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Abstract. If T and S are quasisimilar bounded operators on Banach spaces,
we prove that each closed-and-open subset of the lower semi-Browder essen-
tial spectrum of T intersects one special part of the upper semi-Browder
essential spectra of T and S.

1. Introduction

Let X and Y be Banach spaces and L(X,Y ) be the Banach space of all

bounded operators from X into Y . For T ∈ L(X,Y ) we use the following

notations: N (T ) is the kernel and R(T ) is the range of T . Also, α(T ) =

dimN (T ) and β(T ) = dimN (T ∗) = dim X/R(T ). Here X∗ denotes the

dual space of X and T ∗ ∈ L(X∗) is the adjoint operator of T . We use σ(T )

to denote the spectrum of T . Recall that the approximate point spectrum

of T is defined by

σa(T ) = {λ ∈ C : λ− T is not one-to-one with closed range}

and the defect spectrum of T is defined by

σd(T ) = {λ ∈ C : λ− T is not onto}.
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The next sets of semi-Fredholm operators are well-known: Φ+(X) =

{T ∈ L(X) : R(T ) is closed and α(T ) < ∞} and Φ−(X) = {T ∈ L(X) :

R(T ) is closed and β(T ) < ∞}. Φ+(X) and Φ−(X), respectively, form the

multiplicative semigroups of upper and lower semi-Fredholm operators on X.

The set of Fredholm operators is defined as Φ(X) = Φ+(X)∩Φ−(X). For a

semi-Fredholm operator T the index is defined as i(T ) = α(T )− β(T ). The

sets of upper and lower semi-Fredholm essential spectra of T , respectively,

are defined as

σle(T ) = {λ ∈ C : λ−T /∈ Φ+(X)} and σre(T ) = {λ ∈ C : λ−T /∈ Φ−(X)}.

The Fredholm essential spectrum of T is defined as

σe(T ) = {λ ∈ C : λ− T /∈ Φ(X)} = σle(T ) ∪ σre(T ).

We shall consider the set of Weyl operators, which is defined as Φ0(X) =

{T ∈ Φ(X) : i(T ) = 0}. Also, the Weyl essential spectrum of T is defined

by σw(T ) = {λ ∈ C : λ− T /∈ Φ0(X)}.
Recall that asc(T ) (respectively des(T )), the ascent (respectively descent)

of T , is the smallest non-negative integer n, such that N (Tn) = N (Tn+1)

(respectively R(Tn) = R(Tn+1)). If no such n exists, then asc(T ) = ∞
(respectively des(T ) = ∞) [1]. It is well-known that if the ascent and the

descent of T are finite, then they are equal.

The set of all upper (respectively lower) semi-Browder operators on X

is considered (under various names) in [3], [5], [7], [8], [9], [10], [11] and

defined as: B+(X) = {T ∈ Φ+(X) : asc(T ) < ∞} (B−(X) = {T ∈ Φ−(X) :

des(T ) < ∞}). The notion ”semi-Browder operator” firstly appears in [5],

and also in [11] and [7]. The set of Browder (Riesz-Schauder [1]) operators on

X is defined as B(X) = B+(X)∩B−(X). The Browder essential approximate

point spectrum of T is defined as

σab(T ) =
⋂

AK=KA
K∈K(X)

σa(T + K) = {λ ∈ C : λ− T /∈ B+(X)},
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the Browder essential defect spectrum of T is defined as

σdb(T ) =
⋂

AK=KA
K∈K(X)

σd(T + K) = {λ ∈ C : λ− T /∈ B−(X)}

and the Browder essential spectrum of T is defined as

σb(T ) =
⋂

AK=KA
K∈K(X)

σ(T + K) = {λ ∈ C : λ− T /∈ B(X)} = σab(T ) ∪ σdb(T ).

We are pointing the paper [9], where Rakočević introduced the notion of the

Browder essential approximate point spectrum (and by duality the Browder

essential defect spectrum) of T . By the analogy of the upper and lower semi-

Fredholm essential spectra, we shall say that σab(T ) and σdb(T ), respectively,

are the upper and lower semi-Browder essential spectra of T . Semi-Browder

essential spectra are also considered in [7].

Recall the main statement concerning the semi-Browder operators and

semi-Browder essential spectra.

Lemma 1.1. (a) B+(X) and B−(X) are open subsets of L(X) [8, Satz 4].

(b) ∂σb(T ) ⊂ ∂σab(T ) [9, Corollary 2.5 (ii)], and by duality ∂σb(T ) ⊂
∂σdb(T ).

(c) σab(T ) and σdb(T ) are compact non-empty subsets of C (follows from

(a) and (b)).

We also mention the next important and useful result [1, p. 57], [13].

Lemma 1.2. (a) If at least one of the quantities α(T ), α(T ∗) is finite, then

asc(T ) < ∞ implies α(T ) ≤ α(T ∗), and des(T ) < ∞ implies α(T ∗) ≤ α(T ).

(b) If α(T ) = α(T ∗) < ∞, then asc(T ) is finite if and only if des(T ) is

finite.

For T ∈ L(X) the Goldberg spectrum is defined as σg(T ) = {λ ∈ C :

R(λ− T ) is not closed} (see [4] and [12]). Note that this spectrum may be

empty, and also it is not necessary closed or open subset of C.
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Recall that operators T ∈ L(X) and S ∈ L(Y ) are quasisimilar, if there

exist quasiaffinities A ∈ L(X,Y ) and B ∈ L(Y, X), such that AT = SA and

TB = BS. Recall that A is a quasiaffinity if A is one-to-one and R(A) is

dense. We shall frequently use the following fact: if T and S are quasisimilar,

then α(λ− T ) = α(λ− S) and α(λ− T )∗ = α(λ− S)∗ for all λ ∈ C.

It is well-known that quasisimilar Banach space operators can have differ-

ent spectra and different essential spectra (see [6] and references cited there).

It seems interesting to consider the connections between various parts of the

spectra of quasisimilar operators. These problems for bounded operators on

Banach spaces and various essential spectra are considered (for example) in

[2] and [6]. Upper and lower semi-Fredholm essential spectra of quasisimilar

operators are considered in [16]. Results concerning some special cases of

operators on Hilbert spaces, such as seminormal and quasinormal operators,

may be found in [14] and [15].

It is natural to investigate the connection between the semi-Browder es-

sential spectra of quasisimilar operators.

Finally, we recall one important Herrero’s result [6].

Lemma 1.3. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then every

component of σe(T ) intersects σe(S) and viceversa.

2. Results

We begin with results which involve the semi-Browder essential spectra

and the Goldberg spectrum.

Theorem 2.1. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then:

(a) σab(T )\σg(T ) ⊂ σab(S) and σab(S)\σg(S) ⊂ σab(T );

(b) σdb(T )\σg(T ) ⊂ σdb(S) and σdb(S)\σg(S) ⊂ σdb(T ).

Proof. To prove (a), let λ ∈ σab(T )\σg(T ) and λ /∈ σab(S). Since there

exist quasiaffinities A ∈ L(X,Y ) and B ∈ L(Y, X), such that AT = SA and
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TB = BS, it follows that A(λ−T )n = (λ−S)nA for all positive integers n.

Since asc(λ− S) = p < ∞, it follows that

AN∞(λ− T ) ⊂ N∞(λ− S) = N (λ− S)p,

where we take N∞(T ) =
⋃

nN (Tn). Since α(λ − S)p < ∞, and A is

one-to-one, it follows that dimN∞(λ − T ) < ∞, so α(λ − T ) < ∞ and

asc(λ− T ) < ∞. This contradicts the assumption λ ∈ σab(T ) \ σg(T ).

The rest of the proof follows in the same way. ¤

Now, we get a simple corollary. In the proof of this corollary we use

Lemma 1.3.

Corollary 2.2. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then

σb(T ) \ σg(T ) ⊂ σb(S),

so every component of σb(T ) intersects σb(S).

Also, we can prove the following result concerning the Weyl essential

spectrum.

Corollary 2.3. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then

σw(T ) \ σg(T ) ⊂ σw(S),

so every component of σw(T ) intersects σw(S).

Proof. Suppose that λ ∈ σw(T ) \ σg(T ). It follows that R(λ − T ) is closed

and one of the following two cases may occur: α(λ − T ) 6= α(λ − T )∗, or

α(λ− T ) = ∞ and α(λ− T )∗ = ∞. We conclude that λ ∈ σw(S). ¤
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We shall use the following notations:

H∞∞(T ) = {λ ∈ C : α(λ− T ) = ∞, α(λ− T )∗ = ∞},
Hα<β(T ) = {λ ∈ C : α(λ− T ) < α(λ− T )∗},
Hβ<α(T ) = {λ ∈ C : α(λ− T )∗ < α(λ− T )},
K∞∞(T ) = {λ ∈ C : asc(λ− T ) = ∞, asc(λ− T )∗ = ∞},

A∞(T ) = {λ ∈ C : asc(λ− T ) = ∞}
D∞(T ) = {λ ∈ C : asc(λ− T )∗ = ∞}.

Also, let σE(T ) = σab(T ) \ [H∞∞(T ) ∪ K∞∞(T )]◦. Here D◦ denotes the

interior of D.

We also need the following auxiliary result.

Lemma 2.4. If T ∈ L(X) and α(T ) < ∞, then α(Tn) ≤ n · α(T ) < ∞ for

all positive integers n.

We shall give a more precise information about the semi-Browder essential

spectra of quasisimilar operators. The main result follows.

Theorem 2.5. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then every

closed-and-open subset of σdb(T ) intersects the set σE(T ) ∩ σE(S).

Proof. Let τ be an arbitrary closed-and-open subset of σdb(T ). We distin-

guish two cases.

Case I. Suppose that τ is not an open subset of σb(T ). It follows that

there exist: t ∈ τ and a sequence (tn)n ⊂ σb(T )\σdb(T ), such that lim tn = t.

We conclude that t ∈ ∂(σb(T ) \ σdb(T )).

For arbitrary λ ∈ σb(T ) \ σdb(T ) we know that R(λ− T ) is closed, α(λ−
T )∗ < ∞ and des(λ−T ) < ∞. Since R(λ−T )n is closed for all non-negative

integers n, it follows that asc(λ−T )∗ < ∞. We get λ /∈ H∞∞(T )∪K∞∞(T ).

Also, α(λ − T ) = ∞, or asc(λ − T ) = ∞, so λ ∈ σab(T ) \ [H∞∞(T ) ∪
K∞∞(T )]◦.



SEMI-BROWDER ESSENTIAL SPECTRA OF QUASISIMILAR OPERATORS 7

From the other hand, for the same λ ∈ σb(T )\σdb(T ) we have: α(λ−S)∗ =

α(λ − T )∗ < ∞, so λ /∈ H∞∞(S). There exist quasiaffinities A ∈ L(X, Y )

and B ∈ L(Y, X) such that AT = SA, TB = BS, so A∗[(λ − S)∗]n =

[(λ− T )∗]nA∗ for all non-negative integers n. Using the idea from Theorem

2.1, it follows that A∗N [(λ− S)∗]n ⊂ N [(λ− T )∗]n for all n, so

A∗N∞(λ− S)∗ ⊂ N∞(λ− T )∗ = N [(λ− T )∗]p,

where p = asc(λ − T )∗ < ∞. Since (λ − T )∗ is semi-Fredholm and A∗ is

one-to-one, it follows that

α(λ− S)∗ ≤ dimN∞(λ− S)∗ ≤ α[(λ− T )∗]p < ∞.

It follows that asc(λ − S)∗ < ∞, so λ /∈ K∞∞(S). We need to prove that

λ ∈ σab(S). Suppose that λ /∈ σab(S), so R(λ − S) is closed, α(λ − S) =

α(λ − T ) < ∞ and asc(λ − S) < ∞. Using the previous method we know

that these assumptions lead to the fact asc(λ − T ) < ∞, which contradicts

λ ∈ σab(T ). We have just proved that λ ∈ σab(S) \ [H∞∞(S) ∪K∞∞(S)]◦.

It follows that σb(T ) \ σdb(T ) ⊂ σE(T ) ∩ σE(S). Since σE(T ) ∩ σE(S) is

closed, we get t ∈ σE(T ) ∩ σE(S).

Case II. Let τ be an open subset of σb(T ). Since σb(T ) and σdb(T ) are

closed subsets of C and τ is a closed-and-open subset of σdb(T ), it follows

that τ is a closed-and-open subset of σb(T ). By Corollary 2.2 it follows that

τ ∩ σb(S) 6= ∅.
Suppose that τ ∩ σE(T ) ∩ σE(S) = ∅. It is easy to prove the following:

τ ∩ σb(S) ⊂ (σdb(T ) ∩ σb(S)) \ (σE(T ) ∩ σE(S))

⊂ (σdb(T ) \ σE(T )) ∪ (σb(S) \ σE(S)).

Notice that

σdb(T ) \ σE(T ) = (σdb(T ) \ σab(T )) ∪ (σdb(T ) ∩ [H∞∞(T ) ∪K∞∞(T )]◦).



8 DRAGAN S. DJORDJEVIĆ

We shall prove that σdb(T ) \ σE(T ) ⊂ D(T ), where

D(T ) = [Hα<β(T ) ∩D∞(T )]◦ ∪ [H∞∞(T ) ∪K∞∞(T )]◦.

Let λ ∈ σdb(T )\σab(T ). It follows that R(λ−T ) is closed, α(λ−T ) < ∞ and

asc(λ− T ) < ∞. By Lemma 1.2 it follows that α(λ− T ) ≤ β(λ− T ). If we

admit α(λ−T ) = β(λ−T ) < ∞, then it follows des(λ−T ) = asc(λ−T ) < ∞
(Lemma 1.2), so λ − T is a Browder operator, which contradicts the fact

λ ∈ σdb(T ). It follows that λ ∈ Hα<β(T ). Since λ − T ∈ B+(X) ⊂ Φ+(X)

we get λ ∈ Hα<β(T )◦, so

ε1 = dist{λ; C \Hα<β(T )} > 0.

Let ϕ0(T ) = {µ ∈ C : µ − T ∈ Φ0(X)}. It is well-known that ϕ0(T ) is an

open subset of C. Since λ ∈ Φ+(X) \ Φ0(X), it follows that

ε2 = dist{λ; ϕ0(T )} > 0.

Notice that

ε3 = dist{λ; σab(T )} > 0.

Let ε = min{ε1, ε2, ε3}(> 0). We claim that if |µ−λ| < ε, then des(µ−T ) =

asc(µ − T )∗ = ∞. On the contrary, suppose that des(µ − T ) < ∞. Since

µ− T ∈ B+(X), it follows that β(µ− T ) = α(µ− T ), which contradicts the

fact µ ∈ Hα<β(T ). We have just proved that

λ ∈ [Hα<β(T ) ∩D∞(T )]◦.

Now it is obvious that

σdb(T ) \ σE(T ) ⊂ D(T ).

By the same way we can prove that σb(S) \ σE(S) ⊂ D(S), so

τ ∩ σb(S) ⊂ D(T ) ∩D(S).
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We prove that D(T ) = D(S). Firstly we prove

[Hα<β(T ) ∩D∞(T )]◦ = [Hα<β(S) ∩D∞(S)]◦.

Let λ ∈ [Hα<β(T ) ∩D∞(T )]◦. There exists ε > 0, such that for all complex

numbers µ, if |µ−λ| < ε, then α(µ−T ) < α(µ−T )∗ and asc(µ−T )∗ = ∞. It

follows that α(µ−S) < α(µ−S)∗. Notice that asc(µ−S)∗ < ∞ would imply

α(µ−S)∗ ≤ β(µ−S)∗ = α(µ−S) (Lemma 1.2), so we get asc(µ−S)∗ = ∞
for all µ, |µ− λ| < ε, and λ ∈ [Hα<β(S) ∩D∞(S)]◦.

Now we prove H∞∞(T )∪K∞∞(T ) = H∞∞(S)∪K∞∞(S). Since H∞∞(T )

= H∞∞(S), it is enough to prove

K∞∞(T ) \H∞∞(T ) = K∞∞(S) \H∞∞(S).

In order to prove the last equality, let λ ∈ K∞∞(T ) \ H∞∞(T ). Then

asc(λ−T ) = ∞ and asc(λ−T )∗ = ∞. Let us assume that ∞ > α(λ−T ) =

α(λ− S).

Suppose that asc(λ− S) = p < ∞. Since AT = SA we conclude

AN∞(λ− T ) ⊂ N∞(λ− S) = N (λ− S)p.

Also, A is a quasiaffinity, so

α(λ− T ) ≤ dimN∞(λ− T ) ≤ α(λ− S)p ≤ p · α(λ− S) < ∞ (Lemma 2.4).

It follows that asc(λ− T ) < ∞, which contradicts λ ∈ K∞∞(T ) \H∞∞(T ).

We get that asc(λ− S) = ∞.

Suppose that asc(λ − S)∗ < ∞. By Lemma 1.2 it follows that α(λ −
S)∗ ≤ β(λ − S)∗ = α(λ − S) < ∞ and by the known method we conclude

asc(λ − T )∗ < ∞, which contradicts asc(λ − T )∗ = ∞. It follows that

asc(λ− S)∗ = ∞, also. We have just proved D(T ) = D(S) = D.

Notice that D is an open subset of C. Also, D ⊂ σdb(T )◦ and D ⊂ σb(S)◦.

We can prove that τ ∩D is a closed-and-open subset of C, which contradicts
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the fact ∅ 6= D 6= C. Since D is an open subset of C and τ is a closed-

and-open subset of σdb(T ), we can conclude that τ ∩D is open in C. Since

σb(S)\D ⊂ σE(S), we conclude ∂D ⊂ σE(S). In the same way we can prove

∂D ⊂ σE(T )∩σE(S). Finally, suppose that (tn)n ⊂ τ∩D and lim tn = t ∈ τ .

We get

t ∈ τ ∩ (D ∩ ∂D) ⊂ (τ ∩D) ∪ (τ ∩ σE(T ) ∩ σE(S)) = τ ∩D,

so τ ∩D is closed in C.

It follows that τ ∩ σE(T ) ∩ σE(S) 6= ∅. ¤

Now, it is a routine to prove the following result.

Corollary 2.6. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar and Ω is a

subset of C such that

σdb(T ) ∩ Ω 6= ∅, but σdb(T ) ∩ ∂Ω = ∅,

then

Ω ∩ σE(T ) ∩ σE(S) 6= ∅.

In the next theorem we shall prove one result concerning the Browder

essential spectrum. We use the notation σadb(T ) = σab(T ) ∩ σdb(T ).

Theorem 2.7. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar and Ω is a

subset of C such that

σb(T ) ∩ Ω 6= ∅ and σb(T ) ∩ ∂Ω = ∅,

then Ω ∩ σG(T ) ∩ σG(S) 6= ∅. Here we use σG(T ) = σadb(T ) \G(T ) and

G(T ) = [Hα<β(T ) ∩D∞(T )]◦ ∪ [Hβ<α(T ) ∩A∞(T )]◦.

Proof. It is easy to conclude ∂σb(T ) ∩Ω 6= ∅. By Lemma 1.1 it follows that

∂σb(T ) ⊂ ∂σab(T ) and ∂σb(T ) ⊂ ∂σdb(T ). So, if λ ∈ ∂σb(T )∩Ω, we conclude
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λ ∈ σadb(T ). It is easy to notice G(T ) ⊂ σb(T )◦, so λ ∈ σadb(T ) \ G(T ) =

σG(T ). Now, λ may or may not belong to σb(S) and we distinguish two

cases.

Case I. Let λ ∈ σb(S) and λ /∈ σG(T ) ∩ σG(S). Then

λ ∈ σb(S) \ σG(S) = [σb(S) \ σadb(S)] ∪ [σb(S) ∩G(S)].

Notice that σb(S) ∩G(S) = G(S). If λ ∈ σb(S) \ σadb(S), we conclude that

λ − S ∈ B+(Y ) ∪ B−(Y ) and R(λ − S) is closed. If λ − S ∈ B+(Y ), then

α(λ−S) < ∞ and asc(λ−S) < ∞. It follows that α(λ−S) ≤ α(λ−S)∗. If

we assume α(λ−S) = α(λ−S)∗, then it follows asc(λ−S) = asc(λ−S)∗ < ∞
and λ /∈ σb(S), which contradicts λ ∈ σb(S). We get that λ − S ∈ B+(Y )

implies λ ∈ [Hα<β(S)∩D∞(S)]◦ (recall the corresponding part of the proof

of Theorem 2.5). Also, λ − S ∈ B−(Y ) implies λ ∈ [Hβ<α(S) ∩ A∞(S)]◦.

Anyway, it follows that σb(S) \ σadb(S) ⊂ G(S) and

σb(S) \ σG(S) = G(S).

Using the corresponding part of the proof of Theorem 2.4, we conclude that

G(S) = G(T ), so λ ∈ σb(T )◦. The obtained fact contradicts λ ∈ ∂σb(T ), so

it follows that λ ∈ Ω ∩ σG(T ) ∩ σG(S).

Case II. Suppose that λ /∈ σb(S). In this case let τ denote the component

of σb(T ) containing λ. By Corollary 2.2 it follows that there exists µ ∈
τ ∩ σb(S), so it follows that τ ∩ ∂σb(S) 6= ∅. Let ν ∈ τ ∩ ∂σb(S). As in Case

I we conclude that ν ∈ σadb(S) \G(S) = σG(S). If ν /∈ σG(S)∩ σG(T ), then

ν ∈ σb(T ) \ σG(T ) = G(T ) = G(S) ⊂ σb(S)◦,

(use the corresponding part of Case I), which contradicts ν ∈ ∂σb(S). We

get ν ∈ σG(T ) ∩ σG(S). Finally, suppose that ν /∈ Ω. Since λ ∈ τ ∩ Ω, it

follows that τ ∩ ∂Ω 6= ∅, which contradicts σb(T )∩ ∂Ω = ∅. Again, it follows

that ν ∈ Ω ∩ σG(T ) ∩ σG(S). ¤

Using Theorem 2.7 it is not difficult to prove the following result.
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Corollary 2.8. If the conditions from Theorem 2.7 are satisfied, then Ω ∩
∂(σG(T ) ∩ σG(S)) 6= ∅.

Finally, notice that using the same principles as in Theorem 2.7 and Corol-

lary 2.8, we can prove one more result concerning the Weyl essential spec-

trum. We use the notation σlre(T ) = σle(T ) ∩ σre(T ).

Theorem 2.9. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar operators and

Ω is a subset of C such that

σw(T ) ∩ Ω 6= ∅ and σw(T ) ∩ ∂Ω = ∅,

then Ω ∩ ∂(σF (T ) ∩ σF (S)) 6= ∅, where σF (T ) = σlre(T ) \ F (T ) and

F (T ) = [Hα<β(T ) ∪Hβ<α(T ) ∪H∞∞(T )]◦.

Remark 2.10. Z. Yan proved analogous results for the lower and upper semi-

Fredholm essential spectra and for the Fredholm essential spectrum in [16].
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