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Abstract. One possible type of the matrix splitting is introduced. Using
this matrix splitting, we introduce a few properties and representations of
generalized inverses as well as iterative methods for computing various solu-
tions of singular linear systems. This matrix splitting is a generalization of
the known index splitting from [13] and a proper splitting from [4]. Using
a generalization of the condition number and introduced representations of
generalized inverses, we obtain several norm estimates.

1. Introduction

Let Cn be the set of n-dimensional complex vectors, Cm×n be the set of
m × n complex matrices, and Cm×n

r = {X ∈ Cm×n : rank(X) = r}. By
Ir we denote the identity matrix of the order r. We use N (A) to denote
the kernel, R(A) to denote the image of A, σ(A) to denote the set of all
eigenvalues of A and ρ(A) to denote the spectral radius of A. If L and M
are complementary subspaces of Cn, then PL,M denotes the projector on L
along M .

For any matrix A ∈ Cm×n consider the following equations in X:

(1) AXA=A, (2) XAX =X, (3) (AX)∗=AX, (4) (XA)∗=XA

and if m = n, also

(1k) Ak+1X = Ak, (5) AX = XA.
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For a sequence S of elements from the set {1, 2, 3, 4, 5}, the set of matrices
obeying the equations represented in S is denoted by A{S}. A matrix from
A{S} is called an S-inverse of A and denoted by A(S). If X satisfies (1)
and (2), it is said to be a reflexive generalized inverse of A. The Moore-
Penrose inverse of A is its unique {1, 2, 3, 4} inverse: A† = A{1, 2, 3, 4}. A
matrix X = AD is said to be the Drazin inverse of A if (1k) (for some
positive integer k), (2) and (5) are satisfied. The group inverse A# is the
unique {1, 2, 5} inverse of A, and exists if and only if the index of A satisfies
ind(A)=min

k
{k : rank(Ak+1)= rank(Ak)}=1 [6], [10].

We use the following known results from [2]:

Lemma 1.1. If B ∈ Cn×n and L, M are complementary subspaces of Cn,
then

(a) PL,MB = B if and only if R(B) ⊆ L;
(b) BPL,M = B if and only if N (B) ⊇ M .

The idea of splitting of matrices is originated by the regular splitting
theory, introduced in [11]. Several various types of matrix splittings are
defined in [16] and [17]. The definitions of splittings are collected in the
following definition (see [17]).

Definition 1.1. Let U , V be n × n matrices. Then the decomposition
A = U − V is called:

(a) a regular splitting of A if U−1 ≥ 0 and V ≥ 0;
(b) a non-negative splitting of A if U−1 ≥ 0, U−1V ≥ 0 and V U−1 ≥ 0;
(c) a weak non-negative splitting of A if U−1 ≥ 0 and either U−1V ≥ 0

(the first type) or V U−1 ≥ 0 (the second type);
(d) a weak splitting of A if U is nonsingular and either U−1V ≥ 0 (the

first type) or V U−1 ≥ 0 (the second type);
(e) a convergent splitting of A if ρ(U−1V ) = ρ(V U−1) < 1.

The concept of a regular splitting is used in characterizations of the usual
inverse and in iterative methods for solving linear systems. These results
are extended to the Moore-Penrose inverse and rectangular linear systems
in [3], [4]. This extension is based on the application of the proper splitting
[4].

In [13] it is presented the index splitting of a singular square n×n matrix
A and its relative iterations for the minimal P -norm solution of a singular
linear system Ax = b, x, b ∈ Cn. Also a few representations of the Drazin
inverse are introduced in [13].
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Definition 1.2. Let A ∈ Cn×n with k = ind(A). Then the splitting A =
U − V is called an index splitting of A provided that

R(U) = R(Ak), N (U) = N (Ak).

In the case ind(A) = 1 the index splitting is known as a proper splitting
[4].

Our main idea in this paper is the generalization of these results to outer
inverses with prescribed range and kernel (so called A

(2)
T,S inverses). For this

purpose we introduce a new type of a matrix splitting, which is a generaliza-
tion of all so far known splittings. It is known that all important generalized
inverses: the Moore-Penrose inverse, the weighted Moore-Penrose inverse,
the Drazin inverse, the group inverse, the Bott-Duffin inverse and the gen-
eralized Bott-Duffin inverse are all A

(2)
T,S generalized inverses.

We are also motivated by the fact that the theory of outer inverses with
prescribed range and kernel is very actual (see for example [2], [5], [12],
[14], [15]). Also, it is known that {2}-inverses have many applications, for
example, in the iterative methods for solving the nonlinear equations and
the applications to statistics [14].

Now we describe main results of this paper. In the second section we
introduce one type of the matrix splitting, applicable for rectangular ma-
trices. We also develop a few properties and representations of generalized
inverses, based on this matrix splitting. Finally, using these representations,
we introduce iterative methods for computing various solutions of the linear
system.

This type of the matrix splitting is called the {T, S} splitting and it is
useful in the representation of the generalized inverse A

(2)
T,S and the solution

A
(2)
T,Sb of a given linear system Ax = b. In a partial case

T = R(U) = R(Ak), S = N (U) = N (Ak)

the results arising from the {T, S} splitting reduce to the known representa-
tions of the Drazin inverse and the minimal P -norm solution of the system
Ax = b, introduced in [13].

From the other hand, in the case T = R(A∗) = R(U∗) and S = N (A∗) =
N (U∗) our matrix splitting reduces to the well-known proper splitting, in-
troduced in [4].



4 PREDRAG S. STANIMIROVIĆ AND DRAGAN S. DJORDJEVIĆ

In the third section we introduce a generalization of the condition num-
bers K(A) = ‖A‖‖A†‖ and KD(A) = ‖A‖‖AD‖, which is based on the
application of the generalized inverse A

(2)
T,S . Using this generalization of the

condition number and representations of the generalized inverse A
(2)
T,S we de-

velop several norm estimates. The results of this section are generalizations
of the perturbation theory for the Drazin inverse introduced in [15].

2. New matrix splitting

In the beginning we introduce a possible generalization of the index split-
ting from [13]. This matrix splitting is applicable in characterizations and
representations of {2} generalized inverse A

(2)
T,S . Also, this matrix splitting

can be applied in the construction of an iterative method which produces
various solutions of a given singular linear system Ax = b.

Definition 2.1. Let A ∈ Cm×n be of rank r, let T be a subspace of Cn of
dimension s ≤ r and let S be a subspace of Cm of dimension m − s. Then
the splitting A = U − V is called the {T, S} splitting of A if the following
condition is satisfied:

(2.1) UT ⊕ S = Cm

Remark 2.1. In the case

m = n, T = R(U) = R(Ak), S = N (U) = N (Ak), k ≥ ind(A),

the notion of the {T, S} splitting reduces to the known notion of the index
splitting.

In the following theorem we introduce a characterization of the generalized
inverse A

(2)
T,S .

Theorem 2.1. Let A ∈ Cm×n
r , let T be a subspace of Cn of dimension s ≤ r

and let S be a subspace of Cm of dimension m− s, such that

(2.2) AT ⊕ S = Cm.

Assume that A = U − V is a {T, S} splitting of A and dim(T ) ≤ rank(U).
Then the generalized inverse A

(2)
T,S satisfies the following conditions:

(2.3) U
(2)
T,S −A

(2)
T,S = −U

(2)
T,SV A

(2)
T,S = −A

(2)
T,SV U

(2)
T,S ,
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(2.4) A
(2)
T,S = (I − U

(2)
T,SV )−1U

(2)
T,S = U

(2)
T,S(I − V U

(2)
T,S)−1

and

(2.5) U
(2)
T,S = (I + A

(2)
T,SV )−1A

(2)
T,S = A

(2)
T,S(I + V A

(2)
T,S)−1.

Proof. Using known results from [2], [5], it is not difficult to verify the exis-
tence of the generalized inverses A

(2)
T,S and U

(2)
T,S . From Lemma 1.1 we obtain

−U
(2)
T,SV A

(2)
T,S = −U

(2)
T,S(U −A)A(2)

T,S = −U
(2)
T,SUA

(2)
T,S + U

(2)
T,SAA

(2)
T,S

= −PR(U
(2)
T,SU),N (U

(2)
T,SU)

A
(2)
T,S + U

(2)
T,SPR(AA

(2)
T,S),N (AA

(2)
T,S)

= U
(2)
T,S −A

(2)
T,S .

Analogously we can prove U
(2)
T,S − A

(2)
T,S = −A

(2)
T,SV U

(2)
T,S . Thus, the proof of

(2.3) is completed.
To prove (2.4) we need to prove that I − U

(2)
T,SV is invertible. Consider

an arbitrary x ∈ Cn satisfying

(I − U
(2)
T,SV )x = 0.

Then we get x = U
(2)
T,SV x, which implies

x ∈ R(U (2)
T,S) = T

and

(2.6) Ax ∈ AT.

Also, from
U

(2)
T,SU(I − U

(2)
T,SV )x = 0

we get U
(2)
T,SAx = 0, which means

(2.7) Ax ∈ N (U (2)
T,S) = S.

From (2.2), (2.6) and (2.7) we get Ax = 0 and

x ∈ N (A) ∩ T.



6 PREDRAG S. STANIMIROVIĆ AND DRAGAN S. DJORDJEVIĆ

Since there exists A
(2)
T,S , the restriction of A to T is an one-to-one operator.

Hence x = 0 and we get the invertibility of the matrix I − U
(2)
T,SV . From

σ(MN)∪ {0} = σ(NM)∪ {0} for arbitrary rectangular matrices M and N ,
it follows that I − V U

(2)
T,S is invertible also.

Since U = A−(−V ) is the {T, S} splitting of U , in the same way as above
we can prove that I + A

(2)
T,SV and I + V A

(2)
T,S are invertible.

Now the equalities in (2.4) and (2.5) follow immediately from the equali-
ties in (2.3) and the invertibility of matrices I−U

(2)
T,SV , I−V U

(2)
T,S , I+A

(2)
T,SV

and I + V A
(2)
T,S . ¤

Analogous characterizations and representations of the Drazin inverse and
the Moore-Penrose inverse can be derived in certain cases of Theorem 2.1.

Corollary 2.1. Assume that A = U −V is a {T, S} splitting of A ∈ Cm×n.
Let the condition (2.2) be satisfied. Then the following statements are valid:

(a) In the case

m = n, T = R(U) = R(Ak), S = N (U) = N (Ak), k ≥ ind(A),

we get
AD = (I − U#V )−1U#.

(b) In the case

T = R(U∗) = R(A∗), S = N (U∗) = N (A∗)

we have
A† = (I − U†V )−1U†.

Proof. (a) From Theorem 2.1 we immediately obtain

A
(2)

R(Ak),N (Ak)
= (I − U

(2)
R(U),N (U)V )−1U

(2)
R(U),N (U),

which is equivalent to

AD = (I − U#V )−1U#.

(b) This part of the proof also follows from Theorem 2.1, since A
(2)
T,S =

A
(2)
R(A∗),N (A∗) = A† and U

(2)
T,S = U

(2)
R(U∗),N (U∗) = U†. ¤
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Remark 2.2. As it is shown in part (a) of Corollary 2.1, in the case m =
n, R(U) = T = R(Ak), N (U) = S = N (Ak), k ≥ ind(A), the result of
Theorem 2.1 reduces to the known characterization and representation of
the Drazin inverse, introduced in [13, Theorem 3.1]. Moreover, it is known
that many of important generalized inverses, besides the Drazin inverse, such
as: the Moore-Penrose inverse, weighted Moore-Penrose inverse, weighted
Drazin inverse, Bott-Duffin inverse, can be expressed as {2} inverse having
a corresponding range T and null space S [2], [5], [14]. Theorem 2.1 is
applicable to each of these inverses.

So far, we have used the introduced matrix splitting to characterize the
generalized inverses A

(2)
T,S and U

(2)
T,S . But, these matrix splittings can be used

in characterizations of the generalized inverse V
(2)
T,S .

Corollary 2.2. Let A ∈ Cm×n
r , let T be a subspace of Cn of dimension

s ≤ r and S be a subspace of Cm of dimension m − s. If the conditions in
(2.1) are satisfied, A = U − V , and the following conditions hold:

V T ⊕ S = Cm, dim(T ) ≤ min{ rank(U), rank(V )},

then
V

(2)
T,S = (I − U

(2)
T,SA)−1U

(2)
T,S = U

(2)
T,S(I −AU

(2)
T,S)−1.

Proof. The conditions in (2.1) and dim(T ) ≤ rank(U) ensure the existence
of the generalized inverse U

(2)
T,S . Also, the conditions V T ⊕ S = Cm and

dim(T ) ≤ rank(V ) ensure the existence of the generalized inverse V
(2)
T,S .

Finally, from (2.1) we conclude that V = U − A is a {T, S} splitting of V .
The proof immediately follows from Theorem 2.1. ¤

In the following statement we derive a few iterative methods related to a
consistent linear system Ax = b.

Corollary 2.3. If the conditions from Theorem 2.1 are satisfied and x ∈ T ,
then:

(i) The vector A
(2)
T,Sb is the unique solution of the system

x = U
(2)
T,SV x + U

(2)
T,Sb

for any b ∈ Cn.
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(ii) The iteration

xi+1 = U
(2)
T,SV xi + U

(2)
T,Sb, b ∈ Cn,

converges to A
(2)
T,Sb for every x0 ∈ Cn if and only if ρ(U (2)

T,SV ) < 1.

Proof. (i) From (I − U
(2)
T,SV )x = U

(2)
T,Sb we have x = (I − U

(2)
T,SV )−1U

(2)
T,Sb.

Applying Theorem 2.1 we get x = A
(2)
T,Sb, which completes this part of the

proof. The part (ii) follows from the part (i). ¤

Recall that a set K ⊂ Rn is called a full cone if the following is satisfied:
λ ≥ 0 implies λK ⊂ K, K is convex and closed, K+K = Rn, K∩(−K) =

{0} and the interior of K is nonempty.
A full cone K ⊂ Rn induces a partial ordering in Rn given by

x
K≤ y if and only if y − x ∈ K.

A sequence (xi) in Rn is K-monotone nondecreasing if xi−1

K≤ xi for all
i = 1, 2, . . . .

We need the following auxiliary results.

Lemma 2.1. Let K be a full cone in Rn and (si) be a K-monotone nonde-
creasing sequence. If there exists some t ∈ Rn such that t − si ∈ K for all
i = 1, 2, . . . , then the sequence (si) converges.

Lemma 2.2 [9]. If K is a full cone in Rn and A ∈ Rn×n has the property
AK ⊂ K, then K contains an eigenvector of A whose eigenvalue is ρ(A).

Now we formulate equivalent conditions for ρ(U (2)
T,SV ) < 1.

Theorem 2.2. Let L ⊂ Rm and KRn be full cones and A = U − V be a
{T, S} splitting of A ∈ Rm×n, such that the conditions from Theorem 2.1
are satisfied, U

(2)
T,SL ⊂ K and U

(2)
T,SV K ⊂ K. Then the following statements

are equivalent:

(a) A
(2)
T,SL ⊂ K.

(b) A
(2)
T,SV K ⊂ K.

(c) ρ(U (2)
T,SV ) =

ρ(A(2)
T,SV )

1 + ρ(A(2)
T,SV )

< 1.
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Proof. This result is similar as [4, Theorem 2 and Theorem 3], but the proof
needs some corrections. Thus, for the convenience of the reader, we give a
complete proof.

(c) =⇒ (b) Since ρ(U (2)
T,SV ) < 1 we get

(I − U
(2)
T,SV )−1 =

∞∑

j=0

(U (2)
T,SV )j

and from (2.4) we get

A
(2)
T,SV =

∞∑

j=1

(U (2)
T,SV )j .

Since U
(2)
T,SV K ⊂ K we conclude A

(2)
T,SV K ⊂ K.

(b) =⇒ (a) If A
(2)
T,SV K ⊂ K, we shall prove that ρ(U (2)

T,SV ) < 1.

Since U
(2)
T,SV K ⊂ K, by Lemma 2.2 we get that there exist some x ∈ K

such that U
(2)
T,SV x = ρ(U (2)

T,SV )x. From (2.4) we get

A
(2)
T,SV x = (I − U

(2)
T,SV )−1U

(2)
T,SV x =

ρ(U (2)
T,SV )

1− ρ(U (2)
T,SV )

x.

Since U
(2)
T,SV x ∈ K, A

(2)
T,SV x ∈ K and K ∩ (−K) = {0}, we conclude

ρ(U
(2)
T,SV )

1−ρ(U
(2)
T,SV )

< 1 and ρ(U (2)
T,SV ) < 1.

Now, from (2.4) we have

A
(2)
T,SL =

∞∑

j=0

(U (2)
T,SV )jU

(2)
T,SL ⊂

∞∑

j=0

(U (2)
T,SV )jK ⊂ K.

(a) =⇒ (c) Denote Sp =
∑p−1

n=0(U
(2)
T,SV )n for each positive integer p.

Since
U

(2)
T,SAA

(2)
T,S = U

(2)
T,S and U

(2)
T,SUA

(2)
T,S = A

(2)
T,S ,

we get

SpU
(2)
T,S = SpU

(2)
T,SAA

(2)
T,S = SpU

(2)
T,SUA

(2)
T,S − SpU

(2)
T,SV A

(2)
T,S

= SpA
(2)
T,S −

p∑
n=1

(U (2)
T,SV )jA

(2)
T,S = (I − (U (2)

T,SV )p)A(2)
T,S .
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Now (U (2)
T,SV )pA

(2)
T,SL ⊂ K and hence

(A(2)
T,S − SpU

(2)
T,S)L = (U (2)

T,SV )pA
(2)
T,SL ⊂ K.

If l ∈ L, then A
(2)
T,Sl − SpU

(2)
T,Sl ∈ K. Denote t = A

(2)
T,Sl and sp = SpU

(2)
T,Sl.

Then t and si (i = 1, 2, . . . ) satisfy the conditions from Lemma 2.1 and

lim
i→∞

(si − si−1) = lim
i→∞

(U (2)
T,SV )iU

(2)
T,Sl = 0.

From Lemma 2.2 there exists y ∈ K such that U
(2)
T,SV y = ρ(U (2)

T,SV )y. Also,

there exists some x such that y = U
(2)
T,Sx. Since Rm = L + (−L), we can

write x = l1 − l2 for some l1, l2 ∈ L. Then for all i we get

[ρ(U (2)
T,SV )]iy = (U (2)

T,SV )iU
(2)
T,Sl1 − (U (2)

T,SV )iU
(2)
T,Sl2.

We conclude that the sequence (ρ(U (2)
T,SV )i converges to 0 as i → ∞. Now

ρ(U (2)
T,SV ) < 1 and again we get A

(2)
T,SV K ⊂ K.

To prove that ρ(U (2)
T,SV ) =

ρ(A
(2)
T,SV )

1+ρ(A
(2)
T,SV )

, notice that in the implication

(b) =⇒ (a) we have already proved ρ(A(2)
T,SV ) ≥ ρ(U

(2)
T,SV )

1−ρ(U
(2)
T,SV )

, or, equiva-

lently,

ρ(U (2)
T,SV ) ≤ ρ(A(2)

T,SV )

1 + ρ(A(2)
T,SV )

.

The reverse inequality can be proved in the same manner. Since A
(2)
T,SV K ⊂

K, there exists some z ∈ K such that A
(2)
T,SV z = ρ(A(2)

T,SV )z. Then, from
(2.5) we get

U
(2)
T,SV z = (I + A

(2)
T,SV )−1A

(2)
T,SV z =

ρ(A(2)
T,S

1 + ρ(A(2)
T,SV )

z.

Thus, (c) follows. ¤
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3. Norm estimates and matrix splitting

It is known that the condition number of a given regular matrix A is
defined by cond(A) = ‖A‖‖A−1‖. In [8] the notion of the condition number
of an arbitrary matrix is defined by K(A) = ‖A‖‖A†‖. In [7] the following
generalization of the condition number is introduced

K(A) = ‖A‖ · inf{‖A(1)‖ : A(1) ∈ A{1}}.

The condition number KD(A) = ‖A‖‖AD‖, which is defined with respect
to the Drazin inverse, is introduced in [15].

We introduce a generalized condition number of a matrix which is based
on the application of the generalized inverse A

(2)
T,S .

Definition 3.1. For a given matrix A ∈ Cm×n let T and S be subspaces
of Cn and Cm respectively, such that there exists the A

(2)
T,S inverse. The

generalized condition number is introduced as

KT,S(A) = ‖A‖‖A(2)
T,S‖.

Remark 3.1. For T = N (A)⊥ and S = R(A)⊥ the introduced generalized
condition number KT,S(A) reduces to the well-known generalized condition
number K(A).

In the case T = R(Ak), S = N (Ak), where k = rank(A), the condition
number KT,S(A) reduces to the condition number KD(A).

In this section we show the usefulness of the introduced generalized con-
dition number KT,S(A).

Proposition 3.1. Consider the system of linear equations

(3.1) Ax = b,

where A ∈ Cm×n, b ∈ Cm. Let T be a subspace of Cn of dimension s ≤
r = rank(A), and let S be a subspace of Cm of dimension m− s, such that
AT ⊕ S = Cm. If (3.1) is solvable, x ∈ T satisfies

x = A
(2)
T,Sb, (x + δx) = A

(2)
T,S(b + δb),

then
‖δx‖
‖x‖ ≤ KT,S(A)

‖δb‖
‖b‖ .
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Proof. This result can be proved similarly as in [1, Theorem 5]. ¤

In the following theorem we establish the norm estimate for A
(2)
T,S − U

(2)
T,S

using the generalized condition number. Here A = U − V is the {T, S}
splitting of A.

Theorem 3.1. Assume the conditions from Theorem 2.1 are satisfied. If
‖A(2)

T,SV ‖ < 1, then the following norm estimate can be established:

‖U (2)
T,S −A

(2)
T,S‖ ≤

‖A(2)
T,SV ‖‖A(2)

T,S‖
1− ‖A(2)

T,SV ‖
≤ KT,S(A)

‖A(2)
T,SV ‖

‖A‖(1− ‖A(2)
T,SV ‖)

.

Proof. Since ‖A(2)
T,SV ‖ < 1, from Theorem 2.1 we get the following expression

U
(2)
T,S −A

(2)
T,S = (I + A

(2)
T,SV )−1A

(2)
T,S −A

(2)
T,S

=

( ∞∑

k=0

(−1)k(A(2)
T,SV )k − I

)
A

(2)
T,S =

∞∑

k=1

(−1)k(A(2)
T,SV )kA

(2)
T,S .

Hence

‖U (2)
T,S −A

(2)
T,S‖ ≤

‖A(2)
T,SV ‖‖A(2)

T,S‖
1− ‖A(2)

T,SV ‖
≤ KT,S(A)

‖A(2)
T,SV ‖

‖A‖(1− ‖A(2)
T,SV ‖)

. ¤

Remark 3.2. Notice that Theorem 2.1 and Theorem 3.1 are generalizations
of the main result of Wang and Wei from [15, Theorem 3.2], stated for the
Drazin inverse. Moreover, in the verification of these results we do not need
the additional condition AA

(2)
T,SV A

(2)
T,SA = V which is essentially used in

[15].

Suppose that we know the matrix (1+δ)A instead of the matrix A, where δ

is a complex number. If there exist A
(2)
T,S and (A+δA)(2)T,S inverses for suitable

chosen subspaces T and S, one could ask the following question: can we give
a norm estimate for A

(2)
T,S − (A + δA)(2)T,S? The answer is contained in the

following theorem.
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Theorem 3.2. For A ∈ Cm×n let δ be a given complex number, let T and
S be subspaces of Cn and Cm respectively, such that there exist A

(2)
T,S and

(A+δA)(2)T,S inverses. If ‖(A+δA)(2)T,SδA‖ < 1 is satisfied, then the following
holds:

‖A(2)
T,S − (A + δA)(2)T,S‖ ≤ KT,S(A + δA)

‖(A + δA)(2)T,SδA‖
‖A + δA‖(1− ‖(A + δA)(2)T,SδA‖)

.

Proof. Let U = A + δA. Since there exists A
(2)
T,S and U

(2)
T,S inverses, we

may consider A = U − δA as the splitting of A. Now, the conditions from
Theorem 3.1 are satisfied and the result follows immediately from Theorem
3.1. ¤

As an application, consider a perturbation of a linear system. We assume
A = U − V and there exist A

(2)
T,S and U

(2)
T,S for given subspaces T and S.

Let there be given a linear system Ax = b and a perturbed system Uy = c.
If b ∈ A(T ) and c ∈ U(T ), then the unique solutions in T are given as
x = A

(2)
T,Sb and y = U

(2)
T,Sc.

The following result can be proved similarly as in [15, Theorem 4.1], using
our Theorem 2.1 and Theorem 3.1. For the convenience of the reader we
give a complete proof.

Theorem 3.3. If A = U−V is a {T, S}-splitting of A, such that there exist
A

(2)
T,S, U

(2)
T,S and ‖A(2)

T,S‖‖V ‖ < 1, then

‖y − x‖
‖x‖ ≤ KT,S(A)

1−KT,S(A)‖V ‖/‖A‖
(‖E‖
‖A‖ +

‖f‖
‖b‖

)
.

Here x = A
(2)
T,Sb, y = U

(2)
T,Sc, b ∈ A(T ), c ∈ U(T ) and f = c− b.

Proof. From (2.3) we get

y − x = U
(2)
T,S(b + f)−A

(2)
T,Sb = (U (2)

T,S −A
(2)
T,S)b + U

(2)
T,Sf

= −U
(2)
T,SV A

(2)
T,Sb + U

(2)
T,Sf = −U

(2)
T,SV x + U

(2)
T,Sf.

Notice that from Theorem 3.1 we easily get

‖U (2)
T,S‖ ≤

‖A(2)
T,S‖

1− ‖A(2)
T,S‖‖V ‖

.
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Also ‖A‖‖x‖
‖b‖ ≥ 1. Now we have

‖y − x‖ ≤ ‖U (2)
T,S‖‖V ‖‖x‖+ ‖U (2)

T,S‖‖f‖

≤ ‖A(2)
T,S‖

1− ‖A(2)
T,S‖‖V ‖

(
‖V ‖‖x‖+

‖f‖
‖b‖ ‖A‖‖x‖

)

=
‖A‖‖A(2)

T,S‖‖x‖
1− ‖A(2)

T,S‖‖V ‖

(‖V ‖
‖A‖ +

‖f‖
‖b‖

)

=
KT,S(A)‖x‖

1−KT,S(A)‖V ‖/‖A‖
(‖V ‖
‖A‖ +

‖f‖
‖b‖

)
. ¤

In the next statement we present a few general results for all so far known
matrix splittings.

Theorem 3.4. Let A be an arbitrary matrix and A = U − V be a matrix
splitting satisfying the following conditions

UgU = PL,M , where R(Ag) ⊆ L(3.2)

AAg = PF,G, where N (Ug) ⊇ G(3.3)

x ∈ R(Ag),(3.4)

where Ag (respectively Ug) denotes one of the inverses A−1, AD, A
(2)
T,S or

A† (respectively U−1, UD, U
(2)
T,S or U†). Then the following statements are

valid:

(a) Ug −Ag = −UgV Ag = −AgV Ug.

(b) Ag = (I − UgV )−1Ug = Ug(I − V Ug)−1.

(c) Ug = (I + AgV )−1Ag = Ag(I + V Ag)−1.

(d) The vector Agb is the unique solution of the system x = UgV x+Ugb.

(e) The iteration xi+1 = UgV xi + Ugb converges to Agb for every x0 ∈
Cn if and only if ρ(UgV ) < 1.

(f) ‖Ug −Ag‖ ≤ ‖AgV ‖‖Ag‖
1− ‖AgV ‖ ≤ Kg(A)

‖AgV ‖
‖A‖(1− ‖AgV ‖) ,

where Kg(A) = ‖A‖‖Ag‖.
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Proof. All of these results follows from Theorem 2.1 and Theorem 3.1 for
particular choices of T and S. Historically, we mention special cases.

The case Ag = AD is presented in [13], and it is based on the application
of the index splitting.

The case Ag = A† is presented in [4], using the proper splitting. ¤

Remark 3.3. In a view of the results of Theorem 3.4 we state a few general
principles which can be used in the construction of future matrix splittings.
We say that the splitting A = U − V is proper for the generalized inverses
Ag if the conditions (3.2), (3.3) and (3.4) are satisfied. If these conditions
are satisfied, then statements similar to statements stated before in Theorem
3.4 are valid.

4. Conclusion

In this paper we introduce one possible matrix splitting, so called {T, S}
splitting, which can be applied to rectangular matrices. This matrix split-
ting is a generalization of the known index splitting introduced in [13] and
a proper splitting introduced in [4]. It is used in representations and char-
acterizations of generalized inverses, as well as in the construction of some
iterative methods which are applied for various solutions of singular linear
systems. Also, these applications of {T, S} matrix splitting, applications
of the index splitting from [13] and applications of the matrix splitting of
regular matrices [17], possesses a general form.

A generalization of the condition number is introduced. Some error esti-
mates are established by means of the introduced condition number and the
introduced representations of the generalized inverse A

(2)
T,S .

We also stated a few principles which can be used in the construction of
eventually future matrix splittings.
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