
OPERATORS CONSISTENT IN REGULARITY

Dragan S. Djordjević

Abstract. If S(X) is an arbitrary subset of L(X) (where L(X) is the set
of all bounded operators on a Banach space X), then we say that B ∈ L(X)
is S-consistent, or consistent in S(X), provided that for all A ∈ L(X) the
following holds:

AB ∈ S(X) if and only if BA ∈ S(X).

It is convenient to take that S(X) is close to the set of all invertible opera-
tors on X, or that S(X) contains regular operators. Here ”regular” means
that S(X) is equal to the set of invertible, left (right) invertible, Fredholm,
left (right) Fredholm, Weyl, or Browder operators on X. In this article we
completely describe operators consistent in the previous regularities.

1. Introduction

Let X denote an arbitrary infinite dimensional complex Banach space and

L(X) denote the set of all bounded operators on X. For T ∈ L(X) we use

N (T ) and R(T ), respectively, to denote the kernel and the range of T .

Let S(X) denote an arbitrary subset of L(X). We say that B ∈ L(X)

is S-consistent, or consistent in S(X), provided that for all A ∈ L(X) the

following holds [6]:

AB ∈ S(X) if and only if BA ∈ S(X).
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In this article we consider the cases when S(X) is the invertible, left or

right invertible operators, giving in particular the main results of [6], as well

as several kinds of Fredholm operators.

Section 2 is devoted to operators consistent in invertibility. In this section

the main result for bounded operators on Banach spaces is proved. Section

2 contains generalizations of corresponding results from [6]. Also, some new

aspects of operators consistent in left and right invertibility are considered.

We also introduce a concept of strictly left singular and strictly right singular

operators on Banach spaces. It seems to be a natural generalization of the

known classes of α-strictly singular and α-strictly cosingular operators on

Hilbert spaces.

Section 3 seems to be essentially new, where we consider Fredholm, left

and right Fredholm, Weyl and Browder consistent operators. Also, the

classes of essentially strictly left (right) singular operators are introduced.

As a corollary, we obtain the main result from [6]: our Theorem 3.5 is the

same as [6, Theorem 3.7].

2. Operators consistent in invertibility

Let G(X), Gl(X) and Gr(X), respectively, denote the set of all invertible,

left invertible and right invertible operators on X. Recall that T ∈ Gl(X)

if and only if N (T ) = {0} and R(T ) = R(T ) is a complemented subspace

of X. Analogously, T ∈ Gr(X) if and only if R(T ) = X and N (T ) is a

complemented subspace of X.

We say that T ∈ L(X) is relatively regular provided that there exists

some S ∈ L(X), such that TST = T . In this case S is called an inner

generalized inverse of T . It is well-known that T is relatively regular if and

only if N (T ) and R(T ) are closed and complemented subspaces of X [3],

[11]. If S is an inner generalized inverse of T , it is well-known that TS is

a projection of X onto R(T ), and I − ST is a projection of X onto N (T ).
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We say that U ∈ L(X) is a reflexive generalized inverse of T , provided that

TUT = T and UTU = U . If S is an inner generalized inverse of T , then

STS is a reflexive generalized inverse of T .

Firstly we assume that S(X) = G(X) is the set of all invertible elements

of L(X). The following theorem gives a complete answer to the question

whether an operator is consistent or not consistent in invertibility.

Theorem 2.1. Let B ∈ L(X). Then B is G-consistent, if and only if one

of the following five mutually disjoint cases occurs:

(1) B is invertible;

(2) R(B) is not closed;

(3) N (B) 6= {0} and R(B) = R(B) 6= X;

(4) N (B) = {0}, R(B) = R(B) and R(B) is not complemented in X;

(5) N (B) 6= {0}, R(B) = X and N (B) is not complemented in X.

Also, B is not G-consistent if and only if one of the following two mutually

disjoint cases occurs:

(6) N (B) = {0}, R(B) = R(B) and R(B) is a proper complemented

subspace of X;

(7) N (B) 6= {0}, R(B) = X and N (B) is a complemented subspace of

X.

Proof. If B is invertible, then AB = B−1(BA)B, so (1) follows. To prove (2),

suppose that R(B) is not closed. Then R(BA) 6= X so BA is not invertible

for all A ∈ L(X). Suppose that there exists some A ∈ L(X) such that AB

is invertible. Then B is left invertible and B is relatively regular. It follows

that R(B) is closed, which contradicts our previous assumptions. Now, AB

is not invertible and (2) follows. To prove (3), suppose that N (B) 6= {0}
and R(B) 6= X. Obviously, N (B) ⊂ N (AB), so AB is not invertible for

all A ∈ L(X). Also, R(BA) ⊂ R(B) 6= X, so BA is not invertible for all

A ∈ L(X) and (3) follows.
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To prove (4), suppose that N (B) = {0}, R(B) is closed and R(B) is not

complemented in X. It follows that BA is not invertible for all A ∈ L(X).

Suppose that there exists A ∈ L(X) such that AB is invertible. Then B is

left invertible, so B is relatively regular and R(B) is complemented. The

obtained contradiction finishes the proof of (4).

We prove (5). Let N (B) 6= {0}, R(B) = X and N (B) is not comple-

mented in X. Obviously, AB is not invertible for all A ∈ L(X). Suppose

that there exists A ∈ L(X) such that BA is invertible. It follows that B is

right invertible, so B is relatively regular and N (B) is complemented in X.

To prove (6), suppose that N (B) = {0}, R(B) is closed and a proper

complemented subspace of X. It follows that BA is not invertible for all

A ∈ L(X). However, B is left invertible, so there exists an operator S, such

that SB = I. It follows that B is not G-consistent.

The proof of (7) is similar to the proof of (6), since in that case B is right

invertible and AB is not invertible for all A ∈ L(X). ¤

Remark 2.2. If X is a Hilbert space, the cases (4) and (5) of Theorem 2.1

are not possible. In the case when X is a Hilbert space, our Theorem 2.1

reduces to [6, Theorem 1.1].

In [6] these kind of results are used in determining the closure of invertible

operators on Hilbert spaces. The following notations and results are taken

from [9], [10] and [11].

An operator T ∈ L(X) is called decomposably regular, if there exists an

invertible operator S ∈ L(X), such that TST = T . It is well-known that

T is decomposably regular if and only if T is relatively regular and N (T ) is

isomorphic to X/R(T ) [10]. We shall use the following result [9].

Lemma 2.2. If T is relatively regular, then T ∈ clG(X) if and only if T is

decomposably regular.

Notice that Lemma 2.2 holds more generally, in arbitrary unital Banach
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algebras. This result is enlarged to the closure of Fredholm operators [12],

and in more general settings [5]. The closure of Fredholm operators will be

considered in Section 3.

If Z is a finite dimensional space, dim Z denotes its dimension. If Z is

an infinite dimensional Banach space, we simply write dim Z = ∞. On the

other hand, if Z is an arbitrary Hilbert space, then dimH Z denotes the

orthogonal dimension of Z.

Let α(T ) = dimN (T ), β(T ) = dim X/R(T ). The following sets of semi–

Fredholm operators are well-known:

Φ+(X) = {T ∈ L(X) : R(T ) is closed and α(T ) < ∞}, and

Φ−(X) = {T ∈ L(X) : R(T ) is closed and β(T ) < ∞}.

The set of Fredholm operators is Φ(X) = Φ+(X) ∩ Φ−(X). It is well-

known that the sets Φ(X), Φ+(X) and Φ−(X) form open multiplicative

semigroups of L(X). For a semi-Fredholm operator T the index is defined

by i(T ) = α(T ) − β(T ). We also consider the set of Weyl operators, which

is defined as Φ0(X) = {T ∈ Φ(X) : i(T ) = 0}.
Recall that asc(T ) (respectively des(T )), the ascent (respectively descent)

of T , is the smallest non-negative integer n, such that N (Tn) = N (Tn+1)

(respectively R(Tn) = R(Tn+1)). If no such n exists, then asc(T ) = ∞
(respectively des(T ) = ∞) [4]. An operator T ∈ L(X) is called Browder

(Riesz–Schauder), provided that T ∈ Φ(X) and asc(T ) = des(T ) < ∞ [4].

The set of all Browder operators is denoted by B(X). It is well-known that

T ∈ B(X) is and only if T ∈ Φ(X) and 0 /∈ accσ(T ) [8].

We use F(X) to denote the set of all finite rank operators on X. Let K(X)

denote the set (closed two-sided ideal) of all compact operators in L(X), and

let π : L(X) → L(X)/K(X) = C(X) denote the natural homomorphism.

C(X) is the Calkin algebra on X. It is well-known that T ∈ Φ(X) if and

only if π(T ) is invertible in C(X). The next classes of left and right Fredholm
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operators can be defined using the homomorphism π:

Φl(X) = {T ∈ L(X) : π(T ) is left invertible in C(X)} and

Φr(X) = {T ∈ L(X) : π(T ) is right invertible in C(X)}.

It is well-known that Φl(X) ⊂ Φ+(X) and Φr(X) ⊂ Φ−(X). Also, if T ∈
Φl(X) ∪ Φr(X) then T is relatively regular. Recall that for a Hilbert space

H the following holds: Φ+(H) = Φl(H) and Φ−(H) = Φr(H).

Let K ⊂ L(X). Recall that the perturbation class of K is defined as

P(K) = {T ∈ L(X) : K + T ⊂ K}.

If

(*) G(X) · K ⊂ K and K · G(X) ⊂ K

is satisfied, then P(K) is a two-sided ideal of L(X). Thus, if K satisfies (*),

then the following implication holds:

T is K-consistent and U ∈ P(K), then T + U is K-consistent.

Let P(Φ+(X)) (respectively P(Φ+(X))) denote the perturbation class of

the set Φ+(X) (Φ−(X))) (see [4] for similar considerations). It is well-known

that

K(X) ⊂ P(Φ+(X)) ∩ P(Φ−(X)).

The following result is a simple generalization of [6, Theorem 3.2].

Theorem 2.3. Let B ∈ L(X). The following statements are equivalent:

(1) α(B) = β(B), or R(B) is not closed or not complemented in X, or

N (B) is not complemented in X;

(2) B + F is G-consistent for all F ∈ F(X);

(3) B + K is G-consistent for all K ∈ P(Φ+(X)) ∩ P(Φ−(X)).
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Here α(B) = β(B) means that either N (B) and X/R(B) are finite dimen-

sional spaces of the same dimension, or N (B) and X/R(B) are both infinite

dimensional.

Proof. (2) =⇒ (1). Let R(B) be closed and complemented. Suppose that

α(B) < β(B). Then N (B) is finite dimensional, n = dimN (B) < ∞ and

let y1, . . . , yn be vectors in X which are linearly independent modulo R(B).

Denote by F1 : N (B) → span{y1, . . . , yn} = Y an arbitrary isomorphism.

There exists a closed subspace M of X, such that X = N (B) ⊕M . Define

F ∈ L(X) in the following way:

Fx =
{

F1x, x ∈ N (B),
0, x ∈ M.

It is easy to verify α(B + F ) = 0. Since R(B + F ) = R(B) ⊕ Y , it follows

that R(B + F ) is a proper closed and complemented subspace of X. By

Theorem 2.1 (6) it follows that B + F is not G-consistent.

Let N (B) be complemented in X and β(B) < α(B). Then X/R(B) is

finite dimentional, dim X/R(B) = n < ∞ and there exists a subspace M

such that R(B) ⊕M = X, dim M = n. Let x1, . . . , xn ∈ N (B) be linearly

independent and Z = span{x1, . . . , xn}. There exists a closed subspace Z1

such that Z ⊕ Z1 = N (B). Since N (B) is complemented, there exists a

subspace Z2 such that X = N (B) ⊕ Z2. Moreover, X = Z ⊕ Z1 ⊕ Z2. Let

E1 : Z → M be an arbitrary isomorphism. Define E ∈ L(X) as follows:

Ex =
{

E1x, x ∈ Z

0, x ∈ Z1 ⊕ Z2.

It is easy to verify R(B + E) = X and N (B + E) = Z1. Since Z1 is

complemented in X, from Theorem 2.1 (7) it follows that B + F is not

G-consistent.

(1) =⇒ (3) Let K ∈ P(Φ+(X)) ∩ P(Φ−(X)) be arbitrary. If R(B + K)

is not closed, then B + K is G-consistent (Theorem 2.1 (2)). Suppose that
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R(B + K) is closed. If α(B + K) = ∞ and β(B + K) = ∞, then B + K

is G-consistent (Theorem 2.1 (3)). Suppose that α(B + K) < ∞. Then

B +K ∈ Φ+(X), so B ∈ Φ+(X) and i(B +K) = i(B) = 0. If α(B +K) = 0,

then B+K is invertible and G-consistent (Theorem 2.1 (1)). If α(B+K) > 0,

by Theorem 2.1 (3) it follows that B + K is G-consistent.

Let β(B + K) < ∞. Then B + K ∈ Φ−(X) and B ∈ Φ−(X), implying

i(B + K) = i(B) = 0. If β(B + K) = 0, then B + K is invertible and from

Theorem 2.1 (1) it follows that B + K is G-consistent. If β(B + K) > 0,

from Theorem 2.1 (3) it follows that B + K is G-consistent. ¤

Now, using Lemma 2.2 and Theorem 2.3 we get the following simple

corollary.

Corollary 2.4. Let B ∈ L(X) be relatively regular. If B ∈ clG(X), then

B + K is G-consistent for all K ∈ P(Φ+(X)) ∩ P(Φ−(X)).

We shall consider Gl-consistent operators, where Gl(X) denotes the set of

all left invertible operators on X. Recall that T is strictly singular if and

only if T is not bounded below on every closed infinite dimensional subspace

of X. In the case when H is a Hilbert space, it is convenient to use the

following generalized definition. Let dimH H = α, where α is an infinite

cardinal. An operator T ∈ L(H) is said to be α-strictly singular, provided

that the following holds: if M is a closed subspace of H and the restriction

T |M : M → T (M) is invertible, then dimH M < α. We need to introduce

the following property for Banach space oparators.

An operator T ∈ L(X) is called strictly left singular, if and only if for all

S ∈ Gl(X) it follows that TS /∈ Gl(X).

Obviously, if T is strictly left singular, then T /∈ Gl(X).

Remark 2.5. (1) If T ∈ L(X) is strictly singular, then T is strictly left

singular.
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(2) If X is a Hilbert space and dimH X = α, then T is strictly left singular

if and only if T is α-strictly singular (see also [7, Problem 42]).

(3) If X is a separable infinite dimensional Hilbert space, then T is strictly

left singular if and only if T is compact (since there exists the unique closed

ideal of L(X)).

The following theorem is our main result concerning the Gl-consistent

operators. Namely, it completely characterizes the set of Gl-consistent oper-

ators.

Theorem 2.6. Let B ∈ L(X). Then B is Gl-consistent, if and only if one

of the following two mutually disjoint cases occurs:

(1) B ∈ G(X);

(2) B is strictly left singular.

Also, B is not Gl-consistent if and only if one of the following two mutually

disjoint cases occurs:

(3) B ∈ Gl(X) \ G(X);

(4) B /∈ Gl(X) and B is not strictly left singular.

In the case when X is an infinite dimensional Hilbert space and dimH X = α,

then ”strictly left singular” should be replaced by ”α-strictly singular”. If X

is a separable infinite dimensional Hilbert space then ”strictly left singular”

should be replaced by ”compact”.

Proof. To prove (1), suppose that B ∈ G(X). If BA ∈ Gl(X), then A ∈
Gl(X) and AB ∈ Gl(X). From the other hand, if AB = S ∈ Gl(X), then

A = SB−1 ∈ Gl(X) and BA ∈ Gl(X), so B is Gl-consistent.

(2) Let B be strictly left singular (hence, B /∈ Gl(X)). Then AB /∈
Gl(X) for all A ∈ L(X). Suppose that there exists an operator A0 ∈ L(X),

such that BA0 ∈ Gl(X). It follows that A0 ∈ Gl(X) which contradicts the

assumption that B is strictly left singular. We get that B is Gl-consistent.
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(3) Let B ∈ Gl(X) \ G(X) and let B1 be an arbitrary left inverse of

B. Obviously, B1B = I ∈ Gl(X). On the other hand, B1 is a reflexive

generalized inverse of B, so BB1 is a projection of X onto R(B) with a

non-trivial kernel, so BB1 /∈ Gl(X). It follows that B is not Gl-consistent.

(4) Finally, let B /∈ Gl(X) and B is not strictly left singular. There exists

an operator A0 ∈ Gl(X) such that BA0 ∈ Gl(X). Also, AB /∈ Gl(X) for all

A ∈ L(X), so B is not Gl-consistent.

The rest of the proof follows from Remark 2.5 ¤

Recall that an operator T ∈ L(X) is strictly cosingular provided that for

every closed infinite codimensional subspace V of X, the operator QV T is

not surjective. Here QV : X → X/V denotes the natural homomorphism.

More generally, let H be a Hilbert space and dimH H = α be an infinite

cardinal. T ∈ L(H) is called α-strictly cosingular, provided that for an

arbitrary closed subspace V of H the following holds: if QV T is a surjection

of H onto H/V , then codimV < α. We also introduce the following notion

for Banach space operators.

An operator T ∈ L(X) is called strictly right singular, if and only if for

all S ∈ Gr(X) it follows that ST /∈ Gr(X).

If T is strictly right singular, then T /∈ Gr(X).

We connect various aspects of singularity.

Theorem 2.7. (1) If T is strictly cosingular, then T is strictly right singu-

lar.

(2) If X is a complex infinite dimensional Hilbert space and dimH X = α,

then T is α-strictly cosingular if and only if T is strictly right singular.

(3) If X is a separable infinite dimensional Hilbert space, then T is strictly

right singular if and only if T is compact.

Proof. (1) Suppose that T is strictly cosingular and S ∈ Gr(X). It follows

that there exists a closed subspace M of X, such that N (S)⊕M = X and
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the restriction S|M : M → X is invertible, so dim M = codimN (S) = ∞.

Consider the natural homomorphism QN (S) : X → X/N (S). It follows that

X/N (S) 6= R(QN (S)T ) = {Tx +N (S) : x ∈ X}.

There exists y ∈ X, such that y + N (S) 6= Tx + N (S) for all x ∈ X. It

follows that y1 = Sy 6= STx for all x ∈ X. We get that R(ST ) 6= X and

ST /∈ Gr(X), so T is strictly right singular.

(2) The implication =⇒ follows in the same way as in (1). We only need

to consider the orthogonal dimensions of closed subspaces.

To prove the opposite implication suppose that T ∈ L(X) is strictly right

singular. Let V be an arbitrary closed subspace of X such that dimH V ⊥ =

α. Let S ∈ L(X) be defined such that S|V = 0 and S|V ⊥ : V ⊥ → X is

the Hilbert space isomorphism. It follows that S ∈ Gr(X) and ST /∈ Gr(X).

Since N (ST ) is always complemented in X, we get that R(ST ) 6= X. There

exists y0 ∈ X such that y0 6= STx for all x ∈ X. Suppose that for all y ∈ X

there exists x ∈ X such that y + V = Tx + V . We conclude y − Tx ∈ V =

N (S) and Sy = STx. Now,

X = {Sy : y ∈ X} = {STx : x ∈ X} = R(ST ) 6= X.

It follows that R(QV T ) 6= X/V and T is α-strictly singular. ¤

In the following theorem we give a complete description of Gr-consistent

operators on Banach spaces.

Theorem 2.8. Let B ∈ L(X). Then B is Gr-consistent, if and only if one

of the following two mutually disjoint cases occurs:

(1) B ∈ G(X);

(2) B is strictly right singular.

Also, B is not Gr-consistent if and only if one of the following two mutu-

ally disjoint cases occurs:

(3) B ∈ Gr(X) \ G(X);
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(4) B /∈ Gr(X) and B is not strictly right singular.

In the case when X is an infinite dimensional Hilbert space and dimH X = α,

then ”strictly right singular” should be replaced by ”α-strictly cosingular”.

If X is a separable infinite dimensional Hilbert space then ”strictly right

singular” should be replaced by ”compact”.

The proof of Theorem 2.8 is similar to the proof of Theorem 2.6.

3. Fredholm consistent operators

As we mentioned before, in this section we shall consider Φ-consistent

operators. We give a complete answer to the question whether or not an

operator is Φ-consistent.

Theorem 3.1. Let B ∈ L(X). Then B is Φ-consistent, if and only if one

of the following four mutually disjoint cases occurs:

(1) B ∈ Φ(X);

(2) α(B) = ∞ and β(B) = ∞;

(3) α(B) < ∞, β(B) = ∞ and R(B) is not closed or not complemented

in X;

(4) α(B) = ∞, β(B) < ∞ and N (B) is not complemented in X;

Also, B is not Φ-consistent if and only if one of the following two mutually

disjoint cases occurs:

(5) α(B) < ∞, β(B) = ∞ and R(B) is closed and complemented in X;

(6) α(B) = ∞, β(B) < ∞ and N (B) is complemented in X.

Proof. (1) Suppose that B ∈ Φ(X). Then π(B) is invertible in C(X) and

the proof follows in the same way as in Theorem 2.1 (1).

(2) Let α(B) = ∞ and β(B) = ∞. Then for all A ∈ L(X), β(BA) ≥
β(B), so BA /∈ Φ(X). Also, α(AB) ≥ α(B) and AB /∈ Φ(X). It follows

that B is Φ-consistent.
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(3) Let α(B) < ∞, β(B) = ∞ and R(B) is not closed or not comple-

mented in X. Obviously, for all A ∈ L(X), BA /∈ Φ(X). Suppose that there

exists some A ∈ L(X), such that AB ∈ Φ(X). Then π(B) is left invertible

in C(X) and B ∈ Φl(X). It follows that B is relatively regular and R(B)

must be closed and complemented in X.

(4) Let α(B) = ∞, β(B) < ∞ and N (B) is not complemented in X. For

all A ∈ L(X) we get AB /∈ Φ(X). Suppose that there exists some A ∈ L(X),

such that BA ∈ Φ(X). It follows that π(B) is right invertible in C(X),

B ∈ Φr(X) and B is relatively regular, so N (B) must be complemented in

X.

(5) Let α(B) < ∞, β(B) = ∞ and R(B) is closed and complemented in

X. It follows that BA /∈ Φ(X) for all A ∈ L(X). Since B is relatively regular,

there exists a reflexive generalized inverse S of B. Now, SB is the projection

onto R(S) parallel to N (B), so β(S) < ∞. Since X = N (S) ⊕ R(B), it

follows that R(SB) = R(S) is closed, α(SB) = α(B) < ∞ and β(SB) =

β(S) < ∞, so SB ∈ Φ(X). We get that B is not Φ-consistent.

(6) Let α(B) = ∞, β(B) < ∞ and N (B) is complemented in X. Obvi-

ously, AB /∈ Φ(X) for all A ∈ L(X). Since B is relatively regular, there exists

a reflexive generalized inverse S of B. Again, we get that R(BS) = R(B),

β(BS) = β(B) < ∞, α(BS) = α(S) = β(B) < ∞. It follows that B is not

Φ-consistent. ¤

Now, as corollaries, we consider Φ0- and B-consistent operators, i.e. S(X)

= Φ0(X) (the set of Weyl operators), or S(X) = B(X) (the set of Browder

operators) on X.

Corollary 3.2. An operator B ∈ L(X) is Φ0-consistent if and only if it is

Φ-consistent.

Proof. Let B be Φ-consistent and let B ∈ Φ(X). Suppose that there exists

A ∈ L(X) such that AB ∈ Φ0(X). It follows that BA ∈ Φ(X) and A ∈
Φ(X). Now, i(BA) = i(B) + i(A) = i(AB) = 0, so BA ∈ Φ0(X) and B
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is Φ0-consistent. Cases (2), (3) and (4) of Theorem 3.1 are analogous. If

S is described in Theorem 3.1 (5) (or (6)), it follows that i(SB) = 0 (or

i(BS) = 0), so B is not Φ0-consistent. ¤

Corollary 3.3. An operator B ∈ L(X) is B-consistent if and only if it is

Φ-consistent.

Proof. Suppose that B is Φ-consistent and let AB ∈ B(X) for some A ∈
L(X). It follows that AB ∈ Φ(X) and 0 /∈ acc σ(AB). Since σ(AB) \ {0} =

σ(BA) \ {0} and B is Φ-consistent, we get 0 /∈ acc σ(BA) and BA ∈ Φ(X).

It follows that BA ∈ B(X), so B is B-consistent.

Suppose that B is not Φ-consistent. It follows that (5) or (6) from Theo-

rem 3.1 holds. Let (5) hold, i.e. α(B) < ∞, β(B) = ∞ and R(B) is closed

and complemented in X. Since BA /∈ Φ(X) for all A ∈ L(X), it follows also

that BA /∈ B(X) for all A ∈ L(X). On the other hand, if S is an arbitrary

reflexive generalized inverse of B, then we know that BS is Fredholm. Also,

BS is a projection, so asc(BS) = des(BS) = 1 and BS ∈ B(X). It follows

that B is not B-consistent. The proof is similar if we suppose that (6) holds

from Theorem 3.1. ¤

It is nice to formulate the corresponding result for Hilbert space operators.

Let H be an arbitrary complex infinite dimensional Hilbert space. According

to Theorem 3.1 we have the following

Corollary 3.4. If B ∈ L(H), then B is Φ-consistent if and only if one of

the following three mutually disjoint cases occurs:

(1) B ∈ Φ(H);

(2) α(B) = ∞ and β(B) = ∞;

(3) α(B) < ∞, β(B) = ∞ and R(B) 6= R(B);

Also, B is not Φ-consistent if and only if one of the following two mutually

disjoint cases occurs:

(4) α(B) < ∞, β(B) = ∞ and R(B) = R(B);
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(5) α(B) = ∞ and β(B) < ∞.

If H is a separable Hilbert space, using [1, Theorem 4 and Remark 5],

[6, Theorem 3.1], or [11, Theorem 5], [2, Proposition 4], we know that the

following holds:

(3.1)
clΦ(H) = Φ(H) ∪ clG(H)

= Φ(H) ∪ {B ∈ L(H) : α(B) = α(B∗), or R(B) 6= R(B)}.
Here, B∗ denotes the Hilbert adjoint operator of B. Using Corollary 3.4 and

(3.1), we can easily prove the last main result from [6, Theorem 3.7].

Theorem 3.5. If H is a separable complex infinite dimensional Hilbert

space and B ∈ L(H), then:

B ∈ clΦ(H) if and only if B is Φ-consistent.

Proof. Suppose that B ∈ clΦ(H). Using (3.1) we conclude that the following

may occur:

(i) B ∈ Φ(H) implies B is Φ-consistent (Corollary 3.4 (1)).

(ii) α(B) = α(B∗) = ∞ implies β(B) = ∞, so B is Φ-consistent (Corol-

lary 3.4 (2)).

(iii) α(B) = α(B∗) < ∞ and R(B) = R(B) imply B ∈ Φ(H) and B is

Φ-consistent as in (i).

(iv) α(B) = α(B∗) < ∞ and R(B) 6= R(B) imply β(B) = ∞, so B is

Φ-consistent (Corollary 3.4 (3)).

(v) R(B) 6= R(B) implies that the cases (4) and (5) of Corollary 3.4 can

not hold, so B is Φ-consistent.

Now, suppose that B is Φ-consistent. Then the following may occur:

(i) R(B) 6= R(B) implies B ∈ clΦ(H);

(ii) If R(B) = R(B), since B is Φ-consistent, by Corollary 3.4 it follows

that either B ∈ Φ(H), or α(B) = β(B) = ∞. Anyway, by (3.1) it follows

that B ∈ clΦ(H). ¤
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Remark 3.6. Theorem 3.5 is proved in [6] using the Gelfand-Naimark-Segal

Theorem for C∗-algebras.

Now, we shall consider Φl-consistent operators. As in Section 2, we in-

troduce the following notions for Banach space operators.

An operator T ∈ L(X) is said to be essentially strictly left singular,

provided that TS /∈ Φl(X) for all S ∈ Φl(X).

T ∈ L(X) is called essentially strictly right singular, provided that ST /∈
Φr(X) for all S ∈ Φr(X).

The relationships between the introduced notions and known strictly sin-

gular and cosingular operators are given in the following theorem.

Theorem 3.7. (1) If T is strictly singular, then T is essentially strictly

left singular. If T is strictly cosingular, then T is essentially strictly right

singular.

(2) If X is a Hilbert space and dimH X = α, then T is essentially strictly

left singular if and only if T is α-strictly singular. Also, T is essentially

strictly right singular if and only if T is α-strictly cosingular.

(3) If X is a separable infinite dimensional Hilbert space, then T is es-

sentially strictly left (or right) singular if and only if T is compact.

Proof. (1) Let T be strictly singular and S ∈ Φl(X). Suppose that TS ∈
Φl(X). Now, R(S) is an infinite dimensional closed subspace of X and

dimN (T |R(S)) ≤ N (TS) < ∞. Hence, there exists a closed infinite dimen-

sional subspace M of R(S) such that R(S) = N (T |R(S))⊕M . We conclude

that T |M : M → T (M) = R(TS) is an isomorphism, so T can not be strictly

singular.

Now, suppose that T strictly cosingular and there exists S ∈ Φr(X) such

that ST ∈ Φr(X). There exists a finite dimensional subspace M such that

R(S) = R(ST )⊕M . Also, there exists a closed subspace N such that X =

N (S)⊕N . Notice that the truncation S|N : N →R(ST )⊕N is invertible.
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Let K = (S|N )−1(M) and L = (S|N )−1(R(ST )). Then N = K ⊕ L and L

is infinite dimensional. Let V = N (S) ⊕K. From X = V ⊕ L we see that

codim V = ∞. Let QV : X → X/V be the natural homomorphism. We

shall prove that QV T is epimorphism. Let z +V ∈ X/V be arbitrary. There

exists some x ∈ L such that z+V = x+V . Since Sx ∈ R(ST ) it follows that

there exists some y such that Sx = STy. Consequently, x−Ty ∈ N (S) ⊂ V

and

z + V = x + V = Ty + v,

implying QV Ty = z + V .

(2) Let X be a Hilbert space and dimH X = α be an infinite cardinal. If

T is α-strictly singular, in the same way as in the proof of (1) we verify that

T is essentially strictly left singular. On the other hand, if T is essentially

strictly left singular, from Gl(X) ⊂ Φl(X) it follows that T must be strictly

left singular. By Remark 2.5 it follows that T is α-strictly singular.

If T is α-strictly cosingular, in the same way as in (1) we can prove that

T must be essentially strictly right singular. We only have to consider the

Hilbert dimensions of closed subspaces.

On the other hand, if T is essentially strictly right singular then T is

strictly right singular. By Theorem 2.7 it follows that T is α-strictly cosin-

gular. ¤

In the following theorem we describe the set of all Φl-consistent operators.

Theorem 3.8. Let B ∈ L(X). Then B is Φl-consistent if and only if one

of the following two mutually disjoint cases occurs:

(1) B ∈ Φ(X);

(2) B is essentially strictly left singular.

Also, B is not Φl-consistent if and only if one of the following two mutu-

ally disjoint cases occurs:

(3) B ∈ Φl(X) \ Φ(X);
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(4) B /∈ Φl(X) and B is not essentially strictly left singular.

In the case when X is an infinite dimensional Hilbert space and dimH X = α,

then ”essentially strictly left singular” should be replaced by α-strictly singu-

lar. If X is a separable infinite dimensional Hilbert space, then ”essentially

strictly left singular” should be replaced by ”compact”.

Proof. (1) Let B ∈ Φ(X) and BA ∈ Φl(X). Since π(B)π(A) is left invertible

in C(X), it follows that A ∈ Φl(X) and AB ∈ Φl(X). On the other hand,

if S = AB ∈ Φl(X), then π(A) = π(S)π(B)−1 is left invertible in C(X), so

BA ∈ Φl(X). We conclude that B is Φl-consistent.

(3) Let B ∈ Φl(X) \ Φ(X) and let B1 denote an arbitrary reflexive gen-

eralized inverse of B. Denote N (BB1) = M and R(B1B) = N . Then

dim M = ∞ and codim N < ∞. Since BB1 is the projection from X onto

R(B) parallel to M , it follows that BB1 /∈ Φl(X). On the other hand, B1B is

the projection from X onto N parallel toN (B), implying that B1B ∈ Φl(X).

Hence, B is not Φl-consistent.

The cases (2) and (4) are analogous to Theorem 2.6 (2) and (4). ¤

Dually, we can prove the following result concerning the Φr-consistent

operators.

Theorem 3.9. Let B ∈ L(X). Then B is Φr-consistent if and only if one

of the following two mutually disjoint cases occurs:

(1) B ∈ Φ(X);

(2) B is essentially strictly right singular.

Also, B is not Φr-consistent if and only if one of the following two mu-

tually disjoint cases occurs:

(3) B ∈ Φr(X) \ Φ(X);

(4) B /∈ Φr(X) and B is not essentially strictly right singular.

In the case when X is an infinite dimensional Hilbert space and dimH X = α,

then ”essentially strictly right singular” should be replaced by α-strictly cosin-
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gular. If X is a separable infinite dimensional Hilbert space, then ”essentially

strictly right singular” should be replaced by ”compact”.
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