REGULAR AND T-FREDHOLM ELEMENTS IN BANACH ALGEBRAS

Dragan Djordjevié

ABSTRACT. Let T : A — B be an algebra homomorphism of a Banach algebra A to an
algebra B. An element a € A is T-Fredholm [2] if T(A) € B! and a € A is regular
[3] provided there is an element a’ € A such that a = aa’a. We investigate regular and T-
Fredholm elements in Banach algebras. As a corollary, we get a well known result [5, Theorem

3].

0. Introduction. Let A be an additive category. We say that a morphism a € A is
invertible provided there is a morphism a € A such that aad’ =1 and a’a = 1. The
class of all invertible morphisms is denoted by A~!. If a € A, then a generalised inverse
for a is a morphism o' € A such that a = ad’a. The regular morphisms of a category
A form aclass A = {a € A:a € aAa}. The class of all idempotents is denoted by
A={a€ A:da®>=a} 3, Definition 1.1]. If B is an additive category and T : A — B is
an additive functor, then a morphism a € A is T-Fredholm if T'(a) € B~!. The class of
all T-Fredholm morphisms is denoted by ®7(A) [3, Definition 2.1]. We shall use C to
denote the complex plane. For a subset S of C, let S’ denote the set of all points of
accumulation of S. Let T : A — B be an algebra homomorphism of a Banach algebra A
to an algebra B. For a subset M of A let clM denote the closure of M. If a € A,
then o(a) denotes the spectrum of a. Recall [1] that an ideal I of A is inessential,
if z € I & o(x) C{0}. We allways assume that there are identities in A and B and
T(1) = 1. Recall [2, 1.6] that a homomorphism 7T has the Riesz property if T-1(0) is an
inessential ideal of A. Since A is a Banach algebra, then [4, 1.1]

(0.1) AAT = Anc(A™h).
In this note we investigate regular and 7T-Fredholm elements in Banach algebras. As a

corollary, we get a well known result [5, Theorem 3].

1. Results. Let T: A — B be an algebra homomorphism of a Banach algebra A to an
algebra B.

Lemma 1. If T has the Riesz property and a* —a € T~(0), then there are p € A and
a’,a” € A such that

/

p=da=ad, 1-p=d'(1—a)=(1-a)d, a—pe T H0).
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Proof. If a?> —a € T71(0), then o(a®? —a) C {0} and o(a)’ C {0,1}. There are open
subsets U; and Uy of C such that 1€ Up,0 € Us, clUiN clUz = @ and o(a) C Uy UUs.
Now, if

1, forzelh 1/z, for z €U
re={ o= ,

0, for ze Usy 0, for z € Uy

0, for zeU; 0, for z € Uy
fl(z): { ’ 1(2) - { )

1, for ze Us 1/(1—2), for zeUs
g(z) =z and gz)=1-—2z for ze U U U,

then f(a) =p, gla) =a, h(a)=d, fi(a)=1—-p, gi(a)=1—a, hi(a)=d", p*=p
and
p=ad =da, l-p=d'(1—a)=(1-a)d".
Hence a—p=a(l—p)+(a—1)p=(a®—a)(a’ —a"”) € T71(0). ®
Lemma 2. If T has the Riesz property, then

(1.1) A+T710)=T"4B).

Proof. Since the inclusion C in (1.1) is obvious, it is enough to prove the opposite inclusion.
If T(a) € B, then T(a) =T(a?) and a? —a € T7'(0). By Lemma 1 thereisa p € A
such that a —p € T~1(0). Hence

a=p+(a—p)e A+T7H0). 1
Theorem 3. If T(A) =B and T has the Riesz property, then

~

(1.2) A+T7Y0)=T"YB).

Proof. The inclusion C in (1.2) is obvious, so we have to prove the opposite inclusion. If
T(a) € B, thereis b€ A such that T(a)T(b)T(a) =T(a). For ¢ =ba, we have

T(c* — ¢) = T(baba — ba) = T'(b)[T(aba) — T(a)] = 0.

There are pe€ A and o/ € A such that p=c¢ = ¢ and p—c e T-1(0). We have
ap(c’b)ap = apc’cp = ap and ap € A. Thus ba —p € T710) and T(aba — ap) = 0, so
a—ap € T71(0). We get

a=ap+(a—ap) € A+T710). B

Theorem 4. If T(A) =B and T has the Riesz property, then

(1.3) A®p(A)+T710) =T"1(BB™).

Proof. The inclusion C in (1.3) is obvious. To prove the opposite inclusion, suppose that
T(a) € BB~!. By Lemma 2, there are b € A,d € T~*(0) and c € ®7(A) such that
T(a) =T(b+d)T(c). We get a—bc € T7H0) and a = bc+ (a—bc) € APr(A)+T-1(0). B
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Theorem 5. If B is a Banach algebra, T(A) = B, T is continuous, T has the Riesz
poroperty and the norm ||.|p on B and the quotient norm ||.||, are equivalent, then

(1.4) ANncl(®p(A)+T720) =T (BncB™Y).

Proof. It a =b+c¢,b e ANcl(®p(A)) and T(¢) =0, then T(a) = T(b) € B. Hence
there is a sequence (b,),b, € ®7(A), such that lim b, =b. Thus from T(b,) € B~! and
lim T'(b,) = T(b) we get T(a) € clB~.

To prove the opposite inclusion in (1.4), let T'(a) € BnNeclB™!. Then a =b+¢b e
A, T(c) =0 (Lemma 2) and T(a) =T(b) € clB~'. There is a sequence (by,),b, € ®1(A),
such that || T'(b — b,)||p — 0,n — co. Hence ||b—b, +T 1(0)|, — 0,n — co. Let € >0
and let n be a positive integer such that 1/n < €/2 and ||b—b, +T7'||, < €/2. There
is t € T71(0) such that

16—by +t]| <|Ib—bp+T 7, +1/n
and [|b—b, +t| <e. From b, —t€ ®r(A) we have b e cl(Pr(A)). B

Let us remark that from (0.1), Theorem 4 and Theorem 5 we have

ANc(®r(A) +T7H0) = ADp(A) +T7H(0).
Theorem 6. If B is a Banach algebra, T(A) =B and

(1.5) A®p(A) C A,
then
(1.6) Ancl(®p(A) = Adr(A).

Proof. If a € ANcl(®7p(A)), thereis a’ € A, such that a =ad’a and o = a’ad’. Let
be &r(A) and ||b—al||a’]] < 1. Then

1+ (b—a)d € A7, T(1+ (b—a)d) e B~

There is b € ®7(A) such that T(b)T(H') =1 and bV =1+t for some t € T~1(0). If
a'=a +(1—-da)b (1 —aa’), then a=aa"a. Let us remark that from the proof of (0.1)
we get T'(a”) € B!, hence a” € ®p(A). Thus ANcl(®r(A)) C{ac A:acadr(A)al.
Now if a = asa and s € ®7(A), then there are s; € ®7(A) and t; € T-1(0) such
that ss; =1+4t;. Now a =a(ss; —t1) =as(s;y —aty), asas=as¢€ A, T(s1 —aty) =
T(sy) € B~! and a € A®p(A).

To prove the opposite inclusion in (1.6), let @ = be,b € A and T(c) € B~'. For
a, = (b+(1-0b)/n)c we have lima, = a, (b+(1-0)/n)(b+n(l—>)) =1 and a, € 7 (A).
Hence a € cl(®r(A)). R

We cann’t say anything about the implication

T has the Riesz property = A®p(A) C A.

Let S:C — D be an additive functor from an additive category C' to an additive
category D. S is finitely regular [3, Definition 2.4], if S~(0) C C.
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Lemma 7. If S(C)=D and S is finitely reqular, then C®5(C) C C.

Proof. If a =be,be C and S(c) € D', thereis ¢ € ®5(C) such that S(c)S(c/) =1
Hence S(b)S(c)S(¢')S(b)S(c) = S(b)S(c) € D. By [3, Theorem 2.5], we have a = bc €
S~ D)y=C.m

Corollary 8. If B is a Banach algebra, T(A) =B and T is finitely reqular, then
AN cl(@p(A) = Adr(A).

Proof. follows from Lemma 7 and Theorem 6. W
We can not conclude that [5, Theorem 3] follows from our Corollary 8.

Corollary 9. If T(A) =B and T is finitely reqular, then
ADp(A) C AN cl(Dp(A)).

Proof. follows from Lemma 7 and Theorem 6. W

Theorem 10. Suppose that the inessential ideals I and J of A have the same sets of
idempotents and J is closed. Let Py: A — A/l and P: A — A/J respectively, be the
natural homomorphisms of A onto A/I and A/J. If Py is finitelu regular, then

AN cl(®p(A)) = ADp(A).

Proof. From Theorem 6 it follows ANcl(®p(A)) € A®p(A). From [1, Proposition 2.2] we
get ®p,(A) = Pp(A) and by Lemma 7 we have A®p (A) C A. Hence Adp(A) C A and
the proof follows from Theorem 6. W

Now, as a Corrolary, we get [5, Theorem 3]. Let X be an infinite-dimensional complex
Banach space. We shall use B(X), F(X) and K(X) respectively, to denote the set of all
bounded, finite-rank and compact linear operators on X.

—

Corollary 11. If X s a Banach space then B(X) N cl(®(X)) = B(X) ®(X).
Proof. Set I = F(X) and J = K(X). It is well known that F(X) and K(X) have the
same sets of idempotents and F(X) C B(X). The proof follows by Theorem 10. W
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