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Abstract. Let T : A → B be an algebra homomorphism of a Banach algebra A to an
algebra B. An element a ∈ A is T–Fredholm [2] if T (A) ∈ B−1 and a ∈ A is regular
[3] provided there is an element a′ ∈ A such that a = aa′a. We investigate regular and T -
Fredholm elements in Banach algebras. As a corollary, we get a well known result [5, Theorem
3].

0. Introduction. Let A be an additive category. We say that a morphism a ∈ A is
invertible provided there is a morphism a′ ∈ A such that aa′ = 1 and a′a = 1. The
class of all invertible morphisms is denoted by A−1. If a ∈ A, then a generalised inverse
for a is a morphism a′ ∈ A such that a = aa′a. The regular morphisms of a category
A form a class Â = {a ∈ A : a ∈ aAa}. The class of all idempotents is denoted by
Ȧ = {a ∈ A : a2 = a} [3, Definition 1.1]. If B is an additive category and T : A → B is
an additive functor, then a morphism a ∈ A is T–Fredholm if T (a) ∈ B−1. The class of
all T–Fredholm morphisms is denoted by ΦT (A) [3, Definition 2.1]. We shall use C to
denote the complex plane. For a subset S of C, let S′ denote the set of all points of
accumulation of S. Let T : A → B be an algebra homomorphism of a Banach algebra A
to an algebra B. For a subset M of A let clM denote the closure of M. If a ∈ A,
then σ(a) denotes the spectrum of a. Recall [1] that an ideal I of A is inessential,
if x ∈ I ⇔ σ(x)′ ⊆ {0}. We allways assume that there are identities in A and B and
T (1) = 1. Recall [2, 1.6] that a homomorphism T has the Riesz property if T−1(0) is an
inessential ideal of A. Since A is a Banach algebra, then [4, 1.1]

(0.1) ȦA−1 = Â ∩ cl(A−1).

In this note we investigate regular and T -Fredholm elements in Banach algebras. As a
corollary, we get a well known result [5, Theorem 3].

1. Results. Let T : A → B be an algebra homomorphism of a Banach algebra A to an
algebra B.

Lemma 1. If T has the Riesz property and a2− a ∈ T−1(0), then there are p ∈ Ȧ and
a′, a′′ ∈ A such that

p = a′a = aa′, 1− p = a′′(1− a) = (1− a)a′′, a− p ∈ T−1(0).
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Proof. If a2 − a ∈ T−1(0), then σ(a2 − a)′ ⊆ {0} and σ(a)′ ⊆ {0, 1}. There are open
subsets U1 and U2 of C such that 1 ∈ U1, 0 ∈ U2, clU1∩ clU2 = Ø and σ(a) ⊆ U1 ∪U2.
Now, if

f(z)=
{

1, for z ∈ U1

0, for z ∈ U2

, h(z) =
{

1/z, for z ∈ U1

0, for z ∈ U2

,

f1(z)=
{

0, for z ∈ U1

1, for z ∈ U2

, h1(z) =
{

0, for z ∈ U1

1/(1− z), for z ∈ U2

,

g(z) = z and g1(z) = 1− z for z ∈ U1 ∪ U2,

then f(a) = p, g(a) = a, h(a) = a′, f1(a) = 1− p, g1(a) = 1− a, h1(a) = a′′, p2 = p
and

p = aa′ = a′a, 1− p = a′′(1− a) = (1− a)a′′.

Hence a− p = a(1− p) + (a− 1)p = (a2 − a)(a′ − a′′) ∈ T−1(0). ¥
Lemma 2. If T has the Riesz property, then

(1.1) Ȧ + T−1(0) = T−1(Ḃ).

Proof. Since the inclusion ⊆ in (1.1) is obvious, it is enough to prove the opposite inclusion.
If T (a) ∈ Ḃ, then T (a) = T (a2) and a2 − a ∈ T−1(0). By Lemma 1 there is a p ∈ Ȧ
such that a− p ∈ T−1(0). Hence

a = p + (a− p) ∈ Ȧ + T−1(0). ¥

Theorem 3. If T (A) = B and T has the Riesz property, then

(1.2) Â + T−1(0) = T−1(B̂).

Proof. The inclusion ⊆ in (1.2) is obvious, so we have to prove the opposite inclusion. If
T (a) ∈ B̂, there is b ∈ A such that T (a)T (b)T (a) = T (a). For c = ba, we have

T (c2 − c) = T (baba− ba) = T (b)[T (aba)− T (a)] = 0.

There are p ∈ Ȧ and a′ ∈ A such that p = cc′ = c′c and p− c ∈ T−1(0). We have
ap(c′b)ap = apc′cp = ap and ap ∈ Â. Thus ba − p ∈ T−1(0) and T (aba − ap) = 0, so
a− ap ∈ T−1(0). We get

a = ap + (a− ap) ∈ Â + T−1(0). ¥

Theorem 4. If T (A) = B and T has the Riesz property, then

(1.3) ȦΦT (A) + T−1(0) = T−1(ḂB−1).

Proof. The inclusion ⊆ in (1.3) is obvious. To prove the opposite inclusion, suppose that
T (a) ∈ ḂB−1. By Lemma 2, there are b ∈ Ȧ, d ∈ T−1(0) and c ∈ ΦT (A) such that
T (a) = T (b+d)T (c). We get a−bc ∈ T−1(0) and a = bc+(a−bc) ∈ ȦΦT (A)+T−1(0). ¥
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Theorem 5. If B is a Banach algebra, T (A) = B, T is continuous, T has the Riesz
poroperty and the norm ‖.‖B on B and the quotient norm ‖.‖q are equivalent, then

(1.4) Â ∩ cl(ΦT (A)) + T−1(0) = T−1(B̂ ∩ clB−1).

Proof. If a = b + c, b ∈ Â ∩ cl(ΦT (A)) and T (c) = 0, then T (a) = T (b) ∈ B̂. Hence
there is a sequence (bn), bn ∈ ΦT (A), such that lim bn = b. Thus from T (bn) ∈ B−1 and
lim T (bn) = T (b) we get T (a) ∈ clB−1.

To prove the opposite inclusion in (1.4), let T (a) ∈ B̂ ∩ clB−1. Then a = b + c, b ∈
Â, T (c) = 0 (Lemma 2) and T (a) = T (b) ∈ clB−1. There is a sequence (bn), bn ∈ ΦT (A),
such that ‖T (b− bn)‖B → 0, n →∞. Hence ‖b− bn + T−1(0)‖q → 0, n →∞. Let ε > 0
and let n be a positive integer such that 1/n < ε/2 and ‖b− bn + T−1‖q < ε/2. There
is t ∈ T−1(0) such that

‖b− bn + t‖ ≤ ‖b− bn + T−1‖q + 1/n

and ‖b− bn + t‖ < ε. From bn − t ∈ ΦT (A) we have b ∈ cl(ΦT (A)). ¥
Let us remark that from (0.1), Theorem 4 and Theorem 5 we have

Â ∩ cl(ΦT (A)) + T−1(0) = ȦΦT (A) + T−1(0).

Theorem 6. If B is a Banach algebra, T (A) = B and

(1.5) ȦΦT (A) ⊆ Â,

then

(1.6) Â ∩ cl(ΦT (A)) = ȦΦT (A).

Proof. If a ∈ Â ∩ cl(ΦT (A)), there is a′ ∈ A, such that a = aa′a and a′ = a′aa′. Let
b ∈ ΦT (A) and ‖b− a‖‖a′‖ < 1. Then

1 + (b− a)a′ ∈ A−1, T (1 + (b− a)a′) ∈ B−1.

There is b′ ∈ ΦT (A) such that T (b)T (b′) = 1 and bb′ = 1 + t for some t ∈ T−1(0). If
a′′ = a′ + (1− a′a)b′(1− aa′), then a = aa′′a. Let us remark that from the proof of (0.1)
we get T (a′′) ∈ B−1, hence a′′ ∈ ΦT (A). Thus Â∩ cl(ΦT (A)) ⊆ {a ∈ A : a ∈ aΦT (A)a}.
Now if a = asa and s ∈ ΦT (A), then there are s1 ∈ ΦT (A) and t1 ∈ T−1(0) such
that ss1 = 1 + t1. Now a = a(ss1 − t1) = as(s1 − at1), asas = as ∈ Ȧ, T (s1 − at1) =
T (s1) ∈ B−1 and a ∈ ȦΦT (A).

To prove the opposite inclusion in (1.6), let a = bc, b ∈ Ȧ and T (c) ∈ B−1. For
an = (b+(1−b)/n)c we have lim an = a, (b+(1−b)/n)(b+n(1−b)) = 1 and an ∈ ΦT (A).
Hence a ∈ cl(ΦT (A)). ¥

We cann’t say anything about the implication

T has the Riesz property ⇒ ȦΦT (A) ⊆ Â.

Let S : C → D be an additive functor from an additive category C to an additive
category D. S is finitely regular [3, Definition 2.4], if S−1(0) ⊆ Ĉ.
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Lemma 7. If S(C) = D and S is finitely regular, then ĊΦS(C) ⊆ Ĉ.

Proof. If a = bc, b ∈ Ċ and S(c) ∈ D−1, there is c′ ∈ ΦS(C) such that S(c)S(c′) = 1
Hence S(b)S(c)S(c′)S(b)S(c) = S(b)S(c) ∈ D̂. By [3, Theorem 2.5], we have a = bc ∈
S−1(D̂) = Ĉ. ¥
Corollary 8. If B is a Banach algebra, T (A) = B and T is finitely regular, then

Â ∩ cl(ΦT (A)) = ȦΦT (A).

Proof. follows from Lemma 7 and Theorem 6. ¥
We can not conclude that [5, Theorem 3] follows from our Corollary 8.

Corollary 9. If T (A) = B and T is finitely regular, then

ȦΦT (A) ⊆ Â ∩ cl(ΦT (A)).

Proof. follows from Lemma 7 and Theorem 6. ¥
Theorem 10. Suppose that the inessential ideals I and J of A have the same sets of
idempotents and J is closed. Let P0 : A → A/I and P : A → A/J respectively, be the
natural homomorphisms of A onto A/I and A/J . If P0 is finitelu regular, then

Â ∩ cl(ΦP (A)) = ȦΦP (A).

Proof. From Theorem 6 it follows Â∩ cl(ΦP (A)) ⊆ ȦΦP (A). From [1, Proposition 2.2] we
get ΦP0(A) = ΦP (A) and by Lemma 7 we have ÂΦP0(A) ⊆ Â. Hence ȦΦP (A) ⊆ Â and
the proof follows from Theorem 6. ¥

Now, as a Corrolary, we get [5, Theorem 3]. Let X be an infinite-dimensional complex
Banach space. We shall use B(X), F (X) and K(X) respectively, to denote the set of all
bounded, finite-rank and compact linear operators on X.

Corollary 11. If X is a Banach space then B̂(X) ∩ cl(Φ(X)) = B(X)
.

Φ(X).

Proof. Set I = F (X) and J = K(X). It is well known that F (X) and K(X) have the
same sets of idempotents and F (X) ⊆ B̂(X). The proof follows by Theorem 10. ¥
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