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Abstract

In this article we characterize operators on Banach spaces which
have the same projections related to their outer or inner generalized
inverses. As corollaries, we obatin well-known results for the Drazin
inverse of bounded operators.
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1 Motivation and introduction

In [2] Castro González, Koliha and Wei characterized matrices with the same eigen-
projections, i.e. the same projections corresponding to the Drazin inverses of these
matrices. They extended these results to closed operators on Banach spaces in [3].
Results of this type are used to prove error bounds for perturbations of operators
with the same eigenprojections.

In this paper we investigate outer inverses of bounded operators with prescribed
range and kernel on Banach spaces, as well as inner generalized inverses of these
operators. Since the ordinary and the generalized Drazin inverse are outer general-
ized inverses with the particular choice of range and kernel, present results extend
the main results from [2] and results from [3] restricted to a bounded case. More-
over, present results are applicable to the second important generalized inverse: the
Moore-Penrose inverse of a bounded closed range operator between Hilbert spaces.

The second author was supported by the National Natural Science Foundation of
China, under grant 19901006.
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Let X and Y denote arbitrary Banach spaces and let L(X, Y ) denote the set
of all bounded operators from X to Y . Also, L(X) = L(X, X). For A ∈ L(X,Y )
we use N (A) to denote the kernel and R(A) to denote the range of A.

We assume that the reader is familiar with the concept of the Moore-Penrose,
Drazin and generalized Drazin inverse (see [1], [5], [6]). We use A†, AD and Ad,
respectively, to denote these generalized inverses of A, in the case when any one of
them exists.

We begin with outer and inner generalized inverses of bounded operators.
Mostly, the technique of operator matrices is used (see, for example, [4]).

If there exists some operator A′ ∈ L(Y, X) satisfying A′AA′ = A′, then A′ is
called an outer generalized inverse of A. If T = R(A′) and S = N (A′), then A′

is well-known as the A
(2)
T,S generalized inverse of A. It can easily be deduced that

for given subspaces T of X and S of Y , there exists the generalized inverse A
(2)
T,S of

A if and only if the following is satisfied: T , S and A(T ) are closed complemented
subspaces of X, Y and Y respectively, the restriction A1 = A|T : T → A(T ) is
invertible and A(T )⊕S = Y . In this case the generalized inverse A

(2)
T,S is unique and

the notation is justified. Moreover the following holds T = R(A(2)
T,S) = R(A(2)

T,SA).

Hence we denote T1 = N (A(2)
T,SA) ⊂ X and S1 = A(T ) ⊂ Y . Now we have

X = T ⊕ T1 and Y = S1 ⊕ S. The matrix form of A follows:

A =
[

A1 0
0 A2

]
:
[

T
T1

]
→

[
S1

S

]
,

where A1 ∈ L(T, S1) is invertible. Now it is easy to verify that

A
(2)
T,S =

[
A−1

1 0
0 0

]
:
[

S1

S

]
→

[
T
T1

]
.

In the rest of the article we use notations from previous matrix forms, whenever
the generalized inverse A

(2)
T,S exists. It is well-known that A†, AD and Ad are

outer generalized inverses with prescribed range and kernel, for particularly chosen
complemented subspaces T and S.

Suppose that for A,B ∈ L(X,Y ) and subspaces T ıX and SıY there exists
generalized ivnerses A

(2)
T,S and B

(2)
T,S . We say that A and B have the same projections

related to generalized inverses A
(2)
T,S and B

(2)
T,S , provided that AA

(2)
T,S = BB

(2)
T,S and

A
(2)
T,SA = B

(2)
T,SB. Notice that a generalization such as: use B

(2)
M,N for some other

subspaces M and N does not work. We see that the following equality must hold:
M = R(BM,N ) = R(B(2)

M,NB) = (since we want equal projections) = R(A(2)
T,SA) =

T ; similarly N = S.
Things look similar in the case of inner generalized inverses. We say that A ∈

L(X, Y ) is relatively regular, or g-invertible, if there exists an operator A′ ∈ L(Y, X)
satisfying AA′A = A. Recall that A is relatively regular if and only if R(A) and
N (A), respectively, are closed and complemeted subspaces of Y and X. In this
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case AA′ is a projection from Y onto R(A) and I − A′A is a projection from X
onto N (A). Define T = R(A′A) and S = N (AA′). Now we have decomposition of
spaces X = T ⊕N (A) and Y = R(A)⊕ S and consequently the matrix form of A:

A =
[

A1 0
0 0

]
:
[

T
N (A)

]
→

[ R(A)
S

]
,

where A1 ∈ L(T,R(A)) is invertible. Since AA′ is the projection from Y onto
R(A) parallel to S, and A′A is the projection from X onto T parallel to N (A), we
conclude that A′ must have the matrix form:

A′ = A
(1)
T,S,M =

[
A−1

1 0
0 M

]
:
[ R(A)

S

]
→

[
T

N (A)

]
,

for arbitrary M ∈ L(S,N (A)). Obviously, A
(1)
T,S,M is uniquely determined by sub-

spaces T , S, respectively, complemented to N (A) and R(A), and by an arbitrary
operator M ∈ L(S,N (A)). Hence, the notation is justified. Moreover, A′ is an
outer generalized inverse also, if and only if M = 0.

It is well-known that A† is a particular inner generalized inverse for a particular
choice of subspaces T and S and for M = 0.

If A, B ∈ L(X, Y ) are relatively regular with corresponding inner generalized
inverses A′ and B′, we discuss the situation AA′ = BB′ and A′A = B′B.

In Section 2 we consider the equality of projections related to outer general-
ized inverses of given oeprators. In Section 3 we consider the similar problem for
projections related to inner generalized inverses of given operators.

2 Projections related to outer generalized inverses

In this section we first prove our main result, characterizing operators with equal
projections related to their outer generalized inverses with prescribed range and
kernel. All notations from previous section are retained.

Theorem 2.1 Suppose that for A ∈ L(X,Y ) and closed subspaces T ⊂ X and
S ⊂ Y there exists the generalized inverse A

(2)
T,S ∈ L(Y,X). Then the following

statements are equivalent:

(a) There exists the generalized inverse B
(2)
T,S ∈ L(Y,X), satisfying AA

(2)
T,S =

BB
(2)
T,S and A

(2)
T,SA = B

(2)
T,SB.

(b) BA
(2)
T,SA = AA

(2)
T,SB and there exists the generalized inverse (BA

(2)
T,SA)(2)T,S.

(c) BA
(2)
T,SA = AA

(2)
T,SB and I + A

(2)
T,S(B −A) is invertible.

Moreover, if previous statements are valid, then

B
(2)
T,S = [I + A

(2)
T,S(B −A)]−1A

(2)
T,S .
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Proof. (a)⇒(b): The following subspace equality S1 = A(T ) = R(AA
(2)
T,S) =

R(BB
(2)
T,S) = B(T ) is obvious and similarly T1 = N (A(2)

T,SA) = N (B(2)
T,SB). Now,

matrix forms for A and A
(2)
T,S from the previous section hold. Moreover, we have

X = T ⊕ T1 and Y = S1 ⊕ S and

B =
[

B1 0
0 B2

]
:
[

T
T1

]
→

[
S1

S

]
,

where B1 ∈ L(T, S1) is invertible, and

B
(2)
T,S =

[
B−1

1 0
0 0

]
:
[

S1

S

]
→

[
T
T1

]
.

Now we compute

BA
(2)
T,SA =

[
B1 0
0 0

]
= AA

(2)
T,SB.

Since B
(2)
T,S =

[
B−1

1 0
0 0

]
, we easily verify that B

(2)
T,S is a reflexive generalized

inverse of BA
(2)
T,SA and precisely (BA

(2)
T,SA)(2)T,S = B

(2)
T,S .

(b)⇒(a): Here A and A
(2)
T,S have the same matrix forms as above. Suppose that

B has the form

B =
[

B1 B3

B4 B2

]
:
[

T
T1

]
→

[
S1

S

]
.

From BA
(2)
T,SA = AA

(2)
T,SB we conclude that B3 and B4 vanish and consequently

BA
(2)
T,SA =

[
B1 0
0 0

]
:
[

T
T1

]
→

[
S1

S

]
.

If

C =
[

C1 C2

C3 C4

]
= (BA

(2)
T,SA)(2)T,S :

[
S1

S

]
→

[
T
T1

]
,

from N (C) = S we conclude C2 = 0 and C4 = 0, and from R(C) = T we conclude
that C3 = 0 and C1 is invertible. Finally, from CBA

(2)
T,SAC = C we get C1B1C1 =

C1 and B1 = C−1
1 . Now it is easy to prove C = B

(2)
T,S and the rest of the part (a)

follows immediately.
(a)⇒(c) Again, we have matrix forms of A,A

(2)
T,S , B,B

(2)
T,S with respect to the

same decompositions X = T ⊕ T1 and Y = S1 ⊕ S. Notice that

I + A
(2)
T,S(B −A) =

[
A−1

1 B1 0
0 I

]
:
[

T
T1

]
→

[
S1

S

]

is invertible.
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(c)⇒(a) From BA
(2)
T,SA = AA

(2)
T,SB we conclude that B must have the form

B =
[

B1 0
0 B2

]
:
[

T
T1

]
→

[
S1

S

]

for some operators B1 and B2. Notice that

I + A
(2)
T,S(B −A) =

[
A−1

1 B1 0
0 I

]

is invertible, implying that B1 is invertible. Define C =
[

B−1
1 0
0 0

]
. Now it is

easy to see that C = B
(2)
T,S and the rest of the part (a) follows easilly.

Now, if statements (a)-(c) are valid, then it is easy to get the final result:

B
(2)
T,S = [I + A

(2)
T,S(B −A)]−1A

(2)
T,S .

We connect present result with the notion of a {T, S}-splitting of an operator.
Let A ∈ L(X, Y ) and T , S be subspaces of X and Y such that there exists the
generalized inverse A

(2)
T,S ∈ L(Y, X) exists. Recall [4] that A = B − U is called the

{T, S}-splitting of A, provided that there exists the generalized inverse B
(2)
T,S . See

also [7], [8] and [9] for finite dimensional settings and interesting applications.
Now, we see that all conditions (a)-(c) of our Theorem 2.1 imply the existance of

the generalized inverse B
(2)
T,S . Hence, if the conditions of Theorem 2.1 are valid, then

A = B− (A−B) can be considered as a {T, S}-splitting of A and all corresponding
results from [4] are valid.

Recall the generalization of the condition number:

κT,S(A) = ‖A‖‖A(2)
T,S‖

whenever the generalized inverse A
(2)
T,S exsits.

We need a part of Theorem 3.1 proved in [4].

Lemma 2.1 Let A ∈ L(X,Y ) be given, and closed subspaces T and S, respectively,
such that there exists the generalized inverse A

(2)
T,S. If A = B−U is a {T, S}-splitting

of A, then the following results hold:

(a) A
(2)
T,S −B

(2)
T,S = B

(2)
T,SUA

(2)
T,S = A

(2)
T,SUB

(2)
T,S .

(b) A
(2)
T,S = (I −B

(2)
T,SU)−1B

(2)
T,S = B

(2)
T,S(I − UB

(2)
T,S)−1.

(c) B
(2)
T,S = (I + A

(2)
T,SU)−1A

(2)
T,S = A

(2)
T,S(I + UA

(2)
T,S)−1.
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(d) If ‖A(2)
T,SU‖ < 1, then

‖B(2)
T,S −A

(2)
T,S‖ ≤

‖A(2)
T,SU‖‖A(2)

T,S‖
1− ‖A(2)

T,SU‖
≤ κT,S(A)

‖A(2)
T,SU‖

‖A‖(1− ‖A(2)
T,SU‖)

.

This result has a deeper form if we assume that A and B have equal projections
related to their outer generalized inverses with prescribed range and kernel.

Theorem 2.2 Let all conditions (a)-(c) of Theorem 2.1 be valid. Moreover, if
‖A(2)

T,SU‖ < 1 is satisfied, where U = B −A, then the following hold:

(a)
‖A(2)

T,S
U‖

κT,S(A)(1+‖A(2)
T,S

‖‖U‖) ≤
‖B(2)

T,S
−A

(2)
T,S

‖
‖A(2)

T,S
‖ ≤ ‖A(2)

T,S
U‖

1−‖A(2)
T,S

U‖ ≤
κT,S(A)‖U‖/‖A‖

1−κT,S(A)‖U‖/‖A‖ .

(b)
‖A(2)

T,S
‖

1+‖A(2)
T,S

U‖ ≤ ‖B(2)
T,S‖ ≤

‖A(2)
T,S

‖
1−‖A(2)

T,S
U‖ .

Proof. (a) Using Lemma 2.1 we compute:

A
(2)
T,SU = A

(2)
T,S(B −A) = A

(2)
T,SB −A

(2)
T,SA

= A
(2)
T,SB −B

(2)
T,SB = (A(2)

T,S −B
(2)
T,S)B = A

(2)
T,SUB

(2)
T,SB

= A
(2)
T,SUA

(2)
T,SA = A

(2)
T,SUA

(2)
T,S(I + A

(2)
T,SU)−1(I + A

(2)
T,SU)A

= A
(2)
T,SUB

(2)
T,S(I + A

(2)
T,SU)A

= (A(2)
T,S −B

(2)
T,S)(I + A

(2)
T,SU)A

Thus, the first inequality of (a) follows. Other inequalities follow immediately from
Lemma 2.1 (d).

(b) This part follows from Lemma 2.1 (a).

3 Projections related to inner generalized inverses

In this section we obtain results concerning the equality of projections related to
inner generalized inverses. Notations from the first Section are retained.

Theorem 3.1 Let A ∈ L(X,Y ) be relatively regular such that there exists the
generalized inverse A

(1)
T,S,M and let B ∈ L(X, Y ). The following statements are

equivalent.
(a) There exists an inner generalized inverse B′ ∈ L(Y, X) of B satisfying

AA
(1)
T,S,M = BB′ and A

(1)
T,S,MA = B′B.

(b) BA
(1)
T,S,MA = AA

(1)
T,S,MB and there exists a generalized inverse

(BA
(1)
T,S,MA)(1)T,S,N for some N ∈ L(S,N (A)).
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Moreover, if previous statements hold, then I +A
(1)
T,S,M (B−A) is invertible and

the generalized inverse B′ has the form

B′ = B
(1)
T,S,N = (I + A

(1)
T,S,M (B −A))−1A

(1)
T,S,M

for some N ∈ L(S,N (A)).

Proof. (a)⇒(b): Recall the notations for A and A
(1)
T,S,M . From the equality of

corresponding projections we get

R(A) = R(AA
(1)
T,S,M ) = R(BB′) = R(B)

and similarly N (A) = N (B). We conclude that B has the matrix form

B =
[

B1 0
0 0

]
:
[

T
N (A)

]
→

[ R(A)
S

]
,

where B1 is invertible. Any inner generalized inverse of B must have the form
[

B−1
1 K
L N

]
:
[ R(A)

S

]
→

[
T

N(A)

]
.

Again, using the equality of corresponding projections, we conclude that

B′ = B
(1)
T,S,N =

[
B−1

1 0
0 N

]
:
[ R(A)

S

]
→

[
T

N(A)

]
.

Now we easily get

BA
(1)
T,S,MA = AA

(1)
T,S,MB =

[
B1 0
0 0

]
:
[

T
N (A)

]
→

[ R(A)
S

]

and also

(BA
(1)
T,S,MA)(1)T,S,N =

[
B−1

1 0
0 N

]

is an appropriate inner generalized inverse for any N ∈ L(S,N (A)).
(b)⇒(a): Now, A and A

(1)
T,S,M have the same matrix forms as above. Let B has

the form

B =
[

B1 B2

B3 B4

]
:
[

T
N (A)

]
→

[ R(A)
S

]
.

From BA
(1)
T,S,MA = AA

(1)
T,S,MB we conclude B2 = 0 and B3 = 0. The existence of

the generalized inverse (BA
(1)
T,S,MA)(1)T,S,N for some N ∈ L(S,N (A)) means that X =

T ⊕N (BA
(1)
T,S,MA) and Y = R(BA

(1)
T,S,MA)⊕ S. Since N (BA

(1)
T,S,MA) = N (B1)⊕

N (A) and N (B1) ⊂ T , we conclude N (B1) = {0}. From R(BA
(1)
T,S,MA) = R(B1)
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and R(B1) ⊂ R(A), we conclude that R(B1) = R(A). Hence, B1 is invertible. We
conclude that

(BA
(1)
T,S,MA)(1)T,S,N =

[
B−1

1 0
0 N

]
= B

(1)
T,S,N

is the required inner generalized inverse of B.
If (a) and (b) hold, then

I + A
(1)
T,S,M (B −A) =

[
A−1

1 B1 0
0 I

]

is invertible. The equality

B′ = B
(1)
T,S,N = (I + A

(1)
T,S,M (B −A))−1A

(1)
T,S,M

for some N ∈ L(S,N (A)) is obvious.

If for A ∈ L(X, Y ) there exists the generalized inverse A
(1)
T,S,M , then the follow-

ing generalization of the condition number can be defined:

κT,S,M (A) = ‖A‖‖A(1)
T,S,M‖.

The notion of proper splitting of operator is very closed for the equality of
projections related to inner generalized inverses. Recall that for a relatively regular
operator A ∈ L(X,Y ) and operators U, V ∈ L(X, Y ), A = U − V is called the
proper splitting of A, provided that R(A) = R(U) and N (A) = N (U) [4].

We need the following result proved in Theorem 2.1 from [4].

Lemma 3.1 Let A ∈ L(X,Y ) be relatively regular and let A = U − V be a proper
splitting of A.

(a) If A(1) = A
(1)
T,S,M is an inner generalized inverse of A for some M : S →

N (A), then there exists an inner generalized inverse of U which has the form U
(1)
T,S,N

for some N : S → N (A). In particular, there exists the inner generalized inverse
U

(1)
T,S,M of U . (b) A

(1)
T,S,K − U

(1)
T,S,K = U

(1)
T,S,NV A

(1)
T,S,M = A

(1)
T,S,MV U

(1)
T,S,N for arbi-

trary K,M, N : S → N (A).

(c) A
(1)
T,S,M = (I − U

(1)
T,S,MV )−1U

(1)
T,S,M = U

(1)
T,S,M (I − V U

(1)
T,S,M )−1 for arbitrary

M : S → N (A).

(d) U
(1)
T,S,M = (I + A

(1)
T,S,MV )−1A

(1)
T,S,M = A

(1)
T,S,M (I + V A

(1)
T,S,M )−1 for arbitrary

M : S → N (A).

(e) If ‖A(1)
T,S,MV ‖ < 1 for some M : S → N (A), then

‖U (1)
T,S,M −A

(1)
T,S,M‖ ≤ ‖A(1)

T,S,MV ‖‖A(1)
T,S,M‖

1− ‖A(1)
T,S,MV ‖

≤ κT,S,M (A)
‖A(1)

T,S,MV ‖
‖A‖(1− ‖A(1)

T,S,MV ‖)
.
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Remark. Notice that the statement of Lemma 2.1 (a) is formulated incorrectly in
[4], where it is stated that any inner generalized inverse of U must have the proposed
form. This fact is already explained in the proof of our Theorem 3.1 (a)⇒(b).

Now we can prove the following perturbation result in the same way as Lemma
2.2

Theorem 3.2 Let all conditions (a)-(b) of Theorem 3.1 be valid. Moreover, if
‖A(1)

T,S,MU‖ < 1 is satisfied, where U = B −A, then the following hold:

(a)
‖A(1)

T,S,M
U‖

κT,S,M (A)(1+‖A(1)
T,S,M

‖‖U‖) ≤
‖B(1)

T,S,M
−A

(1)
T,S,M

‖
‖A(1)

T,S,M
‖ ≤ ‖A(1)

T,S,M
U‖

1−‖A(1)
T,S,M

U‖ ≤
κT,S,M (A)‖U‖/‖A‖

1−κT,S,M (A)‖U‖/‖A‖ .

(b)
‖A(1)

T,S,M
‖

1+‖A(1)
T,S,M

U‖ ≤ ‖B(1)
T,S,M‖ ≤

‖A(1)
T,S,M

‖
1−‖A(1)

T,S,M
U‖ .
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