A) = \Phi_P(A)$ and by Lemma 7 we have $\hat{A}\Phi_{P_0}(A) \subseteq \hat{A}$. Hence $\dot{A}\Phi_P(A) \subseteq \hat{A}$ and the proof follows from Theorem 6.

Now, as a Corrolary, we get [5, Theorem 3]. Let X be an infinite-dimensional complex Banach space. We shall use B(X), F(X) and K(X) respectively, to denote the set of all bounded, finite-rank and compact linear operators on X.

Corollary 11. If X is a Banach space then $\widehat{B(X)} \cap cl(\Phi(X)) = B(X)^{*}\Phi(X)$.

Proof. Set I = F(X) and J = K(X). It is well known that F(X) and K(X) have the same sets of idempotents and $F(X) \subseteq \widehat{B(X)}$. The proof follows by Theorem 10.

Acknowledgement. I am greatfull to Prof. Vladimir Rakočević for helpful suggestions and conversations.

References

- 1. B. Aupetit, Inessential elements in Banach algebras, Bull. London Math. Soc. 18 (1986), 493–497.
- 2. R. Harte, Fredholm theory relative to a Banach algebra homomorphism, Math. Z. 179 (1982), 431–436.
- 3. R. Harte, Fredholm, Weyl and Browder theory, Proc. R. Ir. Acad. 85, 2 (1985), 151–176.
- 4. R. Harte, Regular boundary elements, Proc Amer. Math. Soc. 99 (1987), 328–330.
- 5. V. Rakočević, A note on regular elements in calkin algebras, Collect. Math. 43, 1 (1992), 37-42.

Publ. Math. Inst. (Belgrade) 56 (70) (1994), 90–94.

UNIVERZITET U NIŠU, FILOZOFSKI FAKULTET, GRUPA ZA MATEMATIKU

Ćirila i Metodija 2, 18000 NIŠ, Jugoslavija