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Abstract

We present a general integral representation for the generalized in-
2 . . .
verse Agw)s, which extends earlier result on the Moore-Penrose inverse,
weighted Moore-Penrose inverse and Drazin inverse.
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1 Introduction

Goretsch [3] presented an integral represntation of the Moore-Penrose inverse 7' of
a bounded linear operator T' € L(Hy, Hy) with closed range R(T) in Hilbert space

T = / exp(=T*Tt)T*dt, (1)
0

where Hq, Hs are Hilbert spaces.
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Wei and Wu [7] extended the result of Groetsch to the weighted Moore-Penrose
inverse of matrix A € C™*",

Al = /0 exp(—A¥* At)A#dt, (2)

where A# = N~1'A*M, M and N are Hermitian positive definite matrices of order
m and n, respectively.

Gonzalez, Koliha and Wei [2] gave a simple integral representation of the Drazin
inverse a” in Banach algebras: let a € A be a Drazin invertible element of a finite
Drazin index k£ > 1 such that the nonzero spectrum of a™*! lies in the open right
half of the complex plane for some m > k. Then

aD:/ exp(—a™t)a™dt. (3)
0

The above-mentioned results motivate us to investigate the outer inverse A% )S of
amatrix A € C™*™ since we have observed that the traditional generalized inverses
(see [1]), such as the Moore-Penrose inverse A', the weighted Moore-Penrose inverse
AR/[, - the Drazin inverse AP the group inverse A9, etc., are outer inverses with

prescribed range and kernel. The generalized inverse Ag? )S of A € C™*" is the
matrix X € C™*™ satisying

XAX =X, R(X)=T, N(X)=5.

Recently, Wei [6] established the integral representaton for the generalized in-
verse AT,S(2). Let A € C™*™ T and S be subspaces of C™ and C™ respectively.
Suppose G € C™*™ such that R(G) = T and N(G) = S. If any nonzero eigenvalue
A of GA satisfy Re A > 0, then

AR, = / cxp(—G AN Gt (@)
0

In this paper we will give a general integral representation for the generalized
inverse Ag? )s which drops the restriction on the spectrum of GA and extends the
earlier result on Drazin inverse [2).

Funtamental lemmas are needed in what follows.

Lemma 1.1 Let A € C™*" be of rank r, let T be a subspace of C™ of dimension
s <1, and let S be a subspace of C™ of dimension m — s. In addition, suppose
G € C™™" such that R(G) =T and N(G) = S. If A has an outer inverse A(T2)S,
then ind(GA) = ind(AG) = 1. Further, we have 7

AP = (GA)G = G(AG)". (5)



Lemma 1.2 Let A € C"*" be a nonsingular matriz with Reo(A) > 0. Then
o0
Al / ext(— Ab)dt. (6)
0

In this paper for any matrix A € C"*" we denote its spectrum by o(A).
R(A) and N (A) represents the range and the null space of A, respectively. We
define the index of A, written ind(A), to be the least nonnegative k for which
N(AF) = N (A*+1) holds.

2 Main results

In this section we will present a general integral representation of the generalized
inverse Ag )S Throughout this section, we let A, T and S to be the same as in
Lemma 1.1. In addition, let G € C™*™ be such that

R(G)=T and N(G)=S. (7)
First we develop the algebraic structures of A and G.

Theorem 2.1 Let A, T and S be the same as in Lemma 1.1 and G € C™ ™
satisfies (7). Then we have

[ An o _ i [Guo0 @ _p1| AG 0
=@ { 0 Ag P G=P 0 0 @ Ars =P 0 0 @

where P, Q, Ay1 and G171 are nonsingular matrices.

Proof. Tt follows from Lemma 1.1 that
ind (AG) = ind (GA) = 1.
There is a Jordan canonical form of AG and G A as folows:
cC 0 D 0
_ p-1 _ -1
GA=P {O O}P’ AG=Q [0 O]Q,
where C' and D are invertible matrices of the same order. Partition A and G as
_ A A _ G G
A= 1 11 2 | p - p-! 11 12 '
Q |: A21 A22 ’ G21 G22 Q
It is easy to check that
c-1 o0 G G
g _ -1 -1 11 12
eave = p[ O O]erm] G G2

c-la c-la
_ p-1 11 12
P [ . . } Q.



Similarly, we have

G(AG) = P! { g;gj X ] Q.
Since AT = (GA)IG = G(AG), we have

C'Gi3=0 and GoyD7!'=0,

ie.

G12 =0 and G21 =0.
Applying a little algebra, we obtain

G111 A G111 A Cc 0
GA— p-t 11411 iz | p_ p-t P
[ GaaAzr GarAa 0 0 ’
and AG A12G
_ 4| DO
AG = 01 11Gn 12G22 } _ -1 [ ] '
@ { A21G11 AzaGaa @ 0 0 @

We deduce that
G1141; = C (nonsingular), A;1G11 = D (nonsingular),

that is to say both A;; and G1; are invertible. From G171 412 = 0 and A31G11 =0

we obtain
A12 =0 and A21 =0.

Finally, from the facts G = GAAL; = APLAG and AAT; = AG(AG)?, with
APGA = (GA)IGA, we have

o1 G O 51| G 0 4| 10
GP[OGQQQP 0 Gn |99 |0 09
_ 1| G 0
ie. GQQZO.
Thus, we get
_ —1 All 0 _ —1 G11 0
A=Q [0 Ay | P G=F 0o o019

and

—1
AP, = (GAYG = P! [ A 9 } Q.

We have just finished the proof.

Now we are in a position to derive the general integral representation for the

N ®)
generalized inverse AT’ S



Theorem 2.2 Suppose that A, T and S be the same as in Lemma 1.1 and G €
C™ ™ satisfying (7). Then we have

AP, = / eap| — G(GAG) GAL G(GAG) G, (9)
i 0
Proof. 1t follows from Theorem 2.1 that

A 0 Gii 0 A0

_ _ pe 2 _ p-
A_Ql[ 0 AQQ}P,G_Pl{ 0 O]QandAﬁS_Pl[ 5 O]Q.

We denote

« | Qu Q2 “1vep—1 | Pin Pr2
@Q _|:Q21 QQQ}and(P )P _{Pm P22:|.

It is obviously that ()11 and P;; are Hermitian positive definite matrices, their

square roots QHQ and Plll/ ? are also Hermitian positive definite matrices. By a
direct computation we have

G(GAG)"Q = P! { G @n (@ AnGu) Pt 0 ] 0

and

G(GAG)*GA = P! [ G11Q11(G11411G11)*PiiGiidnn 0 } 0.

0 0
We notice that
o[G11Q11(G11411G11)" PG An| =
= o] }{2 }{2(G11A11G11)*P111/2P111/2(GHAUGH)]
= U[(P111/2G11A11G11Q}{2)*(P111/2G11A11G11Q}{2)] > 0.

It follows from Lemma 1.2 that

/ h ea;p[ - G(GAG)*GAt] G(GAG)*Gdt

0

_ p-t [ fooo[—GuQu(G11A16G11)*P11G11A11t]dt 8}Px
_ :G G11A11G11)* P11 G 0
<« p-l 1Q11(Gn (1)1 11)"Pi1iGn O}Q
_ p-t [ [G11Q11(G11A11G11)* P1iG11 A1) 71 G11Q11(G11411G11)* PG 0
0 0
AL 0 2
= P Q= AP

The proof is complete.

Q



3 Concluding remarks

In this paper we have developed the integral representation for the generalized

inverse Ag? )S of a complex matrix A. In our oppinion, it is worth establishing the
same result in Hilbert spaces or C*-algebras.
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