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Abstract

We present a general integral representation for the generalized in-
verse A

(2)
T,S , which extends earlier result on the Moore-Penrose inverse,

weighted Moore-Penrose inverse and Drazin inverse.
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1 Introduction

Goretsch [3] presented an integral represntation of the Moore-Penrose inverse T † of
a bounded linear operator T ∈ L(H1,H2) with closed range R(T ) in Hilbert space

T † =
∫ ∞

0

exp(−T ∗Tt)T ∗dt, (1)

where H1,H2 are Hilbert spaces.
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by China Scholarship Council.
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Wei and Wu [7] extended the result of Groetsch to the weighted Moore-Penrose
inverse of matrix A ∈ Cm×n,

A†M,N =
∫ ∞

0

exp(−A#At)A#dt, (2)

where A# = N−1A∗M , M and N are Hermitian positive definite matrices of order
m and n, respectively.

Gonzalez, Koliha and Wei [2] gave a simple integral representation of the Drazin
inverse aD in Banach algebras: let a ∈ A be a Drazin invertible element of a finite
Drazin index k ≥ 1 such that the nonzero spectrum of am+1 lies in the open right
half of the complex plane for some m ≥ k. Then

aD =
∫ ∞

0

exp(−am+1t)amdt. (3)

The above-mentioned results motivate us to investigate the outer inverse A
(2)
T,S of

a matrix A ∈ Cm×n, since we have observed that the traditional generalized inverses
(see [1]), such as the Moore-Penrose inverse A†, the weighted Moore-Penrose inverse
A†M,N , the Drazin inverse AD, the group inverse Ag, etc., are outer inverses with

prescribed range and kernel. The generalized inverse A
(2)
T,S of A ∈ Cm×n is the

matrix X ∈ Cn×m satisying

XAX = X, R(X) = T, N (X) = S.

Recently, Wei [6] established the integral representaton for the generalized in-
verse AT,S

(2). Let A ∈ Cm×n, T and S be subspaces of Cn and Cm respectively.
Suppose G ∈ Cn×m such that R(G) = T and N (G) = S. If any nonzero eigenvalue
λ of GA satisfy Reλ > 0, then

A
(2)
T,S =

∫ ∞

0

exp(−GAt)Gdt. (4)

In this paper we will give a general integral representation for the generalized
inverse A

(2)
T,S which drops the restriction on the spectrum of GA and extends the

earlier result on Drazin inverse [2].
Funtamental lemmas are needed in what follows.

Lemma 1.1 Let A ∈ Cm×n be of rank r, let T be a subspace of Cn of dimension
s ≤ r, and let S be a subspace of Cm of dimension m − s. In addition, suppose
G ∈ Cn×n such that R(G) = T and N (G) = S. If A has an outer inverse A

(2)
T,S,

then ind (GA) = ind (AG) = 1. Further, we have

A
(2)
T,S = (GA)gG = G(AG)g. (5)
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Lemma 1.2 Let A ∈ Cn×n be a nonsingular matrix with Re σ(A) > 0. Then

A−1 =
∫ ∞

0

ext(−At)dt. (6)

In this paper for any matrix A ∈ Cn×n we denote its spectrum by σ(A).
R(A) and N (A) represents the range and the null space of A, respectively. We
define the index of A, written ind (A), to be the least nonnegative k for which
N (Ak) = N (Ak+1) holds.

2 Main results

In this section we will present a general integral representation of the generalized
inverse A

(2)
T,S . Throughout this section, we let A, T and S to be the same as in

Lemma 1.1. In addition, let G ∈ Cn×m be such that

R(G) = T and N (G) = S. (7)

First we develop the algebraic structures of A and G.

Theorem 2.1 Let A, T and S be the same as in Lemma 1.1 and G ∈ Cn×m

satisfies (7). Then we have

A = Q−1

[
A11 0
0 A22

]
P, G = P−1

[
G11 0
0 0

]
Q, A

(2)
T,S = P−1

[
A−1

11 0
0 0

]
Q,

(8)
where P , Q, A11 and G11 are nonsingular matrices.

Proof. It follows from Lemma 1.1 that

ind (AG) = ind (GA) = 1.

There is a Jordan canonical form of AG and GA as folows:

GA = P−1

[
C 0
0 0

]
P, AG = Q−1

[
D 0
0 0

]
Q,

where C and D are invertible matrices of the same order. Partition A and G as

A = Q−1

[
A11 A12

A21 A22

]
P, G = P−1

[
G11 G12

G21 G22

]
Q.

It is easy to check that

(GA)gG = P−1

[
C−1 0

0 0

]
PP−1

[
G11 G12

G21 G22

]
Q

= P−1

[
C−1G11 C−1G12

0 0

]
Q.
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Similarly, we have

G(AG)g = P−1

[
G11D

−1 0
G21D

−1 0

]
Q.

Since A
(2)
T,S = (GA)gG = G(AG)g, we have

C−1G12 = 0 and G21D
−1 = 0,

i.e.
G12 = 0 and G21 = 0.

Applying a little algebra, we obtain

GA = P−1

[
G11A11 G11A12

G22A21 G22A22

]
P = P−1

[
C 0
0 0

]
P,

and

AG = Q−1

[
A11G11 A12G22

A21G11 A22G22

]
Q = Q−1

[
D 0
0 0

]
Q.

We deduce that

G11A11 = C (nonsingular), A11G11 = D (nonsingular),

that is to say both A11 and G11 are invertible. From G11A12 = 0 and A21G11 = 0
we obtain

A12 = 0 and A21 = 0.

Finally, from the facts G = GAA
(2)
T,S = A

(2)
T,SAG and AA

(2)
T,S = AG(AG)g, with

A
(2)
T,SA = (GA)gGA, we have

G = P−1

[
G11 0
0 G22

]
Q = P−1

[
G11 0
0 G22

]
QQ−1

[
I 0
0 0

]
Q

= P−1

[
G11 0
0 0

]
Q,

i.e. G22 = 0.
Thus, we get

A = Q−1

[
A11 0
0 A22

]
P, G = P−1

[
G11 0
0 0

]
Q

and

A
(2)
T,S = (GA)gG = P−1

[
A−1

11 0
0 0

]
Q.

We have just finished the proof.

Now we are in a position to derive the general integral representation for the
generalized inverse A

(2)
T,S .
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Theorem 2.2 Suppose that A, T and S be the same as in Lemma 1.1 and G ∈
Cn×m satisfying (7). Then we have

A
(2)
T,S =

∫ ∞

0

exp
[
−G(GAG)∗GAt

]
G(GAG)∗Gdt. (9)

Proof. It follows from Theorem 2.1 that

A = Q−1

[
A11 0
0 A22

]
P, G = P−1

[
G11 0
0 0

]
Q and A

(2)
T,S = P−1

[
A−1

11 0
0 0

]
Q.

We denote

QQ∗ =
[

Q11 Q12

Q21 Q22

]
and (P−1)∗P−1 =

[
P11 P12

P21 P22

]
.

It is obviously that Q11 and P11 are Hermitian positive definite matrices, their
square roots Q

1/2
11 and P

1/2
11 are also Hermitian positive definite matrices. By a

direct computation we have

G(GAG)∗Q = P−1

[
G11Q11(G11A11G11)∗P11G11 0

0 0

]
Q

and

G(GAG)∗GA = P−1

[
G11Q11(G11A11G11)∗P11G11A11 0

0 0

]
Q.

We notice that

σ[G11Q11(G11A11G11)∗P11G11A11] =

= σ[Q1/2
11 Q

1/2
11 (G11A11G11)∗P

1/2
11 P

1/2
11 (G11A11G11)]

= σ[(P 1/2
11 G11A11G11Q

1/2
11 )∗(P 1/2

11 G11A11G11Q
1/2
11 )] > 0.

It follows from Lemma 1.2 that∫ ∞

0

exp
[
−G(GAG)∗GAt

]
G(GAG)∗Gdt

= P−1

[ ∫∞
0

[−G11Q11(G11A11G11)∗P11G11A11t]dt 0
0 0

]
P ×

× P−1

[
G11Q11(G11A11G11)∗P11G11 0

0 0

]
Q

= P−1

[
[G11Q11(G11A11G11)∗P11G11A11]−1G11Q11(G11A11G11)∗P11G11 0

0 0

]
Q

= P−1

[
A−1

11 0
0 0

]
Q = A

(2)
T,S .

The proof is complete.
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3 Concluding remarks

In this paper we have developed the integral representation for the generalized
inverse A

(2)
T,S of a complex matrix A. In our oppinion, it is worth establishing the

same result in Hilbert spaces or C∗-algebras.
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