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Abstract

In this paper we investigate additive properties of the generalized
Drazin inverse in a Banach algebra. We find some new conditions
under which the generalized Drazin inverse of the sum a + b could be
explicitly expressed in terms of a, ad, b, bd. Also, some recent results of
Castro and Koliha (Proc. Roy. Soc. Edinburgh Sect. A 134 (2004),
1085-1097) are extended.
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1 Introduction

Let A be a complex Banach algebra with the unit 1. By A−1, Anil, Aqnil we
denote the sets of all invertible, nilpotent and quasinilpotent elements in A,
respectively. Let us recall that the Drazin inverse of a ∈ A [1] is the element
x ∈ A (denoted by aD) which satisfies

xax = x, ax = xa, ak+1x = ak, (1)
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for some nonnegative integer k. The least such k is the index of a, denoted
by ind(a). When ind(a) = 1 then the Drazin inverse aD is called the group
inverse and it is denoted by a#. The conditions (1) are equivalent to

xax = x, ax = xa, a− a2x ∈ Anil. (2)

The concept of the generalized Drazin inverse in a Banach algebra was in-
troduced by Koliha [2]. The condition a − a2x ∈ Anil was replaced by
a − a2x ∈ Aqnil. Hence, the generalized Drazin inverse of a is the element
x ∈ A (written ad) which satisfies

xax = x, ax = xa, a− a2x ∈ Aqnil. (3)

We mention that an alternative definition of the generalized Drazin inverse
in a ring is also given in [3, 4, 5]. These two concepts of generalized Drazin
inverse are equivalent in the case when the ring is actually a complex Banach
algebra with a unit. It is well-known that ad is unique whenever it exists
[2]. The set Ad consists of all a ∈ A such that ad exists. For interesting
properties of Drazin inverse see [6, 7, 8].

Let a ∈ A and let p ∈ A be a idempotent (p = p2). Then we write

a = pap + pa(1− p) + (1− p)ap + (1− p)a(1− p)

and use the notations

a11 = pap, a12 = pa(1− p), a21 = (1− p)ap, a22 = (1− p)a(1− p).

Every idempotent p ∈ A induces a representation of an arbitrary element
a ∈ A given by the following matrix

a =

[
pap pa(1− p)

(1− p)ap (1− p)a(1− p)

]

p

=

[
a11 a12

a21 a22

]

p

. (4)

Let aπ be the spectral idempotent of a corresponding to {0}. It is well-
known that a ∈ Ad can be represented in the following matrix form:

a =

[
a11 0
0 a22

]

p

,

relative to p = aad = 1− aπ, where a11 is invertible in the algebra pAp and
a22 is quasinilpotent in the algebra (1 − p)A(1 − p). Then the generalized
Drazin inverse is given by

ad =

[
a−1

11 0
0 0

]

p

.
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The motivation for this paper was the paper of Djordjević and Wei [9]
and the paper of Castro and Koliha [10]. In both of these papers the condi-
tions under which the generalized Drazin inverse (a+b)d could be expressed
in terms of a, ad, b, bd were considered. In [9] this problem is investigated
for a bounded linear operator on an arbitrary complex Banach space un-
der assumption that AB = 0 and these results are the generalizations of
the results from [11] where the same problem was considered for matrices.
Castro and Koliha [10] considered the same problem for the elements of the
Banach algebra with unit under some weaker conditions. They generalized
the results from [9].

In the present paper we investigate additive properties of the generalized
Drazin inverse in a Banach algebra and find an explicit expression for the
generalized Drazin inverse of the sum a + b under various conditions.

In the first part of the paper we find some new conditions, which are
nonequivalent to the conditions from [10], allowing for the generalized Drazin
inverse of a + b to be expressed in terms of a, ad, b, bd. It is interesting to
note that in some cases we obtain the same expression for (a+ b)d as in [10].
In the rest of the paper we generalize recent results from [10].

2 Results

First we state the following result which is proved in [12] for matrices, ex-
tended in [13] for a bounded linear operator and in [10] for arbitrary elements
in a Banach algebra.

Theorem 2.1 Let x ∈ A and let

x =

[
a c
0 b

]

p

,

relative to the idempotent p ∈ A.

(1) If a ∈ (pAp)d and b ∈ ((1 − p)A(1 − p))d, then x is generalized Drazin
invertible and

xd =

[
ad u
0 bd

]

p

, (5)

where u =
∑∞

n=0(a
d)n+2cbnbπ +

∑∞
n=0 aπanc(bd)n+2 − adcbd.

(2) If x ∈ Ad and a ∈ (pAp)d, then b ∈ ((1 − p)A(1 − p))d and xd is given
by (5).
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Now, we state an auxiliary result.

Lemma 2.1 Let a, b ∈ Aqnil and let ab = ba or ab = 0, then a + b ∈ Aqnil.

Proof. If ab = ba we have that

r(a + b) ≤ r(a) + r(b),

which gives that a + b ∈ Aqnil. The case when ab = 0 follows from the
equation

(λ− a)(λ− b) = λ(λ− (a + b)) 2

Considering the previous lemma, the first idea was to replace the basic
condition ab = 0 which was used in the papers [11], [9] by the condition
ab = ba. As we expected, this condition wasn’t enough to derive a formula
for (a+ b)d. Hence, to this aim we assume the following three conditions for
a, b ∈ Ad:

a = abπ, bπbaπ = bπb and bπaπba = bπaπab. (6)

Instead of the condition ab = ba we assume the weaker condition bπaπba =
bπaπab. Notice that

a = abπ ⇔ abd = 0 ⇔ Aa ⊆ Abπ, (7)

bπbaπ = bπb ⇔ bπbad = 0 ⇔ Abπb ⊆ Aaπ, (8)

bπaπba = bπaπab ⇔ (ba− ab)A ⊆ (bπaπ)◦, (9)

where for u ∈ A, u◦ = {x ∈ A : ux = 0}.
For matrices and bounded linear operators on a Banach space the con-

ditions (7), (8), (9) are equivalent to

N (bπ) ⊆ N (a), N(aπ) ⊆ N (bπb), R(ba− ab) ⊆ N (bπaπ).

Remark that conditions (6) are not symmetric in a, b like the conditions
(3.1) from [10], so our expression for (a+ b)d is not symmetric in a, b at all.

In the next theorem under the assumption that for a, b ∈ Ad the condi-
tions (6) hold, we offer the following expression for (a + b)d.
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Theorem 2.2 Let a, b ∈ Ad be such that (6) is satisfied. Then a + b ∈ Ad

and

(a + b)d = (bd +
∞∑

n=0

(bd)n+2a(a + b)n)aπ

−
∞∑

n=0

∞∑

k=0

(bd)n+2a(a + b)n(ad)k+2b(a + b)k+1

+
∞∑

n=0

(bd)n+2a(a + b)nadb−
∞∑

n=0

bda(ad)n+2b(a + b)n

(10)

Before proving Theorem 2.2 we have to prove the following result which is
a special case of this theorem:

Theorem 2.3 Let a ∈ Aqnil, b ∈ Ad are such that bπab = bπba and a = abπ.
Then (6) is satisfied, a + b ∈ Ad and

(a + b)d = bd +
∞∑

n=0

(bd)n+2a(a + b)n. (11)

Proof. First, suppose that b ∈ Aqnil. Then bπ = 1 and from bπab = bπba
we obtain that ab = ba. Using Lemma 2.1, a + b ∈ Aqnil and (11) holds.
Now, we assume that b is not quasinilpotent and we consider the matrix
representation of a and b relative to the p = 1− bπ. We have

b =

[
b1 0
0 b2

]

p

, a =

[
a11 a12

a21 a22

]

p

,

where b1 ∈ (pAp)−1 and b2 ∈ ((1− p)A(1− p))qnil ⊂ Aqnil. From a = abπ, it
follows that a11 = 0 and a21 = 0. We denote a1 = a12 and a2 = a22. Hence,

a + b =

[
b1 a1

0 a2 + b2

]

p

.

The condition bπab = bπba implies that a2b2 = b2a2. Hence, using
Lemma 2.1, we get a2 + b2 ∈ ((1 − p)A(1 − p))qnil. Now, by Theorem 2.1,
we obtain that a + b ∈ Ad and

(a + b)d =

[
b−1
1

∑∞
n=0 b

−(n+2)
1 a1(a2 + b2)n

0 0

]

p

= bd +
∞∑

n=0

(bd)n+2a(a + b)n 2
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Let us observe that the expressions for (a + b)d in (11) and in (3.6),
Theorem 3.3 [10] are exactly the same. If we assume that ab = ba instead
of bπab = bπba, we will get a much simpler expression for (a + b)d.

Corollary 2.1 Let a ∈ Aqnil, b ∈ Ad are such that ab = ba and a = abπ,
then a + b ∈ Ad and

(a + b)d = bd.

Proof. From the condition a = abπ, as we mentioned before, it follows that
abd = 0. Now, because the Drazin inverse bd is double commutant of a, we
have that

(bd)n+2a(a + b)n = a(bd)n+2(a + b)n = 02

Proof of the Theorem 2.2: If b is quasinilpotent we can apply The-
orem 2.3. Hence, we assume that b is neither invertible nor quasinilpotent
and consider the following matrix representation of a and b relative to the
p = 1− bπ:

b =

[
b1 0
0 b2

]

p

, a =

[
a11 a12

a21 a22

]

p

,

where b1 ∈ (pAp)−1 and b2 ∈ ((1 − p)A(1 − p))qnil. As in the proof of

Theorem 2.3, from a = abπ it follows that a =

[
0 a1

0 a2

]

p

and

a + b =

[
b1 a1

0 a2 + b2

]

p

.

¿From the conditions bπaπba = bπaπab and bπbaπ = bπb, we obtain that
aπ

2 b2a2 = aπ
2a2b2 and b2 = b2a

π
2 . Now, by Theorem 2.3 it follows that

(a2 + b2) ∈ ((1− p)A(1− p))d and

(a2 + b2)d = ad
2 +

∞∑

n=0

(ad
2)

n+2b2(a2 + b2)n. (12)

By Theorem 2.1 we get

(a + b)d =

[
b−1
1 u
0 (a2 + b2)d

]

p

,
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where u =
∑∞

n=0 b
−(n+2)
1 a1(a2 + b2)n(a2 + b2)π − b−1

1 a1(a2 + b2)d and by b−1
1

we denote the inverse of b1 in the algebra pAp. Using (12), we have that

u =
∞∑

n=0

b
−(n+2)
1 a1(a2 + b2)n = aπ

2 −
∞∑

n=0

b
−(n+2)
1 a1(a2 + b2)nad

2b2

∞∑

n=0

∞∑

k=0

(b1)−(n+2)a1(a2 + b2)n(ad
2)

k+2b2(a2 + b2)k+1 − b−1
1 a1a

d
2

−
∞∑

n=0

b−1
1 a1(ad

2)
n+2b2(a2 + b2)n

By a straightforward computation we obtain that (10) holds. 2

Corollary 2.2 Let a, b ∈ Ad are such that ab = ba, a = abπ and bπ = baπ =
bπb, then a + b ∈ Ad and

(a + b)d = bd.

Let us also observe that if a, b are such that a is invertible and b is group
invertible than the conditions (8) and (9) are satisfied, so we have to assume
just that a = abπ. In the opposite case when b is invertible we get a = 0.

As we mentioned before, Hartwig et al. in [11] for matrices and Djord-
jević and Wei [9] for operators used the condition AB = 0 to derive the
formula (a + b)d. Castro and Koliha [10] relaxed this hypothesis by assum-
ing the following three conditions symmetric in a, b ∈ Ad,

aπb = b, abπ = a, bπabaπ = 0. (13)

It is easy to see that ab = 0 implies (13), but the converse is not true (see
Ex. 3.1, [10]).

It is interesting to remark that the conditions (13) and (6) are indepen-
dent, neither of them implies the other one, but in some cases we obtain the
same expressions for (a + b)d.

If we consider the algebra A of all complex 3× 3 matrices and a, b ∈ A
which are given in the Example 3.1 [10], we can see that the conditions
(13) are satisfied, but the conditions (6) are not satisfied. In the following
example we have the opposite case. We construct matrices a, b in the algebra
A of all complex 3 × 3 matrices such that (6) is satisfied but (13) is not
satisfied. If we assume that ab = ba in Theorem 2.2 the expression for
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(a + b)d will be exactly the same as in the Theorem 3.5 [10] (in this paper
Corollary 2.4).

Example. Let

a =




1 0 0
0 0 0
0 0 0


 , b =




0 1 0
0 0 0
0 0 0


 .

Then,

aπ =




0 0 0
0 1 0
0 0 1




and bπ = 1. Now, we can see that a = abπ, aπab = aπ = ba and baπ = b i.e.,
(6) is satisfied. Also, aπb = 0 6= b, so (13) is not satisfied.

In the rest of the paper we will present a generalization of the results
from [10]. We will use some weaker conditions than in [10]. For example
in the next theorem which is the generalization of Theorem 3.3 [10] we will
assume that e = (1− bπ)(a + b)(1− bπ) ∈ Ad instead of abπ = a. If abπ = a

then e = (1− bπ)b =

[
b1 0
0 0

]

p

for p = 1− bπ and ed = bd.

Theorem 2.4 Let b ∈ Ad, a ∈ Aqnil be such that

e = (1− bπ)(a + b)(1− bπ) ∈ Ad and bπab = 0,

then a + b ∈ Ad and

(a + b)d = ed +
∞∑

n=0

(ed)n+2abπ(a + b)n.

Proof. The case when b ∈ Aqnil follows from Lemma 2.1. Hence, we assume
that b is not quasinilpotent,

b =

[
b1 0
0 b2

]

p

and a =

[
a11 a12

a21 a22

]

p

,

where p = 1− bπ. From bπab = 0 we have that bπa(1− bπ) = 0, i.e., a21 = 0.
Denote a1 = a11, a22 = a2 and a12 = a3. Then,

a + b =

[
a1 + b1 a3

0 a2 + b2

]

p

.
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Also, bπab = 0 implies that a2b2 = 0, so a2 + b2 ∈ ((1 − p)A(1 − p))qnil,
according to Lemma 2.1. Now, applying Theorem 2.1, we obtain that

(a + b)d =

[
(a1 + b1)d u

0 0

]

p

,

where u =
∑∞

n=0((a1 + b1)d)(n+2)a3(a2 + b2)n. By a direct computation we
verify that

(a + b)d = ed +
∞∑

n=0

(ed)n+2abπ(a + b)n. 2

Now, as a corollary we obtain Theorem 3.3 from [10].

Corollary 2.3 Let b ∈ Ad, a ∈ Aqnil and let abπ = a, bπab = 0. Then
a + b ∈ Ad and

(a + b)d = bd +
∞∑

n=0

(bd)n+2a(a + b)n.

The next result is a generalization of Theorem 3.5 in [10]. For simplicity
we use the following notation:

e = (1− bπ)(a + b)(1− bπ) ∈ Ad,

f = (1− aπ)(a + b)(1− aπ),
A1 = (1− aπ)A(1− aπ),
A2 = (1− bπ)A(1− bπ),

where a, b ∈ Ad are given.
We also prove the next result which is the generalization of Theorem 3.5

[10].

Theorem 2.5 Let a, b ∈ Ad be such that (1− aπ)b(1− aπ) ∈ Ad, f ∈ A−1
1

and e ∈ Ad
2. If

(1− aπ)baπ = 0, bπabaπ = 0, aπ = a(1− bπ)aπ = 0

then a + b ∈ Ad and

(a + b)d = (bd +
∞∑

n=0

(bd)n+2a(a + b)n)aπ +
∞∑

n=0

bπ(a + b)naπb(f)−(n+2)
A1

−
∞∑

n=0

∞∑

k=0

(bd)k+1a(a + b)n+kaπb(f)−(n+2)
A1

− bdaπb(f)−1
A1

−
∞∑

n=0

(bd)n+2a(a + b)naπb(f)−1
A1

+ (f)−1
A1

,
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where by (f)−1
A1

we denote the inverse of f in A1.

Proof. Obviously, if a is invertible, then the statement of the theorem holds.
If a is quasinilpotent, then the result follows from Theorem 2.4. Hence, we
assume that a is neither invertible nor quasinilpotent. As in the proof of
Theorem 2.2, we have that

a =

[
a1 0
0 a2

]

p

, b =

[
b11 b12

b21 b22

]

p

,

where p = 1 − aπ, a1 ∈ (pAp)−1 and a2 ∈ ((1 − p)A(1 − p))qnil. From
(1 − aπ)baπ = 0, we have that b12 = 0. Denote b1 = b11, b22 = b2 and
b21 = b3. Then,

a + b =

[
a1 + b1 0

b3 a2 + b2

]

p

.

The condition aπbπabaπ = 0 expressed in the matrix form yields

aπbπabaπ =

[
0 0
0 bπ

2

] [
a1 0
0 a2

] [
0 0
0 b2

]

=

[
0 0
0 bπ

2a2b2

]
=

[
0 0
0 0

]
.

Similarly, aπa(1 − bπ) = 0 implies that a2b
π
2 = a2. ¿From Corollary 2.3 we

get that a2 + b2 ∈ Ad and

(a2 + b2)d = bd
2 +

∞∑

n=0

(bd
2)

n+2a2(a2 + b2)n.

Now, using Theorem 2.1 we obtain that a + b ∈ Ad and

(a + b)d =

[
(a1 + b1)d 0

u (a2 + b2)d

]

p

,

where

u =
∞∑

n=0

bπ
2 (a2 + b2)nb3(f)−(n+2)

A1

−
∞∑

n=0

∞∑

k=0

(bd
2)

k+1a2(a2 + b2)n+kb3(f)−(n+2)
A1

− bd
2b3(f)−1

A1

−
∞∑

n=0

(bd
2)

n+2a2(a2 + b2)nb3(f)−1
A1

.
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By a straightforward computation we obtain that the result holds.2

Corollary 2.4 Let a, b ∈ Ad satisfy the conditions (13). Then a + b ∈ Ad

and

(a + b)d = (bd +
∞∑

n=0

(bd)n+2a(a + b)n)aπ +
∞∑

n=0

bπ(a + b)nb(ad)(n+2)

−
∞∑

n=0

∞∑

k=0

(bd)k+1a(a + b)n+kb(ad)(n+2) + bπad

−
∞∑

n=0

(bd)n+2a(a + b)nbad

Proof. We have that f = (1− aπ)a, so (f)−1
A1

= ad.
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Box 224, Vǐsegradska 33, 18000 Nǐs, Serbia
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