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AND QUASIHYPONORMAL OPERATORS
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Abstract. We consider various Weyl’s theorems in connection with the continu-
ity of the reduced minimum modulus, Weyl spectrum, Browder spectrum, essential
approximate point spectrum and Browder essential approximate point spectrum. If
H is a Hilbert space, and T ∈ B(H) is a quasihyponormal operator, we prove the
spectral mapping theorem for the essential approximate point spectrum and for ar-
bitrary analytic function, defined on some neighbourhood of σ(T ). Also, if T ∗ is
quasihyponormal, we prove that the a-Weyl’s theorem holds for T .

1. Introduction

Let X be a complex infinite–dimensional Banach space and let B(X) (K(X))

denote the Banach algebra of all bounded operators (the ideal of all compact oper-

ators) on X. If T ∈ B(X), then σ(T ) denotes the spectrum of T and ρ(T ) denotes

the resolvent set of T . It is are well-known that the following sets form semigroups

of semi–Fredholm operators on X: Φ+(X) = {T ∈ B(X) : R(T ) is closed and

dimN (T ) < ∞} and Φ−(X) = {T ∈ B(X) : R(T ) is closed and dimX/R(T ) < ∞}.
The semigroup of Fredholm operators is Φ(X) = Φ+(X) ∩ Φ−(X). If T is semi–

Fredholm and α(T ) = dimN (T ) and β(T ) = dimX/R(T ), then we define the index

by: i(T ) = α(T )−β(T ). We also consider the sets Φ0(X) = {T ∈ Φ(X) : i(T ) = 0}
(Weyl operators), Φ−+(X) = {T ∈ Φ+(X) : i(T ) ≤ 0} and Φ+

−(X) = {T ∈
Φ−(X) : i(T ) ≥ 0}. The following definitions are well-known: the Fredholm

spectrum of T is σe(T ) = {λ ∈ C : T − λ /∈ Φ(X)}, the Weyl spectrum of
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T is σw(T ) = {λ ∈ C : T − λ /∈ Φ0(X)} and the Browder spectrum of T is

σb(T ) = ∩{σ(T + K) : TK = KT, K ∈ K(X)}. σa(T ) denotes the approximate

point spectrum of T ∈ B(X). Let π00(T ) be the set of all λ ∈ C such that λ is

an isolated point of σ(T ) and 0 < dimN (T − λ) < ∞ and let π0(T ) be the set of

all normal eigenvalues of A, that is the set of all isolated points of σ(T ) for which

the corresponding spectral projection has finite-dimensional range. It is well-known

that, for all T ∈ B(X) the next inclusion π0(T ) ⊂ π00(T ) holds . We say that T

obeys Weyl’s theorem [6,8,10], if

σw(T ) = σ(T )\π00(T ).

Let πa0 denote the set of all λ ∈ C such that λ is isolated in σa(T ) and 0 <

α(T − λ) < ∞. Also, by definition, σea(T ) = ∩{σa(T + K) : K ∈ K(X)} is the

essential approximate point spectrum [11] and σab(T ) = ∩{σa(T + K) : AK =

KA, K ∈ K(X)} is the Browder essential approximate point spectrum [12]. It is

well-known that σea(T ) = {λ ∈ C : T −λ /∈ Φ−+(X)}. We say that T obeys a-Weyl’s

theorem [13], if

σea(T ) = σa(T )\πa0(T ).

It is well-known that if T ∈ B(X) obeys a-Weyl’s theorem, then it obeys Weyl’s

theorem also [13].

Let Γ0e(T ) be the union of all trivial components of the set

(σe(T )\[ρ±s−F (T )]−) ∪ (∪−∞<n<∞{[ρn
s−F (T )]−\ρn

s−F (T )}) ,

where ρ±s−F (T ) = {λ ∈ C : T − λ ∈ Φ+(X)∪Φ−(X), i(T − λ) 6= 0} and ρn
s−F (T ) =

{λ ∈ C : T − λ ∈ Φ+(X) ∪ Φ−(X), i(T − λ) = n}. Recall the definition of the

reduced minimum modulus of T :

γ(T ) = inf
{ ‖Ax‖

dist(x,N (T ))
: x /∈ N (T )

}
.

It is well–known that γ(T ) > 0 if and only if R(T ) is closed.

If (τn) is a sequence of compact subsets of C, then, by the definition, its limit

inferior is lim inf τn = {λ ∈ C : there are λn ∈ τn with λn → λ} and its limit su-

perior is lim sup τn = {λ ∈ C : there are λnk
∈ τnk

with λnk
→ λ}. If lim inf τn =
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lim sup τn, then lim τn is defined by this common limit. A mapping p, defined on

B(X), whose values are compact subsets of C, is said to be upper (lower) semi-

continuous at A, provided that if An → A then lim sup p(An) ⊂ p(A) (p(A) ⊂
lim inf p(An)). If p is both upper and lower semi-continuous at A, then it is said to

be continuous at A and in this case lim p(An) = p(A).

Let H be a Hilbert space. We say that T ∈ B(H) is hyponormal provided that

‖T ∗x‖ ≤ ‖Tx‖ for all x ∈ H. An operator T ∈ B(H) is quasihyponormal, if

‖T ∗Tx‖ ≤ ‖T 2x‖ for all x ∈ H. Note that Weyl’s theorem is proved for hyponor-

mal and quasihyponormal operators [3,6,10]. Recall the definitions of ascent and

descent of an operator in [2]. We use a(T ) to denote the ascent of T . Also, F(T )

denotes the set of all complex–valued functions, which are defined and regular on

some neighbourhood of σ(T ).

2. General results

For the sake of completeness we recall some results from [7, Theorem 2.24].

Theorem 2.1. Let the spectra σ or σb be continuous at A ∈ B(X). Then the

following conditions are equivalent:

(i) A obeys Weyl’s theorem;

(ii) if λ ∈ π00(A), then R(A− λ) is closed;

(iii) γ(A− λ) is discontinuous at every λ ∈ π00(A);

(iv) λ ∈ π00(A) implies that A− λ has finite ascent.

It is known that, if A obeys Weyl’s theorem, then σw(A) = σb(A) [7]. Throughout

this paragraph H denotes a complex infinite–dimensional separable Hilbert space,

although some of the proofs are valid in Banach spaces, too.

Theorem 2.2. Let A ∈ B(H) obey Weyl’s theorem. Then σw is continuous at A

if and only if σ is continuous at A.

Proof. Let σw be continuous at A ∈ B(H) and let {An} be a sequence in B(H)

such that An → A. Since σ is upper semi-continuous, we have to show that σ

is lower semi-continuous at A, or σ(A) ⊂ lim inf σ(An) . Let λ ∈ σ(A). Then, if

λ ∈ σw(A) ⊂ σ(A), we have λ ∈ σw(A) ⊂ lim inf σw(An) ⊂ lim inf σ(An) . Suppose

that λ ∈ σ(A)\σw(A). Since A obeys Weyl’s theorem, we have that λ ∈ π00(A),
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so λ is isolated point of σ(A). Now from [9, Theorem 3.26] it follows that λ ∈
lim inf σ(An).

Now, let σ be continuous at A and let A obey Weyl’s theorem. Since π0(A) ⊂
π00(A), we have

π0(A) ∩ σe(A) ⊂ π00(A) ∩ σw(A) = π00(A) ∩ (σ(A)\π00(A)) ⊂ Γoe(A)

and by [1, Theorem 14.17] σw is continuous at A. ¤

Theorem 2.3. Let A ∈ B(H) obey Weyl’s theorem. Then σw is continuous at A

if and only if σb is continuous at A.

Proof. Since A obeys Weyl’s theorem, we have that σb(A) = σw(A). Now, by [1,

Theorem 14.17] we have that σw is continuous at A if and only if σb is continuous

at A. ¤

Theorem 2.4. Let σab be continuous at A ∈ B(H). Then the following conditions

are equivalent:

(i) A obeys a-Weyl’s theorem;

(ii) if λ ∈ πa0(A), then R(A− λ) is closed.

(iii) λ ∈ πa0(A) implies that γ is discontinuous at A− λ.

(iv1) if λ ∈ π00(A), then descent of A− λ is finite, and

(iv2) if λ ∈ πa0(A)\π00(A), then R(A− λ) is closed.

Proof. Since σab is continuous at A we have that σab(A) = σea(A) [4, Theorem 2.2].

(i)⇔(ii) The implication =⇒ is obvious. To prove the opposite implication

⇐, let A − λ ∈ Φ−+(H). Then λ /∈ σea(A) = σab(A). Now, by [12, Corollary 2.4]

it follows that λ is not a limit point of σa(A) and by [13, Theorem 1.1] A obeys

a-Weyl’s theorem.

(i)⇔(iii) The implication =⇒ follows by [13, Theorem 2.4]. We prove the

opposite implication. Suppose that condition (i) holds. Let λ ∈ ∆s
a(A) = {µ :

T − µ ∈ Φ−+(X), 0 < α(A − µ)}. Then λ /∈ σea(A) = σab(A) and λ is an isolated

point of σa(A). So λ ∈ πa0(A). The rest of the proof follows again from [13,

Theorem 2.4].

(i)⇔(iv) The implication =⇒ follows by [13, Theorem 2.9]. We now prove the

opposite implication. We use next sets: ∆s
4(A) = {λ ∈ C : A−λ ∈ Φ(X), i(A−λ) =
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0}, ∆s
−(A) = {λ ∈ ∆s

a(A) : α(A−λ) < β(A−λ) < ∞} and ∆s
−∞(A) = {λ ∈ ∆s

a(A) :

β(A − λ) = ∞}. Suppose that λ ∈ ∆s
4(A) ∪ ∆s

−(A). Then λ − A ∈ Φ+
−(X) and

λ /∈ σea(A) = σab(A). Now by [12], it follows that ascent of A−λ is finite. Suppose

that λ ∈ ∆s
−∞(A). Then A − λ ∈ Φ−+(X), so λ /∈ σea(A) = σab(A). By [12] we

get that λ is an isolated point of σa(A). There exists a neighbourhood B(λ) of

λ, such that for all µ ∈ B(λ)\{λ} is satisfied α(A) = 0. We get that λ satisfies

the condition (λ) of [13] or [8]. By [13, Theorem 2.9] it follows that A obeys the

a-Weyl’s theorem. ¤

Theorem 2.5. Let σa be continuous at A ∈ B(H). Then the following conditions

are equivalent:

(i) A obeys a-Weyl’s theorem;

(ii) if λ ∈ πa0(A), then R(A− λ) is closed.

(iii) γ is discontinuous at A− λ, for every λ ∈ πa0(A).

(iv1) if λ ∈ π00(A), then descent of A− λ is finite, and

(iv2) if λ ∈ πa0(A)\π00(A), then R(A− λ) is closed.

Proof. The implications (i) =⇒ (ii), (iii), (iv) hold by [13]. Now, let σa be contin-

uous at A, then by [1, Theorem 14.19] we have that

σa(A) = π0(A) ∪ σle(A) ∪ ρ+
s−F (A) .

Then, σa(A)\σea(A) ⊂ π0(A) ⊂ π00(A) ⊂ πa0(A), so σa(A)\πa0(A) ⊂ σea(A).

(ii) =⇒ (i) Suppose that (ii) holds and let λ ∈ σea(A) and λ ∈ πa0(A). Then

0 < α(A− λ) < ∞ and by (ii) R(A − λ) is closed. Since λ ∈ σea(A) if and only if

A − λ /∈ Φ−+(H) [13], we have that i(A − λ) > 0. By the continuity of the index,

we have that λ is an interior point of σa(A) and we get the contradiction, since

λ ∈ πa0(A).

(iii) =⇒ (i) Suppose that (iii) is valued and let λ0 ∈ πa0(A). Since λ0 is isolated

in σa(A), there is some ε > 0 and a ball B(λ0, ε) centered in λ0, such that B(λ0, ε)∩
σa(A) = {λ0}. For every µ ∈ B(λ0, ε)\{λ0} we have
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γ(A− µ) = inf
x 6=0

‖(A− µ)x‖
‖x‖ ≤ inf

x∈N (A−µ)
x6=0

‖((A− λ0)− (µ− λ0))x‖
‖x‖ =

= inf
x∈N (A−µ)

x 6=0

‖(µ− λ0))x‖
‖x‖ = |µ− λ0| .

Since γ(·) is discontinuous at A − λ0 and γ(A − µ) → 0, as A − µ → A − λ0, we

have that γ(A− λ0) > 0. Now, by (ii) we have that A obeys a-Weyl’s theorem.

(iv) =⇒ (i) Suppose that (iv) is valid and let λ ∈ ∆s
4(A)∪∆s

−(A). Then λ−A ∈
Φ−+(H) and λ /∈ σea(A). Since σa is continuous at A, then λ ∈ π0(A). λ is an isolated

point of σa(A), so, by [12, Corollary 2.3], a(A− λ) = ∞ implies λ ∈ σea(A). This

is a contradiction, so a(A− λ) < ∞.

Suppose that λ ∈ ∆s
−∞(A). Since λ /∈ σea(A) we get that λ is an isolated point

of σa(A). From Theorem 2.4. (iv2) we have that λ satisfies condition (λ) of [13].

By [13, Theorem 2.9] we have that A obeys the a-Weyl’s theorem. ¤

Lemma 2.6. If A ∈ B(H) obeys a-Weyl’s theorem, then σea(A) = σab(A).

Proof. Since σea(A) ⊂ σab(A) for every A ∈ B(H), we have to show only the

opposite inclusion.

It is known that λ ∈ σab(A) if and only if A − λ /∈ Φ−+(H), or a(A − λ) = ∞
[12]. If A − λ /∈ Φ−+(H), then λ ∈ σea(A). Suppose that A − λ ∈ Φ−+(H) and

a(A−λ) = ∞. Then, by [6,Theorem 2.9 (ii)], we have that λ /∈ ∆s
4(A)∪∆s

−(A), so

i(A− λ) 6= 0 and α(A− λ) ≥ β(A− λ) implies that A− λ /∈ Φ−+(H) .

This contradiction completes the proof. ¤

Corollary 2.7. Let A ∈ B(H) obey a-Weyl’s theorem. Then σea is continuous at

A if and only if σab is continuous at A.

Proof. By Lemma 2.6 and [4, Theorem 2.2]. ¤

We shall improve Prasanna’s result, concerning Weyl’s theorem [12]. See also

a paper of Gustafson [8]. Let ∆−
+(T ) denote the set of all λ ∈ σa(T ), such that

T − λ ∈ Φ−+(X).
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Theorem 2.8. Suppose that T ∈ B(X) such that πa0(T ) = π0(T ) and ∆−
+(T ) ⊆

∂σa(T ). Then a-Weyl’s theorem holds for T .

Proof. Suppose that λ ∈ πa0(T ) = π0(T ). Then λ has the finite algebraic mul-

tiplicity, so X = N ((T − λ)p) ⊕ R((T − λ)p) for some non-negative integer p

[3]. Now, 0 < dimN (T − λ) < ∞, so dimN ((T − λ)p) < ∞. We get that

(T − λ)p ∈ Φ0(X). Since R((T − λ)p) ⊆ R(T − λ), we obtain T − λ ∈ Φ(X)

and i(T − λ) = 1
p i((T − λ)p) = 0, so λ ∈ σa(T )\σea(T ).

To prove the opposite inclusion, suppose that λ ∈ σa(T )\σea(T ). We know that

T − λ ∈ Φ−+(X) and 0 < α(T − λ) < ∞. There exists some ε > 0, such that for all

µ satisfying 0 < |µ− λ| < ε, we have that α(T − µ) is a constant, not greater than

α(T − λ) and also T − µ ∈ Φ−+(X). A ball B(λ, ε) centered at λ, intersects the set

C\σa(T ), since ∆−
+(T ) ⊆ ∂σa(T ), so we get that α(T − µ) = 0 for all such µ. Now,

it is obvious that λ must be an isolated point of σa(T ), so λ ∈ πa0(T ). ¤

Notice that if σa(T ) is nowhere dense, then the inclusion ∆−
+(T ) ⊆ ∂σa(T ) is

valid.

Corollary 2.9. Let T ∈ B(X). If πa0(T ) = π0(T ) and σa(T ) is nowhere dense

in C, then a-Weyl’s theorem holds for T . If π00(T ) = π0(T ) and σ(T ) is nowhere

dense in C, then Weyl’s theorem holds for T .

Proof. We shall prove the second statement. Since σ(T ) is nowhere dense, we get

that σ(T ) = ∂σ(T ) = σa(T ), so the conditions of Theorem 2.5 are valued. We get

that the a-Weyl’s theorem holds for T , so the Weyl’s theorem holds for T [13]. ¤

3. Quasihyponormal operators

Through this paragraph H denotes a complex infinite–dimensional complex Hil-

bert space. The next theorem is proved by Heuser [2].

Theorem 3.1. Let T be a bounded operator on a Banach space X and let a(T ) <

∞. If α(T ) < ∞, or β(T ) < ∞, then α(T ) ≤ β(T ).

The following lemma is proved in the Erovenko’s paper [5]. For the sake of

completeness, we give details of the proof.
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Lemma 3.2. Let T be a quasihyponormal operator on H. If λ ∈ C\{0}, then

α(T − λ) ≤ α(T − λ)∗. If α(T ) < ∞, or β(T ) < ∞, then α(T ) < α(T ∗).

Proof. Suppose that λ 6= 0. If x ∈ N (T − λ), then Tx = λx and we get ‖T ∗x‖ ≤
|λ| ‖x‖. Now ((T − λ)∗x, (T − λ)∗x) ≤ 0, so x ∈ N ((T − λ)∗). To prove the second

statement, let T 2x = 0. Now (Tx, Tx) = 0, so x ∈ N (T ). We get that a(T ) = 1

and the rest of the proof follows by Theorem 3.1. ¤

The following theorem is an improvement of Erovenko’s result [5]. Using this

method, Erovenko proved the next result for the Weyl spectrum and an arbitrary

polynomial.

Theorem 3.3. Let T ∈ B(H) be quasihyponormal and f ∈ F(T ). Then

σea(f(T )) = f(σea(T )) and σw(f(T )) = f(σw(T )).

Proof. We prove the first statement. Note that it is enough to prove the inclusion

⊃. Suppose that λ /∈ σea(f(T )). Then f(T )− λ ∈ Φ−+(H) and

(1) f(T )− λ = c(T − µ1) · · · (T − µn)g(T ),

where c ∈ C, g(T ) is invertible and the operators on the right side of (1) mutually

commute. Now, T−µi ∈ Φ+(H). By Lemma 3.2 we get that i(T ) = α(T )−α(T ∗) ≤
0, so T − µi ∈ Φ−+(H) for all i = 1, . . . , n. So λ /∈ f(σea(T )). The proof of the

second statement is analogous. ¤

Now, we give a generalisation of Rakočević’s result [11]. Notice that Rakočević

proved Theorem 3.4 assuming that T ∗ is hyponormal.

Theorem 3.4. Let T ∈ B(H), such that T ∗ is quasihyponormal. Then a-Weyl’s

theorem holds for T .

Proof. Suppose that λ ∈ σa(T )\σea(T ). Then T − λ ∈ Φ−+(H) and 0 < α(T − λ) <

∞. If λ 6= 0, since T ∗ is quasihyponormal, by Lemma 3.2 we get that α((T −λ)∗) ≤
α(T − λ) < ∞. If λ = 0, then T ∈ Φ−+(H) and T ∗ ∈ Φ+

−(H), so we get again

α(T ∗) ≤ α(T ) = β(T ∗) < ∞. Anyway, we get α((T − λ)∗) ≤ α(T − λ) < ∞.

Obviously, i(T−λ) = α(T−λ)−α((T−λ)∗) ≥ 0. Since T−λ ∈ Φ−+(H), we get that

0 = i(T − λ) = i((T − λ)∗), so λ /∈ σw(T ∗). It is well-known that quasihyponormal
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operators obey Weyl’s theorem [6,10], so λ ∈ π00(T ∗) and λ is an isolated point of

σ(T ). Now, λ is isolated in σa(T ) and we get that λ ∈ πa0(T ).

To prove the other inclusion, suppose that λ0 ∈ πa0(T ). Then 0 < α(T−λ0) < ∞
and there is some ε > 0, such that for all λ ∈ C, if 0 < |λ − λ0| < ε, then

λ /∈ σa(T ). For all such λ, using Lemma 3.2, we get α((T − λ)∗) ≤ α(T − λ) = 0.

Now i(T − λ) = 0 and λ0 must be an isolated point of σ(T ), so 0 must be an

isolated point of σ((T − λ0)∗). We see that β((T − λ0)∗) = α(T − λ0) < ∞, so

(T−λ0)∗ ∈ Φ(H). Since 0 is an isolated point of σ((T−λ0)∗), we get i((T−λ)∗) = 0

and λ0 /∈ σw(T ) ⊃ σea(T ). ¤

Acknowledgement. We are grateful to Professor Vladimir Rakočević for helpful

suggestions and conversations concerning the paper.
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