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Abstract

In this paper we investigate additive properties of the generalized
Drazin inverse in a Banach algebra. We find some new conditions
under which the generalized Drazin inverse of the sum a + b could be
explicitly expressed in terms of a, a?,b,b?. Also, some recent results of
Castro and Koliha (Proc. Roy. Soc. Edinburgh Sect. A 134 (2004),
1085-1097) are extended.
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1 Introduction

Let A be a complex Banach algebra with the unit 1. By A~1, A" Adnil we
denote the sets of all invertible, nilpotent and quasinilpotent elements in A,
respectively. Let us recall that the Drazin inverse of a € A [1] is the element
x € A (denoted by aP) which satisfies

rar =z, ax=axa, at! K (1)
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for some nonnegative integer k. The least such k is the index of a, denoted
by ind(a). When ind(a) = 1 then the Drazin inverse a® is called the group
inverse and it is denoted by a*. The conditions (1) are equivalent to

zar =z, ar=zxa, a-—a’cze A (2)

The concept of the generalized Drazin inverse in a Banach algebra was in-
troduced by Koliha [2]. The condition a — a’r € A" was replaced by
a —a’x € A Hence, the generalized Drazin inverse of a is the element
x € A (written a¥) which satisfies

raxr =z, axr=za, a—a’ze A (3)

We mention that an alternative definition of the generalized Drazin inverse
in a ring is also given in [3, 4, 5]. These two concepts of generalized Drazin
inverse are equivalent in the case when the ring is actually a complex Banach
algebra with a unit. It is well-known that a9 is unique whenever it exists
[2]. The set AY consists of all @ € A such that a¥ exists. For interesting
properties of Drazin inverse see [6, 7, 8].

Let a € A and let p € A be a idempotent (p = p?). Then we write

a = pap + pa(l —p) + (1 = p)ap + (1 — p)a(l — p)
and use the notations
a1 = pap, aiz =pa(l —p), az = (1—plap, ax = (1-pla(l-p).

Every idempotent p € A induces a representation of an arbitrary element
a € A given by the following matrix

o — pap pa(l —p) _ | e ax2 (@)
(=plap (1=pla(l—p) [~ | a2z ax |~

Let a™ be the spectral idempotent of a corresponding to {0}. It is well-
known that a € A9 can be represented in the following matrix form:

o — aill 0
- 0 ago ’
p

relative to p = aa® = 1 — a™, where aq; is invertible in the algebra pAp and
azz is quasinilpotent in the algebra (1 — p).A(1 — p). Then the generalized

Drazin inverse is given by
ad — a0
0 0] °
P



The motivation for this paper was the paper of Djordjevi¢ and Wei [9]
and the paper of Castro and Koliha [10]. In both of these papers the condi-
tions under which the generalized Drazin inverse (a+b)9 could be expressed
in terms of a,a?,b,b? were considered. In [9] this problem is investigated
for a bounded linear operator on an arbitrary complex Banach space un-
der assumption that AB = 0 and these results are the generalizations of
the results from [11] where the same problem was considered for matrices.
Castro and Koliha [10] considered the same problem for the elements of the
Banach algebra with unit under some weaker conditions. They generalized
the results from [9].

In the present paper we investigate additive properties of the generalized
Drazin inverse in a Banach algebra and find an explicit expression for the
generalized Drazin inverse of the sum a + b under various conditions.

In the first part of the paper we find some new conditions, which are
nonequivalent to the conditions from [10], allowing for the generalized Drazin
inverse of a + b to be expressed in terms of a,a?,b,b. It is interesting to
note that in some cases we obtain the same expression for (a4 b)¢ as in [10].
In the rest of the paper we generalize recent results from [10].

2 Results

First we state the following result which is proved in [12] for matrices, ex-
tended in [13] for a bounded linear operator and in [10] for arbitrary elements
in a Banach algebra.

Theorem 2.1 Let x € A and let

relative to the idempotent p € A.

(1) If a € (pAp)? and b € ((1 — p)A(1 — p))¢, then x is generalized Drazin
invertible and

ad u
xd = [ 0 bd ’ (5)
P
where u = 3% 4(a?)"2eb"b™ + 3% s a"a"c(b9)" 2 — adchd.

(2) If z € AY and a € (pAp)?, then b € (1 —p)A(1 — p))? and z9 is given
by (5).



Now, we state an auxiliary result.
Lemma 2.1 Let a,b € A and let ab = ba or ab = 0, then a + b € A"

Proof. If ab = ba we have that
r(a+b) <r(a)+r(b),

which gives that a + b € A9 The case when ab = 0 follows from the
equation
A—a)A=b)=AXA—=(a+b)) O

Considering the previous lemma, the first idea was to replace the basic
condition ab = 0 which was used in the papers [11], [9] by the condition
ab = ba. As we expected, this condition wasn’t enough to derive a formula
for (a+b)9. Hence, to this aim we assume the following three conditions for
a,be A%

a=ab", b"ba™ =b"b and b"a"ba = b"a"ab. (6)

Instead of the condition ab = ba we assume the weaker condition b™a™ba =
b™a™ab. Notice that

a=ab" < ab? =0 Aa C A, (7)
b"ba™ = b"b < b"ba = 0 < Ab™b C Aa™, (8)
b"a"ba = b"a"ab < (ba — ab)A C (b"a"™)°, 9)

where for u € A, u® ={zx € A : uzr =0}
For matrices and bounded linear operators on a Banach space the con-
ditions (7), (8), (9) are equivalent to

N(@®™) C N(a), N(a™) CN(@®"D), R(ba—ab) CN(b"a™).

Remark that conditions (6) are not symmetric in a,b like the conditions
(3.1) from [10], so our expression for (a+b)9 is not symmetric in a, b at all.

In the next theorem under the assumption that for a,b € A9 the condi-
tions (6) hold, we offer the following expression for (a 4 b)9.



Theorem 2.2 Let a,b € AY be such that (6) is satisfied. Then a +b € A9
and

(CL—I— b)d — (bd + i(bd)n—I—Qa(a_i_ b)n)aw

n=0
o Z Z(bd)n+2a<a+b)n(ad>k+2b(a+b)kz+1 (10)
n= Ok 0
+Z (b%)"*2a(a + b)"ab — Zbd N H2b(a + b)"

n=0

Before proving Theorem 2.2 we have to prove the following result which is
a special case of this theorem:

Theorem 2.3 Leta € A b e AY are such that b™ab = b™ba and a = ab™.
Then (6) is satisfied, a +b € AY and

(a+b)d =0+ i(bd)”%(a + )™ (11)
n=0

Proof. First, suppose that b € A9 Then b™ = 1 and from b™ab = b™ba
we obtain that ab = ba. Using Lemma 2.1, a + b € A" and (11) holds.
Now, we assume that b is not quasinilpotent and we consider the matrix
representation of a and b relative to the p =1 — b". We have

b by 0 0 | @ e
0 by |’ azr  G22
p p
where by € (pAp)~! and by € ((1 —p)A(1 —p))ol € A9 From a = ab™, it
follows that a;; = 0 and ag; = 0. We denote a1 = a2 and as = ass. Hence,

b1 ai

atb= [ 0 ag+ b

The condition b"ab = b"ba implies that asbs = boas. Hence, using
Lemma 2.1, we get as + by € ((1 — p)A(1 — p))a"!. Now, by Theorem 2.1,
we obtain that a +b € A9 and

- o0 —(n+2 n
(CL + b)d = [ bbl Zn:() b1 (nt ())al(ag + b2) ‘|
p

— bd + Z(bd)n+2a(a—|— b)n
n=0



Let us observe that the expressions for (a 4+ b)? in (11) and in (3.6),
Theorem 3.3 [10] are exactly the same. If we assume that ab = ba instead
of b™ab = b"ba, we will get a much simpler expression for (a + b)9.

Corollary 2.1 Let a € A b € AY are such that ab = ba and a = ab”,
then a +b e A and

(a+b)¢ =bd,

Proof. From the condition a = ab™, as we mentioned before, it follows that
abd = 0. Now, because the Drazin inverse b9 is double commutant of a, we
have that

(b 2a(a 4 b)" = a(b)"(a + b)" = 0O

Proof of the Theorem 2.2: If b is quasinilpotent we can apply The-
orem 2.3. Hence, we assume that b is neither invertible nor quasinilpotent
and consider the following matrix representation of a and b relative to the

p=1-—-0":
b— by O o= | @1 a2
0 by |’ as ag |’
p p

where by € (pAp)~! and by € ((1 — p)A(1 — p))3". As in the proof of

Theorem 2.3, from a = ab™ it follows that a = [ 8 Zl ] and
2

b1 ai

atb= [ 0 a9+ by

;From the conditions b™a™ba = b"a™ab and b"ba™ = b™b, we obtain that
ajbaas = afasby and by = beaj. Now, by Theorem 2.3 it follows that
(a2 + b2) € (1 — p)A(1 — p))? and

(a2 +b2)* = ad + > (a9)"Pba(as + bo)" (12)
n=0

By Theorem 2.1 we get

(a+b)d_[”f1 u 1
0 (CL2 —I—bg)d p’



where u = >0 bl_("+2)a1(a2 +b2)"(ag +by)™ — bflal(ag + b)4 and by bl_1
we denote the inverse of b in the algebra pAp. Using (12), we have that

U= Z bl_(n+2) (ag + bg = Z bl (n+2) ag + bg) agbg
n=0
Z Z bl (n+2) a1 as + bg) (Cbg)k+2b2(02 + bz)k+1 — bflalag
n= Ok 0

— Z bl a1 n+2b2((12 + bg)

By a straightforward computation we obtain that (10) holds. O

Corollary 2.2 Leta,b e AY are such that ab = ba, a = ab™ and b™ = ba™ =
b™b, then a +b e A and

(a+b)4=0vd

Let us also observe that if a, b are such that a is invertible and b is group
invertible than the conditions (8) and (9) are satisfied, so we have to assume
just that a = ab™. In the opposite case when b is invertible we get a = 0.

As we mentioned before, Hartwig et al. in [11] for matrices and Djord-
jevi¢ and Wei [9] for operators used the condition AB = 0 to derive the
formula (a + b)9. Castro and Koliha [10] relaxed this hypothesis by assum-
ing the following three conditions symmetric in a,b € A9,

a"™b="b, ab” =a, b aba™ =0. (13)

It is easy to see that ab = 0 implies (13), but the converse is not true (see
Ex. 3.1, [10]).

It is interesting to remark that the conditions (13) and (6) are indepen-
dent, neither of them implies the other one, but in some cases we obtain the
same expressions for (a + b)d.

If we consider the algebra A of all complex 3 x 3 matrices and a,b € A
which are given in the Example 3.1 [10], we can see that the conditions
(13) are satisfied, but the conditions (6) are not satisfied. In the following
example we have the opposite case. We construct matrices a, b in the algebra
A of all complex 3 x 3 matrices such that (6) is satisfied but (13) is not
satisfied. If we assume that ab = ba in Theorem 2.2 the expression for



(a + b)¢ will be exactly the same as in the Theorem 3.5 [10] (in this paper
Corollary 2.4).

Example. Let

1 00 010
a=[0 0 0], b=]10 0 0
0 00 0 00
Then,
0 00
a=]10 10
0 0 1

and b™ = 1. Now, we can see that a = ab™, a"ab = a™ = ba and ba™ = b i.e.,
(6) is satisfied. Also, a™b =0 # b, so (13) is not satisfied.

In the rest of the paper we will present a generalization of the results
from [10]. We will use some weaker conditions than in [10]. For example
in the next theorem which is the generalization of Theorem 3.3 [10] we will
assume that e = (1 —b")(a + b)(1 — b™) € AY instead of ab™ = a. If ab™ = a
by

then e = (1 —b™)b = 0 0 )

for p=1—b" and e = b9.

Theorem 2.4 Let b€ AY, a € AM be such that
e=(1-b")(a+b)(1-b")c A and b ab=0,
then a +b e AY and
(a+b)d =€+ > ()" 2ab™(a+b)".
n=0

Proof. The case when b € A% follows from Lemma 2.1. Hence, we assume
that b is not quasinilpotent,

b= b 0 and a= i a2
0 by az1 Qg2
p P

where p = 1—b". From b"ab = 0 we have that b"a(1 —0") =0, i.e., ag; = 0.
Denote a1 = aq1, a2s = az and a2 = a3. Then,

a+b= 0 ay + by

ai + by as ]



Also, b"ab = 0 implies that asby = 0, so az + by € ((1 — p)A(1 — p))anl,
according to Lemma 2.1. Now, applying Theorem 2.1, we obtain that
(a1 + bl)d U ‘|

P

d _
(a+0b)° = 0 0

where u = 3°° (a1 + b1)®) ™2 az(ag + b2)". By a direct computation we
verify that

(a+b)=e+> ()" ab™(a+b)". O
n=0

Now, as a corollary we obtain Theorem 3.3 from [10].

Corollary 2.3 Let b € AY, a € AN and let ab™ = a, b™ab = 0. Then
a+bec A and

[e.e]
(@a+0) =b"+ > (%) ?a(a+ b)".
n=0
The next result is a generalization of Theorem 3.5 in [10]. For simplicity
we use the following notation:

e=(1-0")(a+b)(1—b") € A%
f=(1—a")(a+b)1—a"),
A =(1-ad")A(1 —ad"),
Az = (1= b7)A(1 = b%),
where a,b € A? are given.

We also prove the next result which is the generalization of Theorem 3.5
[10].

Theorem 2.5 Let a,b € AY be such that (1 —a™)b(1 —a™) € A9, f e A7
and e € A3. If

(I1—-a™)ba™ =0, b aba™ =0, a" =a(l—0")a" =0
then a+b € A4 and
(a+0)d = (6 + Y (0 2a(a + 0))a™ + Y b7 (a +b)"a"b(f) "

o Z Z(bd)k—i-la(a + b)n—i—lcawb(f);é"‘fa) _ bdaﬂb(f);d
n=0 k=0

- i(b‘*)"“a(a +0)"a"b(f) 4 + () A

n=0



where by (f);& we denote the inverse of [ in Aj.

Proof. Obviously, if a is invertible, then the statement of the theorem holds.
If a is quasinilpotent, then the result follows from Theorem 2.4. Hence, we
assume that a is neither invertible nor quasinilpotent. As in the proof of
Theorem 2.2, we have that

ae| @ 0 p_ | b b2
0 ag |’ ba1  ba2
P p
where p = 1 —a”, a1 € (pAp)~! and az € ((1 — p) A1 — p))". From

(1 —a™)ba™ = 0, we have that bjs = 0. Denote by = bi1, by = by and
b21 = bg. Then,

atb= b3 as + by

a1 + b 0 ]

The condition a™b™aba™ = 0 expressed in the matrix form yields

b — |0 0 [[a 0 ][0 0
“ Lo b || 0 ax|]|0 b

fo o 1 Joo

o 0 b§a2b2 - 0 0 ’
Similarly, a™a(1 — b™) = 0 implies that asbj = az. ;From Corollary 2.3 we
get that as + by € A9 and

(a2 +b2)® = b5+ > (b9)" 2as(az + ba)".

n=0

Now, using Theorem 2.1 we obtain that a + b € A9 and

a_ | (a1 + bl)d 0
(a+b)% = U (a2+b2)d p’
where
w="3"b5(as + bo)"bs(f) 1"
n=0
— 3 ST (09)F ag(as + be) " Fba () 2 — 08bs(f) 4
n=0 k=0

= > (19)" as(as + ba)"ba(f) 5}
n=0

10



By a straightforward computation we obtain that the result holds.O

Corollary 2.4 Let a,b € AY satisfy the conditions (13). Then a +b € A9
and

(a+b) =+ i(bd)"“a(a +b)")a" + i b (a + b)"b(a?) )

n=0 n=0
. Z Z(bd)kJrla(a + b>n+kb(ad)(n+2) + bﬂ'ad
n=0 k=0
— Z(bd)"+2a(a + b)"bad

n=0

Proof. We have that f = (1 —a™)a, so (f);& =ad.
The authors would like to thank the referees for their helpful comments
and suggestions that help to improve this paper.
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