ON INTEGRAL REPRESENTATION OF THE GENERALIZED INVERSE $A_{T,S}^{(2)}$

Yimin Wei^{1 2} and Dragan S. Djordjević³

¹ Department of Mathematics and Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Shanghai, 200433, P.R. of China E-mail: ymwei@fudan.edu.cn

³ Department of Mathematics, Faculty of Scineces, University of Niš, P.O. Box 224, 18000 Niš, Yugoslavia E-mail: dragan@pmf.pmf.ni.ac.yu

Abstract

We present a general integral representation for the generalized inverse $A_{T,S}^{(2)}$, which extends earlier result on the Moore-Penrose inverse, weighted Moore-Penrose inverse and Drazin inverse.

(2000) AMS classification: 15A09, 65F20. Keywords: Generalized $A_{T,S}^{(2)}$ inverse, integral representation.

1 Introduction

Goretsch [3] presented an integral representation of the Moore-Penrose inverse T^{\dagger} of a bounded linear operator $T \in \mathcal{L}(H_1, H_2)$ with closed range $\mathcal{R}(T)$ in Hilbert space

$$T^{\dagger} = \int_0^\infty exp(-T^*Tt)T^*dt, \qquad (1)$$

where H_1, H_2 are Hilbert spaces.

³ Project 19901006 supported by National Natural Science Foundation of China. Partial work was finished when the "first" author visited Harvard University and supported by China Scholarship Council.

Wei and Wu [7] extended the result of Groetsch to the weighted Moore-Penrose inverse of matrix $A \in \mathbf{C}^{m \times n}$,

$$A_{M,N}^{\dagger} = \int_{0}^{\infty} exp(-A^{\#}At)A^{\#}dt,$$
(2)

where $A^{\#} = N^{-1}A^*M$, M and N are Hermitian positive definite matrices of order m and n, respectively.

Gonzalez, Koliha and Wei [2] gave a simple integral representation of the Drazin inverse a^D in Banach algebras: let $a \in \mathcal{A}$ be a Drazin invertible element of a finite Drazin index $k \geq 1$ such that the nonzero spectrum of a^{m+1} lies in the open right half of the complex plane for some $m \geq k$. Then

$$a^D = \int_0^\infty exp(-a^{m+1}t)a^m dt.$$
(3)

The above-mentioned results motivate us to investigate the outer inverse $A_{T,S}^{(2)}$ of a matrix $A \in \mathbb{C}^{m \times n}$, since we have observed that the traditional generalized inverses (see [1]), such as the Moore-Penrose inverse A^{\dagger} , the weighted Moore-Penrose inverse $A_{M,N}^{\dagger}$, the Drazin inverse A^{D} , the group inverse A^{g} , etc., are outer inverses with prescribed range and kernel. The generalized inverse $A_{T,S}^{(2)}$ of $A \in \mathbb{C}^{m \times n}$ is the matrix $X \in \mathbb{C}^{n \times m}$ satisfying

$$XAX = X, \ \mathcal{R}(X) = T, \ \mathcal{N}(X) = S.$$

Recently, Wei [6] established the integral representation for the generalized inverse $A_{T,S}(2)$. Let $A \in \mathbb{C}^{m \times n}$, T and S be subspaces of \mathbb{C}^n and \mathbb{C}^m respectively. Suppose $G \in \mathbb{C}^{n \times m}$ such that $\mathcal{R}(G) = T$ and $\mathcal{N}(G) = S$. If any nonzero eigenvalue λ of GA satisfy $Re \lambda > 0$, then

$$A_{T,S}^{(2)} = \int_0^\infty exp(-GAt)Gdt.$$
 (4)

In this paper we will give a general integral representation for the generalized inverse $A_{T,S}^{(2)}$ which drops the restriction on the spectrum of GA and extends the earlier result on Drazin inverse [2].

Funtamental lemmas are needed in what follows.

Lemma 1.1 Let $A \in \mathbb{C}^{m \times n}$ be of rank r, let T be a subspace of \mathbb{C}^n of dimension $s \leq r$, and let S be a subspace of \mathbb{C}^m of dimension m - s. In addition, suppose $G \in \mathbb{C}^{n \times n}$ such that $\mathcal{R}(G) = T$ and $\mathcal{N}(G) = S$. If A has an outer inverse $A_{T,S}^{(2)}$, then ind (GA) = ind(AG) = 1. Further, we have

$$A_{T,S}^{(2)} = (GA)^g G = G(AG)^g.$$
(5)

Lemma 1.2 Let $A \in \mathbb{C}^{n \times n}$ be a nonsingular matrix with $\operatorname{Re} \sigma(A) > 0$. Then

$$A^{-1} = \int_0^\infty ext(-At)dt.$$
 (6)

In this paper for any matrix $A \in \mathbb{C}^{n \times n}$ we denote its spectrum by $\sigma(A)$. $\mathcal{R}(A)$ and $\mathcal{N}(A)$ represents the range and the null space of A, respectively. We define the index of A, written ind (A), to be the least nonnegative k for which $\mathcal{N}(A^k) = \mathcal{N}(A^{k+1})$ holds.

2 Main results

In this section we will present a general integral representation of the generalized inverse $A_{T,S}^{(2)}$. Throughout this section, we let A, T and S to be the same as in Lemma 1.1. In addition, let $G \in \mathbb{C}^{n \times m}$ be such that

$$\mathcal{R}(G) = T \quad \text{and} \quad \mathcal{N}(G) = S.$$
 (7)

First we develop the algebraic structures of A and G.

Theorem 2.1 Let A, T and S be the same as in Lemma 1.1 and $G \in \mathbb{C}^{n \times m}$ satisfies (7). Then we have

$$A = Q^{-1} \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} P, \ G = P^{-1} \begin{bmatrix} G_{11} & 0 \\ 0 & 0 \end{bmatrix} Q, \ A_{T,S}^{(2)} = P^{-1} \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q,$$
(8)

where P, Q, A_{11} and G_{11} are nonsingular matrices.

Proof. It follows from Lemma 1.1 that

$$\operatorname{ind}(AG) = \operatorname{ind}(GA) = 1.$$

There is a Jordan canonical form of AG and GA as follows:

$$GA = P^{-1} \begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix} P, \quad AG = Q^{-1} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} Q,$$

where C and D are invertible matrices of the same order. Partition A and G as

$$A = Q^{-1} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} P, \quad G = P^{-1} \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} Q.$$

It is easy to check that

$$(GA)^{g}G = P^{-1} \begin{bmatrix} C^{-1} & 0 \\ 0 & 0 \end{bmatrix} PP^{-1} \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} Q$$
$$= P^{-1} \begin{bmatrix} C^{-1}G_{11} & C^{-1}G_{12} \\ 0 & 0 \end{bmatrix} Q.$$

Similarly, we have

$$G(AG)^g = P^{-1} \begin{bmatrix} G_{11}D^{-1} & 0\\ G_{21}D^{-1} & 0 \end{bmatrix} Q.$$

Since $A_{T,S}^{(2)} = (GA)^g G = G(AG)^g$, we have

$$C^{-1}G_{12} = 0$$
 and $G_{21}D^{-1} = 0$

i.e.

$$G_{12} = 0$$
 and $G_{21} = 0$.

Applying a little algebra, we obtain

$$GA = P^{-1} \begin{bmatrix} G_{11}A_{11} & G_{11}A_{12} \\ G_{22}A_{21} & G_{22}A_{22} \end{bmatrix} P = P^{-1} \begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix} P,$$

and

$$AG = Q^{-1} \begin{bmatrix} A_{11}G_{11} & A_{12}G_{22} \\ A_{21}G_{11} & A_{22}G_{22} \end{bmatrix} Q = Q^{-1} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} Q.$$

We deduce that

 $G_{11}A_{11} = C$ (nonsingular), $A_{11}G_{11} = D$ (nonsingular),

that is to say both A_{11} and G_{11} are invertible. From $G_{11}A_{12} = 0$ and $A_{21}G_{11} = 0$ we obtain A

$$_{12} = 0$$
 and $A_{21} = 0.$

Finally, from the facts $G = GAA_{T,S}^{(2)} = A_{T,S}^{(2)}AG$ and $AA_{T,S}^{(2)} = AG(AG)^g$, with $A_{T,S}^{(2)}A = (GA)^g GA$, we have

$$G = P^{-1} \begin{bmatrix} G_{11} & 0 \\ 0 & G_{22} \end{bmatrix} Q = P^{-1} \begin{bmatrix} G_{11} & 0 \\ 0 & G_{22} \end{bmatrix} Q Q^{-1} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} Q$$
$$= P^{-1} \begin{bmatrix} G_{11} & 0 \\ 0 & 0 \end{bmatrix} Q,$$

i.e. $G_{22} = 0$.

Thus, we get

$$A = Q^{-1} \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} P, \quad G = P^{-1} \begin{bmatrix} G_{11} & 0 \\ 0 & 0 \end{bmatrix} Q$$

and

$$A_{T,S}^{(2)} = (GA)^g G = P^{-1} \begin{bmatrix} A_{11}^{-1} & 0\\ 0 & 0 \end{bmatrix} Q.$$

We have just finished the proof.

Now we are in a position to derive the general integral representation for the generalized inverse $A_{T,S}^{(2)}$.

Theorem 2.2 Suppose that A, T and S be the same as in Lemma 1.1 and $G \in \mathbb{C}^{n \times m}$ satisfying (7). Then we have

$$A_{T,S}^{(2)} = \int_0^\infty exp\Big[-G(GAG)^*GAt\Big] G(GAG)^*Gdt.$$
⁽⁹⁾

Proof. It follows from Theorem 2.1 that

$$A = Q^{-1} \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} P, \ G = P^{-1} \begin{bmatrix} G_{11} & 0 \\ 0 & 0 \end{bmatrix} Q \text{ and } A_{T,S}^{(2)} = P^{-1} \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q.$$
We denote

We denote

$$QQ^* = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix}$$
 and $(P^{-1})^*P^{-1} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$.

It is obviously that Q_{11} and P_{11} are Hermitian positive definite matrices, their square roots $Q_{11}^{1/2}$ and $P_{11}^{1/2}$ are also Hermitian positive definite matrices. By a direct computation we have

$$G(GAG)^*Q = P^{-1} \begin{bmatrix} G_{11}Q_{11}(G_{11}A_{11}G_{11})^*P_{11}G_{11} & 0\\ 0 & 0 \end{bmatrix} Q$$

and

$$G(GAG)^*GA = P^{-1} \begin{bmatrix} G_{11}Q_{11}(G_{11}A_{11}G_{11})^*P_{11}G_{11}A_{11} & 0\\ 0 & 0 \end{bmatrix} Q.$$

We notice that

$$\begin{split} &\sigma[G_{11}Q_{11}(G_{11}A_{11}G_{11})^*P_{11}G_{11}A_{11}] = \\ &= \sigma[Q_{11}^{1/2}Q_{11}^{1/2}(G_{11}A_{11}G_{11})^*P_{11}^{1/2}P_{11}^{1/2}(G_{11}A_{11}G_{11})] \\ &= \sigma[(P_{11}^{1/2}G_{11}A_{11}G_{11}Q_{11}^{1/2})^*(P_{11}^{1/2}G_{11}A_{11}G_{11}Q_{11}^{1/2})] > 0. \end{split}$$

It follows from Lemma 1.2 that

$$\begin{split} & \int_{0}^{\infty} exp\Big[-G(GAG)^{*}GAt\Big]G(GAG)^{*}Gdt \\ = & P^{-1}\left[\begin{array}{ccc} \int_{0}^{\infty}[-G_{11}Q_{11}(G_{11}A_{11}G_{11})^{*}P_{11}G_{11}A_{11}t]dt & 0 \\ & 0 & 0 \end{array}\right]P \times \\ & \times & P^{-1}\left[\begin{array}{ccc} G_{11}Q_{11}(G_{11}A_{11}G_{11})^{*}P_{11}G_{11} & 0 \\ & 0 & 0 \end{array}\right]Q \\ = & P^{-1}\left[\begin{array}{ccc} [G_{11}Q_{11}(G_{11}A_{11}G_{11})^{*}P_{11}G_{11}A_{11}]^{-1}G_{11}Q_{11}(G_{11}A_{11}G_{11})^{*}P_{11}G_{11} & 0 \\ & 0 & 0 \end{array}\right]Q \\ = & P^{-1}\left[\begin{array}{ccc} A_{11}^{-1} & 0 \\ & 0 & 0 \end{array}\right]Q = A_{T,S}^{(2)}. \end{split}$$

The proof is complete.

3 Concluding remarks

In this paper we have developed the integral representation for the generalized inverse $A_{T,S}^{(2)}$ of a complex matrix A. In our oppinion, it is worth establishing the same result in Hilbert spaces or C^* -algebras.

References

- A. Ben-Israel and T. N. E. Greville, *Generalized Inverses: Theory and Applications*, Wiley-Interscience, New York, 1974.
- [2] N. Castro Gonzalez, J. J. Koliha and Y. Wei, On integral representation of Drazin inverse in Banach algebras, Proc. Edinburgh Math. Soc. (to appear).
- [3] C. W. Groetsch, *Generalized inverses of linear operators* Marcel Dekker, Inc. New York and Basel, 1977.
- [4] Y. Wei and G. Wang, A survey on the generalized inverse $A_{T,S}^{(2)}$, Actas/Proceedings, Meetings on Matrix Analysis and Applications, Sevilla, Spain, (EAMA), Sep. 10-12, (1997), 421–428.
- [5] Y. Wei, A characterization and representation of the generalized inverse $A_{T,S}^{(2)}$ and its applications, Lineear Algebra Appl. **280** (1998), 79–86.
- [6] Y. Wei, Integral representation of the generalized inverse $A_{T,S}^{(2)}$ and its aplications, Adv. Pure Appl. Algebra (to appear).
- [7] Y. Wei and H. Wu, The representation and approximation for the weighted Moore-Penrose inverse, Appl. Math. Comput. 12 (2001), 17–28.