WEYL’S THEOREMS:
CONTINUITY OF THE SPECTRUM
AND QUASIHYPONORMAL OPERATORS
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ABSTRACT. We consider various Weyl’s theorems in connection with the continu-
ity of the reduced minimum modulus, Weyl spectrum, Browder spectrum, essential
approximate point spectrum and Browder essential approximate point spectrum. If
H is a Hilbert space, and T' € B(H) is a quasihyponormal operator, we prove the
spectral mapping theorem for the essential approximate point spectrum and for ar-
bitrary analytic function, defined on some neighbourhood of o(T"). Also, if T* is
quasihyponormal, we prove that the a-Weyl’s theorem holds for T'.

1. INTRODUCTION

Let X be a complex infinite-dimensional Banach space and let B(X) (K(X))
denote the Banach algebra of all bounded operators (the ideal of all compact oper-
ators) on X. If T' € B(X), then o(T) denotes the spectrum of 7" and p(T") denotes
the resolvent set of T'. It is are well-known that the following sets form semigroups
of semi-Fredholm operators on X: &, (X) = {T € B(X) : R(T) is closed and
dimN(T) < oo} and ®_(X) = {T € B(X) : R(T) is closed and dimX/R(T) < oo}.
The semigroup of Fredholm operators is ®(X) = &, (X)N®_(X). If T is semi-
Fredholm and «(7) = dimN (T) and 3(T") = dimX/R(T), then we define the index
by: i(T) = a(T') — B(T). We also consider the sets ®¢(X) ={T € ®(X) :4(T) = 0}
(Weyl operators), ®,(X) = {T € ®4(X) : i(T) < 0} and ®7(X) = {T €
®_(X) : i(T) > 0}. The following definitions are well-known: the Fredholm
spectrum of T is 0.(T) = {A € C : T — X\ ¢ ®(X)}, the Weyl spectrum of
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Tis 0,(T) = {\N € C:T -\ ¢& &y(X)} and the Browder spectrum of T is
op(T) ={o(T+ K): TK = KT,K € K(X)}. 0,(T) denotes the approximate
point spectrum of T' € B(X). Let mpo(T") be the set of all A\ € C such that \ is
an isolated point of o(7T) and 0 < dimAN (T — X) < oo and let 7o(T) be the set of
all normal eigenvalues of A, that is the set of all isolated points of o(7T") for which
the corresponding spectral projection has finite-dimensional range. It is well-known
that, for all 7' € B(X) the next inclusion 7o(T") C mpo(7) holds . We say that T
obeys Weyl’s theorem [6,8,10], if

0 (T) = o(T)\moo (T).

Let w40 denote the set of all A € C such that A is isolated in 0,(7) and 0 <
a(T — \) < oco. Also, by definition, 0.,(T) = N{o, (T + K) : K € K(X)} is the
essential approximate point spectrum [11] and o4,(7) = oo (T + K) : AK =
KA,K € K(X)} is the Browder essential approximate point spectrum [12]. It is
well-known that ¢, (T) = {A € C: T—\ ¢ & (X)}. We say that T obeys a-Weyl’s
theorem [13], if

Oea(T) = 0a(T)\mao(T).

It is well-known that if T € B(X) obeys a-Weyl’s theorem, then it obeys Weyl’s
theorem also [13].

Let T (T") be the union of all trivial components of the set

(0e(T\[ps= (1)) 7) U (U—socn<ood 02— p ()] \Pi_p(T)}),

where pf L(T)={A€C:T-XAe€®, (X)UD_(X),i(T—\) #0} and p? .(T) =
AeC:T—-Xed, (X)UP_(X),i(T — X)) = n}. Recall the definition of the

reduced minimum modulus of T":

_ Azl
~v(T) _mf{dist(m,]\/(T)) x ¢N(T)}

It is well-known that v(7") > 0 if and only if R(T’) is closed.
If (7,,) is a sequence of compact subsets of C, then, by the definition, its limit

inferior is liminf 7,, = {\ € C : there are \,, € 7, with A\,, — A} and its limit su-

perior is limsup 7, = {\ € C: there are \,, € 7,, with A\, — A}. If liminfr, =
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limsup 7,, then lim 7, is defined by this common limit. A mapping p, defined on
B(X), whose values are compact subsets of C, is said to be upper (lower) semi-
continuous at A, provided that if A, — A then limsupp(A4,) C p(4) (p(4) C
liminf p(A,,)). If p is both upper and lower semi-continuous at A, then it is said to
be continuous at A and in this case lim p(4,,) = p(A).

Let H be a Hilbert space. We say that T" € B(H) is hyponormal provided that
|T*x|| < ||Tz| for all x € H. An operator T' € B(H) is quasihyponormal, if
|T*Tx|| < ||T?x|| for all x € H. Note that Weyl’s theorem is proved for hyponor-
mal and quasihyponormal operators [3,6,10]. Recall the definitions of ascent and
descent of an operator in [2]. We use a(T) to denote the ascent of T. Also, F(T)
denotes the set of all complex—valued functions, which are defined and regular on

some neighbourhood of o (7).

2. GENERAL RESULTS
For the sake of completeness we recall some results from [7, Theorem 2.24].

Theorem 2.1. Let the spectra o or oy, be continuous at A € B(X). Then the

following conditions are equivalent:

(i) A obeys Weyl’s theorem;

(i1) if X € moo(A), then R(A — \) is closed;
(iii) v(A — N) is discontinuous at every A € moo(A);
(iv) X € moo(A) implies that A — X has finite ascent.

It is known that, if A obeys Weyl’s theorem, then o,,(A) = 03,(A) [7]. Throughout
this paragraph H denotes a complex infinite-dimensional separable Hilbert space,

although some of the proofs are valid in Banach spaces, too.

Theorem 2.2. Let A € B(H) obey Weyl’s theorem. Then o, is continuous at A

if and only if o is continuous at A.

Proof. Let o, be continuous at A € B(H) and let {A,} be a sequence in B(H)
such that A, — A. Since o is upper semi-continuous, we have to show that o
is lower semi-continuous at A, or 0(A) C liminfo(A,). Let A € o(A). Then, if
A€ oy(A) Co(A), we have A € 0,(A) C liminf o, (A,) C liminfo(A,). Suppose
that A € 0(A)\ow(A). Since A obeys Weyl’s theorem, we have that A € m(A),
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so A is isolated point of o(A). Now from [9, Theorem 3.26] it follows that A €
liminfo(A,).
Now, let o be continuous at A and let A obey Weyl’s theorem. Since my(A) C

mo0(A), we have

7T0(A) N Ue(A) C 7T00(A) N Jw(A) = 7T00(A) N (O'(A)\Woo(A)) C F06<A)
and by [1, Theorem 14.17] o, is continuous at A. [

Theorem 2.3. Let A € B(H) obey Weyl’s theorem. Then o, is continuous at A

if and only if oy is continuous at A.

Proof. Since A obeys Weyl’s theorem, we have that 0,(A) = 0, (A). Now, by [1,
Theorem 14.17] we have that o,, is continuous at A if and only if o} is continuous
at A. 0O

Theorem 2.4. Let o4, be continuous at A € B(H). Then the following conditions
are equivalent:
(i) A obeys a-Weyl’s theorem;
(ii) if X\ € mao(A), then R(A — \) is closed.
(iii) A € mao(A) tmplies that 7y is discontinuous at A — \.

)
)

(iv1) if A € moo(A), then descent of A — X is finite, and
)

(ive) if A € mao(A)\mo0(A), then R(A — ) is closed.

Proof. Since o4 is continuous at A we have that 044(A) = 0cq(A) [4, Theorem 2.2].

(i)<(ii) The implication = is obvious. To prove the opposite implication
<, let A— X e @ (H). Then A € 0.4(A) = 0a(A). Now, by [12, Corollary 2.4]
it follows that A is not a limit point of 0,(A) and by [13, Theorem 1.1] A obeys
a-Weyl’s theorem.

(i)<(iii) The implication = follows by [13, Theorem 2.4]. We prove the
opposite implication. Suppose that condition (i) holds. Let A € AZ(A) = {u :
T—pe® (X),0<alA—p)}. Then A ¢ 0eq(A) = 04p(A) and X is an isolated
point of o,(A). So A € ma(A). The rest of the proof follows again from [13,
Theorem 2.4].

(i)<(iv) The implication = follows by [13, Theorem 2.9]. We now prove the
opposite implication. We use next sets: Aj(A) ={A e C:A-\e€ &(X),i(A-N) =
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0}, A% (A) ={A e A3(A) : (A=) < B(A—A) < oo}and A% __(A) ={A € As(A):
B(A — X) = oc}. Suppose that A € A§(A) U A% (A). Then A — A € &T(X) and
A& 0ea(A) = 0ap(A). Now by [12], it follows that ascent of A— \ is finite. Suppose
that A € A% _(A). Then A — X € & (X), s0 A & 0cq(A) = 0up(A). By [12] we
get that A is an isolated point of o,(A). There exists a neighbourhood B(\) of
A, such that for all p € B(AN)\{\} is satisfied a(A) = 0. We get that A satisfies
the condition (A) of [13] or [8]. By [13, Theorem 2.9] it follows that A obeys the
a-Weyl’s theorem. [

Theorem 2.5. Let o, be continuous at A € B(H). Then the following conditions

are equivalent:
(i) A obeys a-Weyl’s theorem;
(il) if X € mao(A), then R(A — X) is closed.
(iii) ~y is discontinuous at A — \, for every A € mqao(A).

(iv1) if A € moo(A), then descent of A — X is finite, and
(iva) if A € mao(A)\mo0(A), then R(A — \) is closed.

Proof. The implications (i) = (ii), (iii), (iv) hold by [13]. Now, let o, be contin-
uous at A, then by [1, Theorem 14.19] we have that

Ga(A) = To(A) U 1o(A) U pf_ p(A)

Then, 04(A)\0ea(A) C mo(A) C mo0(A) C Tao(A), 50 Ta(A)\Ta0(A) C TealA).

(ii) = (i) Suppose that (ii) holds and let A € 0.,(A4) and A € 7u(A). Then
0 < a(A—X\) <ooand by (ii) R(A — A) is closed. Since A € g.4(A) if and only if
A—\¢ @ (H) [13], we have that i(4 — X) > 0. By the continuity of the index,
we have that A is an interior point of o,(A) and we get the contradiction, since
A € ma0(A).

(iii) == (i) Suppose that (iii) is valued and let \g € m40(A). Since A is isolated
in 0,(A), there is some € > 0 and a ball B(\g, €) centered in g, such that B(\g, €)N
0a(A) = {Xo}. For every u € B(Xo,€)\{\o} we have
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'y(A — 'u) — inf M < : H((A - /\O) - (M - Ao))x” _
w20zl T eeN(A-p ]
x#0
: [1(1 = Ao))z|
= inf A= 270, — Al
cellhon ol T
z#0

Since ~(+) is discontinuous at A — A\g and (A — pu) — 0, a8 A — p — A — Xy, we
have that v(A — Ao) > 0. Now, by (ii) we have that A obeys a-Weyl’s theorem.

(iv) = (i) Suppose that (iv) is valid and let A € AJ(A) UA® (A). Then A\— A €
& (H)and X ¢ 0¢4(A). Since 0, is continuous at A, then A € mo(A). X is an isolated
point of 0,(A), so, by [12, Corollary 2.3], a(A — \) = oo implies A € 0.,(A). This
is a contradiction, so a(A — \) < co.

Suppose that A € A® _(A). Since A ¢ 0., (A) we get that X is an isolated point
of 04,(A). From Theorem 2.4. (ivy) we have that X\ satisfies condition () of [13].
By [13, Theorem 2.9] we have that A obeys the a-Weyl’s theorem. [

Lemma 2.6. If A € B(H) obeys a-Weyl’s theorem, then oeq(A) = gap(A).

Proof. Since 0¢q(A) C o4(A) for every A € B(H), we have to show only the
opposite inclusion.

It is known that A\ € 04,(A) if and only if A — X ¢ & (H), or a(A — \) = oo
[12]. If A— X ¢ & (H), then A € 0cq(A). Suppose that A — X € & (H) and
a(A— ) = co. Then, by [6,Theorem 2.9 (ii)], we have that A ¢ A5(A) UA® (A), so

i(A—=X)#0 and a(A—X) > 3(A— ) implies that A -\ ¢ @ (H).

This contradiction completes the proof. [

Corollary 2.7. Let A € B(H) obey a-Weyl’s theorem. Then ., is continuous at

A if and only if o4 is continuous at A.
Proof. By Lemma 2.6 and [4, Theorem 2.2]. [

We shall improve Prasanna’s result, concerning Weyl’s theorem [12]. See also
a paper of Gustafson [8]. Let AL (T) denote the set of all A € 04(T), such that
T—Xec® (X).
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Theorem 2.8. Suppose that T € B(X) such that ma0(T) = 7o(T) and AT(T) C
004 (T). Then a-Weyl’s theorem holds for T.

Proof. Suppose that A € m,0(T) = mo(T). Then A has the finite algebraic mul-
tiplicity, so X = N((T — A\)P) @ R((T — A\)P) for some non-negative integer p
[3]. Now, 0 < dimN(T — \) < oo, so dimN((T — A\)P) < oo. We get that
(T — NP € ®p(X). Since R((T — N)?) € R(T — A), we obtain T'— X € ®(X)
and i(T — \) = %i((T —A)P)=0,80 A € 04(T)\0ea(T).

To prove the opposite inclusion, suppose that A\ € 04(1")\0eq(T"). We know that
T—Xe® (X)and 0 < T — X) < oo. There exists some € > 0, such that for all
w satisfying 0 < |u — A| < €, we have that a(T — ) is a constant, not greater than
a(T — X) and also T'— p € @ (X). A ball B(A,€) centered at A, intersects the set
C\o4(T), since AL (T) € 0o,(T'), so we get that a(T"— p) = 0 for all such p. Now,
it is obvious that A must be an isolated point of 0,(T), so A € mao(T). O

Notice that if o,(7") is nowhere dense, then the inclusion AL (1) C do,(T) is

valid.

Corollary 2.9. Let T € B(X). If ma0(T) = mo(T) and o,(T") is nowhere dense
in C, then a-Weyl’s theorem holds for T. If moo(T) = mo(T) and o(T) is nowhere
dense in C, then Weyl’s theorem holds for T.

Proof. We shall prove the second statement. Since o(T') is nowhere dense, we get
that 0(T) = 00 (T) = 04(T), so the conditions of Theorem 2.5 are valued. We get
that the a-Weyl’s theorem holds for T', so the Weyl’s theorem holds for 7' [13]. O

3. QUASIHYPONORMAL OPERATORS

Through this paragraph H denotes a complex infinite—dimensional complex Hil-

bert space. The next theorem is proved by Heuser [2].

Theorem 3.1. Let T be a bounded operator on a Banach space X and let a(T) <
o0o. If a(T) < o0, or B(T) < oo, then o(T) < 3(T).

The following lemma is proved in the Erovenko’s paper [5]. For the sake of

completeness, we give details of the proof.
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Lemma 3.2. Let T be a quasihyponormal operator on H. If A € C\{0}, then
a(T =X <a(T—-N*. Ifa(T) < 00, or B(T') < oo, then o(T) < o(T™).

Proof. Suppose that A # 0. If x € N (T — \), then Tz = Az and we get | T*z| <
Al lz]|. Now (T — N)*z, (T — X\)*z) <0, so z € N((T'— \)*). To prove the second
statement, let 7%z = 0. Now (Tz,Tz) = 0, so x € N(T). We get that a(T) =1
and the rest of the proof follows by Theorem 3.1. [

The following theorem is an improvement of Erovenko’s result [5]. Using this
method, Erovenko proved the next result for the Weyl spectrum and an arbitrary

polynomial.

Theorem 3.3. Let T € B(H) be quasihyponormal and f € F(T). Then

0ea(f(T)) = f(0ea(T)) and 0w (f(T)) = flow(T)).

Proof. We prove the first statement. Note that it is enough to prove the inclusion
D. Suppose that A & 0eo(f(T)). Then f(T) — X € & (H) and

(1) J(T)=A=eT = p1) - (T = pa)g(T),

where ¢ € C, g(T) is invertible and the operators on the right side of (1) mutually
commute. Now, T'—pu; € &, (H). By Lemma 3.2 we get that i(T) = a(T)—a(T*) <
0,s0 T —p; € @ (H) forall i = 1,...,n. So X & f(0ea(T)). The proof of the

second statement is analogous. [J

Now, we give a generalisation of Rakoc¢evié’s result [11]. Notice that Rakocevié

proved Theorem 3.4 assuming that 7™ is hyponormal.

Theorem 3.4. Let T € B(H), such that T* is quasihyponormal. Then a-Weyl’s
theorem holds for T.

Proof. Suppose that A € 0,(T)\0eq(T). Then T — X € @ (H) and 0 < a(T - \) <
oo. If A # 0, since T is quasihyponormal, by Lemma 3.2 we get that a((T'—\)*) <
(T —A) < oco. If A\ =0, then T € &, (H) and T* € ®F(H), so we get again
a(T*) < o(T) = B(T*) < co. Anyway, we get a((T — \)*) < a(T — A) < oc.
Obviously, i(T' =) = a(T = X) —a((T'=X)*) > 0. Since T'— X € ® (H), we get that
0=4(T—\) =i((T —\)*), so A ¢ 0,(T*). It is well-known that quasihyponormal
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operators obey Weyl’s theorem [6,10], so A € moo(T*) and ) is an isolated point of
o(T). Now, A is isolated in o, (T") and we get that A € mqo(T).

To prove the other inclusion, suppose that A\g € m,0(7"). Then 0 < a(T— o) < 00
and there is some ¢ > 0, such that for all A € C, if 0 < |A — Ag| < ¢, then
A ¢ 0,(T). For all such A, using Lemma 3.2, we get a((T' — \)*) < a(T — X) = 0.
Now (T — A) = 0 and Ap must be an isolated point of o(T"), so 0 must be an
isolated point of o((T"— Ag)*). We see that B((T' — X\o)*) = a(T — X\g) < o0, so
(T'—Xo)* € ®(H). Since 0 is an isolated point of o ((1T'—Xg)*), we get i((T'—A)*) =0
and Ao & 0, (T) D oeo(T). O

Acknowledgement. We are grateful to Professor Vladimir Rakocevi¢ for helpful

suggestions and conversations concerning the paper.
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