ON DAVIS-KAHAN-WEINBERGER
EXTENSION THEOREM

DRAGAN S. DJORDJEVIC

ABSTRACT. If R = {g}, where H = H™*, we find a pseudo-inverse form

. . H B*
of all solutions W = W*, such that |A| = ||R||, where A =

B W
and |[|[H|| < ||R]|. In this paper we extend well-known results in a finite
dimensional setting, proved by Dao-Sheng Zheng (SIAM J. Matrix Anal.
Appl. 17 (3) (1996), 621-631). Thus, a pseudo inverse form of solutions of
the Davis-Kahan-Weinberger theorem is established.

1. Motivation

Let Z denote an arbitrary Hilbert space and let H and K denote closed
mutually orthogonal subspaces of Z, such that Z = H® K. We use L(H, K)
to denote the set of all bounded operators from H into K and L(H) =
L(H,H). For T € L(H,K) let R(T) and N(T), respectively, denote the
range and the kernel of T

Let H = H* € L(H) and B € L(H,K) be given operators, such that
p = ||R||, where
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Notice that |H|| < ||R|| always holds. We consider the following problem.
Find an operator W = W* € L(K), such that the selfadjoint operator

A H B*| |H . H
|B W[ |K K
satisfies the norm condition ||A| = [|R|| = p.
This is a typical selfadjoint dilation problem. We mention that a non-
selfadjoint form is also important.
The result which is known as the Davis-Kahan-Weinberger theorem is
proved in [5, Theorem 1.2] and stated as follows:
Theorem (DKW). Let H,B,C satisfy H[g”‘ < u, [HEC]| < 1 and
|H|| < p. Then there exists W such that H [g VCV} H < w. Indeed those W
which have this property are exactly those of the form
W =—-KH*L+u(I - KK"Y?7z(I - L*L)"/?,
where
K*:(M2I—H*H)71/ZB*, L:(MQ_HH*)fl/QC

and Z is an arbitrary contraction. If H is compact then W may be chosen

compact.

The selfadjoint version of the previous theorem follows (see [5, Corollary
1.3)):
Corollary (DKW-SA). Let H be selfadjoint and H [g} H < and ||H| <
w. Then there exists selfadjoint W such that H [g ﬁ:} H < p. Indeed those
W which have this property are exactly those such that
—pul + B(pl + H)'B* <W < ul — B(ul — H)"'B*.

The following result is a central solution obtained from Corollary (DKW-
SA) (see [5, (1.7)]). One strightforward proof of this result is given in [15,
Lemma 3.1] (although the proof is given for complex matrices, a careful

reading shows that it is valid for operators on arbitrary Hilbert spaces also).
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Corollary (DKW-central). Let R = [g} ([H] — [z], where H = H*,
o> |R| and o > |H|. If Wy = —BH(o® — H?)"'B* and

H B
=B

then ||Ay|| < o.

A selfadjoint part of this problem is proved by M. G. Krein (see [9] and
[13, Sec. 125]). One special case of the Davis-Kahan-Weinberger theorem
was proved by B. Sz.-Nagy and C. Foias (see [14, Theorem 1] and also [3]).
Several proofs of Theorem (DKW) are presented in [4, Sec. 3], [5, Theorem
1.2] and [12, Theorem 1].

The boundary case appears if we assume ||H|| = ||R|| = p. One solution
(as a non-selfadjoint extension) is found in [4, Sec. 3]. In this case at
least one of I — H and pul + H is not invertible, but we can consider
their Moore-Penrose inverses (in the case when they exist). Zheng used
this idea in [15, Theorem 4.1] and completely solved this problem in finite
dimensional settings. Kahan also found one solution of this problem, but
he did not publish his results, which appeared in [11, p. 231-233] without
any proof. See also results of Fioas and Frazho [6, Chapter IV]. Zhang
also proved Theorem (DKW-central) in finite dimensional settings, under
the more general assumption ||[H|| < p. Finally, we mention that finite-
dimensional dilation results of this type have lots of applications in numerical
analysis (see [5], [7], [8] and [10]).

In this paper we extend Zheng’s results for operators on arbitrary Hilbert

spaces.

2. Notations

We use notations in the same way as in [15].
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Recall that an operator TT € L£(K,H) is the Moore-Penrose inverse of
T € L(H,K), if the following is satisfied:

17T =T, T'TT' =TT, (TTH* = TTT, (T'"T)* = T'T.

It is well-known that T'T exists if and only if R(T) is closed, and in this case
TT is unique [2).

Assume that T € L(H) and 0 is not the point of accumulation of the
spectrum o(7T) of T. If the point {0} is the pole of the resolvent A —
(A — T)~1, then the order of this pole is the Drazin index (or the index)
of T, denoted by ind(7T). Notice that ind(7T") < oo holds if and only if
there exists the Drazin inverse of T, i.e. there exists the unique operator
TP € L(H), such that the following hold:

T°11? =7P, TTP = TPT, T"HTP =T

and the least n in the previous definition is equal to ind(7"). If ind(7) < 1,
then TP is known as the group inverse of T, denoted by T#. If ind(T) = 0,
then T is invertible and T—! = T'P.

In this article the group inverse is of special interest. If ind(7") < 1, then
H=TR(T) TN (T') and this sum is not necessarily orthogonal. Also, T has
the matrix form with respect to this decomposition:

0 O T T
r= [o Tl] : [%((T))] - [%ET”
where Ty = T'|g(r) : R(T) — R(T) is invertible [2].

In the case when T is selfadjoint and has a closed range, the Moore-
Penrose inverse coincides with the group inverse of T'. Also, R(T) is closed
if and only if 0 is not the accumulation point of ¢(7"). In this case the
decomposition H = R(T') & N (T) is orthogonal.

If T =T* € L(H), then we write T" > 0 if and only if (Txz,z) > 0 for
all z € H, where (+,-) is the inner product in H. Also, T' > 0 if and only if
T > 0 and T is invertible.



PSEUDO INVERSE FORM OF THE DAVIS-KAHAN-WEINBERGER THEOREMS5

3. Results

The following result is proved in [1].

Lemma 3.1. Let
S:Sllle'H—)H
Sty Sa| | K K’
where S11 = STy, Saa = S35 and R(S11) is closed. Then S > 0 if and only
if the following is satisfied:

S11 >0, 515,512 = Si2 and Saz — 7,581,512 > 0.

Although the original proof in [1] is given for finite dimensional spaces H
and K, the result is valid in infinite dimensional settings also.

We now prove the first auxiliary result.

Lemma 3.2. Let R = [g} [H] — [7,;} H=H* and p = |R||. Then
N(p—H)CN(B), R(p—H) D R(B*), N(p+H) C N(B) and R(p+H) D

R(B*).
Proof. Obviously, ||H|| < p. Let x € N(p — H) and ||z| = 1. Then
p* 2 |Re|® = |Hz|? + || Bz||* = p* + || Bz|%,
implying Bx = 0. The rest of the proof is similar. Notice that if there exists
any r € N(p— H) and ||z| = 1, then ||H|| =p=||R|. O

The following result represents a pseudo inverse form of solutions of the

Davis-Kahan-Weinberger theorem.

K

LK), A= [g ﬁ:} and let R(p—H) and R(p+ H) be closed. Then ||A| = p

if and only if

Theorem 3.3. Let R = [”} L [H] — [jg] H=H* p=|R|, W=W*e

B(p+H)'B*—p<W <p—B(p— H)'B".
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Proof. Obviously, p = ||R|| < ||A||. Since A = A*, in order to prove ||A|| < p,
it is enough to prove p — A > 0 and p+ A > 0. Notice that

4 _|p—H —B"
p A_[ -B p—W]

From Lemma 3.1 we know that p — A > 0 if and only if:
(1) p—H > 0;
(2) (p—H)(p— H)'B* = B*;
(3) p—W —(=B)(p— H)I(-B*) > 0.
We know that (1) always holds. The condition (2) is equivalent to R(B*)
C R(p — H), which is always true according to Lemma 3.2. Finally, (3) is
equivalent to p — B(p — H)'B* > W.
Similarly, p + A > 0 is equivalent to B(p+ H) B* —p<W. O

Now we prove the extension of Corollary (DKW-central).

Theorem 3.4. Let R = [g}, H = H*, p = ||R| and let R(p — H) and
R(p+ H) be closed. If

W = —-BH(p*> — H*)'B*

and
H B*
=[5 W)

then
[All =p=|R|.

Proof. The case p = 0 is trivial. Hence, assume p > 0. Since the Moore-
Penrose inverse of a selfadjoint operator coincides with its group inverse, we
conclude that the decomposition H = N(p — H) ® R(p — H) is orthogonal

pen= [0 0[] [N,

and
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where M is invertible and M > 0. We conclude that H and p + H have the

following matrix forms with respect to the same decomposition of H:

_lp 0 _ |2 0
H‘[o p—M]’ ”*H_{o 2p—M]'

Since p+H > 0, we conclude 0 < M < 2p. From ind(p+ H) < 1 we conclude
that ind(2p — M) < 1. Now, R(p— H) =N (2p— M) ®R(2p — M) and this

decomposition is orthogonal, since 2p — M is selfadjoint. Also

| N (@2p— M) N(2p— M)

2p- M= [8 J(H ' [R(ZO—M)} - [RQ/J_M)},

where N is invertible. Since M < 2p we conclude N > 0. Notice that

1 2p 0
M—[O 2pN]’

hence from M > 0 we get 0 < N < 2p. Finally, we get

p 0 0 0 0 0
H=1{0 —p 0 , p—H=10 2p 0 ,
0 0 N-p 0 0 20—-N
20 0 O
p+H=10 0 0
0 0 N

and conclude N (p+H) = N (2p—M). From Lemma 3.2 we know that N'(p—
H) Cc N(B) and N(p+ H) C N(B), implying the following decomposition
of B:

N(p—H) ]
B=[0 0 Bi]:| Np+H) | =K
R(2p— M) |
and also the matrix form of R:
p 0 0 B " N(p—H)
R |0 —p O %(p H) N(p+H)
- (p+H) - _ )
00 | e T R(2p — M)
0 0 B p K
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where H; = N —p. Notice that —p < Hy < p. If Pg(2,— ) is the orthogonal
projection from H onto R(2p — M), and Pr2,—mex is the orthogonal
projection from H onto R(2p — M) & K, then

H
Ry = [Bﬂ = Prep-myexcBPRrep— M),

implying || Ry < || R

Let W, = —B1H,(p? — H})"'Bj and

_ |H BY
4= [Bl Wp] '

From Lemma (DKW-central) we know that ||A4,| < ||R:| < ||R|| = p.

Now we have the matrix form of A:

0 0 0

p

0 —p 0 0 p 00
A= N 0 —p O

0 0 H B 0 d

0 0 B W, P

It is easy to see that ||Al| = p.
We only have to prove the equality

BH(p*> — H*)'B* = B, H,(p* — H?)"'B;.

Since p and —p are not accumulation points of the spectrum o(H), we con-
clude that p? is not the accumulation point of H2. Hence, (p? — H?)' exists.

Now we compute

BH(p*> — H?)'B* =

p 0 0770 0 0 0
=[0 0 B]|0 —p 0] |0 0 0 0
0 0 H||0 0 N2 -N)||B

=B HN 20— N)'Bf =B H (0> - H?)"'B}. O

As a corollary, we get the following result, which can not be verified easily

by a direct computation.
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Corollary 3.5. If R(p — H) and R(p + H) are closed, where p = ||R||,

R =

{g] and H = H*, then

B(p+H)'B*—p< —BH(p* = H*)' < p— B(p— H)'B".

Thus, we extended Zheng’s results in [15, Theorem 4.1 and Theorem 4.2].
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