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Abstract. In this paper we construct a few iterative processes for computing {1, 2}
inverses of a linear bounded operator, based on the hyper-power iterative method or
the Neumann-type expansion. Under the suitable conditions these methods converge
to the {1, 2, 3} or {1, 2, 4} inverses. Also, we specify conditions when the iterati-
ve processes converge to the Moore-Penrose inverse, the weighted Moore-Penrose
inverse or to the group inverse. A few error estimates are derived. The advantages
of the introduced methods over the Tanabe’s method [16] for computing the reflexive
generalized inverses are also investigated.
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1. Introduction

Let X and Y be two finite dimensional complex Hilbert spaces and let A : X → Y
be a linear operator. There are well–known properties of generalized inverses of A:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

For a subset S of the set {1, 2, 3, 4}, the set of operators obeying the conditions
contained in S is denoted by A{S}. An operator in A{S} is called an S-inverse of
A and is denoted by A(S). In particular, for any A, the set A{1, 2, 3, 4} consists of
a single element, the Moore-Penrose inverse of A, denoted by A† [9]. The group
inverse A# is the unique operator which satisfies (1), (2) and

(5) AA# = A#A.

Any element from the class A{1, 2} is also called the reflexive generalized inverse of
A.

1991 Mathematics Subject Classification. 65F20, 65F30, 15A24.

Typeset by AMS-TEX

1



2 PREDRAG S. STANIMIROVI�C AND DRAGAN S. DJORDJEVI�C

Let A = PQ be a full–rank decomposition of A, where P and Q are two full rank
linear operators. Then all {1, 2} inverses of A can be represented in the form

(6) X = W1(QW1)−1(W2P )−1W2 = W1(W2AW1)−1W2,

where W1 and W2 are suitable choosen operators, such that QW1 and W2P are
invertible [13].

The weighted Moore-Penrose inverse is investigated in [3], [12]. For the sake of
completeness we restate here the main results of these papers. Let there be given
positive-definite (and hermitian) operators M and N . For any operator A there
exists the unique solution X = A†M,N ∈ A{1, 2} satisfying the following equations
in X [3], [12]:

(3M) (MAX)∗ = MAX (4N) (XAN)∗ = XAN.

If A = PQ is a full rank factorization of A, then [12]:

(7) A†M,N = (QN)∗(Q(QN)∗)−1((MP )∗P )−1(MP )∗.

The hyper-power method of the order 2 dates back to the well-known paper of
Schulz [14]. Altman devised the hyper-power method of any arbitrary order q ≥ 2,
for inverting a nonsingular bounded operator on a Banach space [1]. In [10] the
convergence of the same method is proved under the condition which is weaker
than the one assumed in [1], and some better error estimates are derived.

Zlobec [19] and Petryshyn [11] showed that the qth order hyper-power iterative
method with q ≥ 2 for the determination of inverses of nonsingular matrices and
linear operators, can be generalized to the determination of the Moore-Penrose
inverse of an arbitrary matrix, or a bounded linear operator with closed range.

Zlobec in [19] defined the following two hyper-power iterative methods of an
arbitrary high order q ≥ 2:

Tk = IX − YkA,

Yk+1 = (IX + Tk + · · ·+ T q−1
k )Yk, k = 0, 1, . . .

T ′k = IY −AY ′
k,

Y ′
k+1 = Y ′

k(IY + T ′k + · · ·+ T ′k
q−1), k = 0, 1, . . .

It is well–known [19], that if we take

Y0 = Y ′
0 = αA∗, 0 < α ≤ 2

tr(A∗A)
,

then lim
k→∞

Yk = lim
k→∞

Y ′
k = A†.
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The process which generates the sequence Yk is more superior then the process
which generates the sequence Y ′

k in the case m > n [6]. The hyper-power iterative
method of the order 2 is studied in [15] in view of the singular value decomposition
of a matrix. In [6] the hyper-power iterative method is adapted for computing A†B,
where A and B are arbitrary complex matrices with equal number of rows.

The paper is organized as follows. In Section 2 we construct iterative methods for
computing the reflexive generalized inverses of a linear operator. These methods are
based on the hyper-power iterative methods. We select two arbitrary matrices and
adequate initial values for these methods to generate different generalized inverses
for the concerned operator. In Section 3 we give a few error estimates, look for the
optimal value of the parameter α and show that the method is self-correcting. In
Section 4 we develop analogous iterative methods which arise from the Neumann-
type expansion and compare our method with the Tanabe’s method [16]. Finally,
we give several examples which illustrate our theory.

2. Iterative methods

In the following lemma we introduce an improvement of the hyper-power ite-
rative method, and construct iterative method which generates all of the reflexive
generalized inverses.

Lemma 2.1. Let rank(A) = r ≥ 2 and W1, W2 are two arbitrary operators, such
that W2AW1 is invertible operator. If q ≥ 2 is an integer, then the following two
iterative processes:

Y0 = Y ′
0 = α(W2AW1)∗, 0 < α ≤ 2

tr((W2AW1)∗W2AW1)
,

Tk = IX − YkW2AW1,

Yk+1 = (IX + Tk + · · ·+ T q−1
k )Yk,

Xk+1 = W1Yk+1W2 k = 0, 1, . . .

T ′k = IY −W2AW1Y
′
k,

Y ′
k+1 = Y ′

k(IY + T ′k + · · ·+ T ′k
q−1),

X ′
k+1 = W1Y

′
k+1W2 k = 0, 1, . . .

generate the class of {1, 2} inverses of A.

Proof. Using the results form [19], we conclude

lim
k→∞

Yk = lim
k→∞

Y ′
k = (W2AW1)

† = (W2AW1)−1.

According to (6), it is obvious that

lim
k→∞

Xk = lim
k→∞

X ′
k = X = W1(W2AW1)−1W2 ∈ A{1, 2}. ¤
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Therefore, we just formed two iterative processes for computing all of the {1, 2}
inverses of A. However, under the suitable conditions, we can get some iterative
methods for computing {1, 2, 3} or {1, 2, 4} inverses, the Moore-Penrose inverse, the
weighted Moore-Penrose inverse or the group inverse of A. For the sake of simplicity
we use the following notation: B = W2AW1, C = AW1, D = W2A.

Theorem 2.1. Let rank(A) = r ≥ 2 and QW1, W2P be invertible operators.

(a) If W2 is an unitary operator with respect to the considered scalar product
and

0 < α ≤ min
{

2
tr(B∗B)

,
2

tr(C∗C)

}
,

then Xk → X = W1(AW1)† ∈ A{1, 2, 3} as k →∞.
(b) If W1 is an unitary operator with respect to the considered scalar product

and

0 < α ≤ min
{

2
tr(B∗B)

,
2

tr(D∗D)

}
,

then X ′
k → X = (W2A)†W2 ∈ A{1, 2, 4} as k →∞.

(c) If (a) and (b) are valid, then Xk → A†.
(d) If (b) is valid and W2 = P ∗, then X ′

k → X = A†.

(e) If (a) is valid and W1 = Q∗, then Xk → X = A†.

(f) If W1 = Q∗ and 0 < α ≤ 2
tr(B∗B)

,

then Xk → X = Q∗(W2AQ∗)−1W2 ∈ A{1, 2, 4}.
(g) If W2 = P ∗ and 0 < α ≤ 2

tr(B∗B)
,

then Xk → X = W1(P ∗AW1)−1P ∗ ∈ A{1, 2, 3}.
(h) If W1 = Q∗, W2 = P ∗ and 0 < α ≤ 2

tr(B∗B)
,

then Xk → A†.

(i) If W1 = (QN)∗, W2 = (MP )∗ and 0 < α ≤ 2
tr(B∗B)

,

then Xk → A†M,N .

(j) In the case m = n, W1 = P , W2 = Q and 0 < α ≤ 2
tr(B∗B)

,

we get Xk → A#.

Proof. (a) Obviously,

Xk+1 = W1Yk+1W2 = W1(IX + Tk + · · ·+ T q−1
k )YkW2.
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Let Zk = YkW2. Then

Zk+1 = Yk+1W2 = (IX + Tk + · · ·+ T q−1
k )YkW2 = (IX + Tk + · · ·+ T q−1

k )Zk,

where Tk = IX − YkW2AW1 = IX − Zk(AW1). Since

Z0 = Y0W2 = αW ∗
1 A∗W ∗

2 W2 = αW ∗
1 A∗ = α(AW1)∗,

we have [19] Zk → (AW1)†, as k →∞. This implies

T l
k = (IX − ZkAW1)l →

k→∞
(IX − (AW1)

†
AW1)l, for l = 1, 2, . . .

Since ((AW1)
†
AW1)2 = (AW1)

†
AW1, we get

T l
k →

k→∞
IX −

(
l

1

)
(AW1)

†
AW1 +

(
l

2

)
(AW1)

†
AW1 + · · ·+ (−1)l

(
l

l

)
(AW1)

†
AW1

= IX − (AW1)
†
AW1.

Hence

Zk+1 = (IX + Tk + · · ·+ T q−1
k )Zk →

k→∞[
IX + (IX − (AW1)

†
AW1) + · · ·+ (IX − (AW1)

†
AW1)

]
(AW1)

† =

= (AW1)
†
.

Now, it follows that Xk → W1(AW1)
† = X, as k → ∞. Since (AW1(AW1)

†)∗ =
AW1(AW1)

†, we get (AX)∗ = AX and X is an {1, 2, 3} inverse for A.

(b) Let W1 be unitary. For the sequences

X ′
k+1 = W1Y

′
k+1W2 = W1Y

′
k(IY + T ′k + · · ·+ T ′k

q−1)W2

and Z ′k = W1Y
′
k we have

Z ′k+1 = W1Y
′
k+1 = W1Y

′
k(IY + T ′k + · · ·+ T ′k

q−1).

Since T ′k = IY −W2AZ ′k and Z ′0 = W1Y
′
0 = αW1W

∗
1 A∗W ∗

2 = α(W2A)∗, we use the
method from (a) to conclude that Z ′k → (W2A)† and X ′

k+1 → (W2A)†W2 = X.
Since ((W2A)†W2A)∗ = (W2A)†W2A, we get (XA)∗ = XA, and consequently, X is
{1, 2, 4} inverse of A.

(c) Follows from (a) and (b).
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(d) In (b) we obtain Xk → (W2A)†W2 ∈ A{1, 2, 4}. We mention one important
property of the Moore–Penrose inverse [2], [4]:

(8) (UV )† = V †U† ⇐⇒ U†UV V ∗U∗ = V V ∗U∗ and V V †U∗UV = U∗UV.

We take U = W2P and V = Q in the expression AX = PQ(W2PQ)†W2. Operator
W2P is invertible, and Q† is the right inverse of the full rank operator Q. So the
right side of (8) is valid in this case. Now, we get

AX = PQQ†(W2P )−1W2 = P (W2P )−1W2.

Also (AX)∗ = W ∗
2 (P ∗W ∗

2 )−1P ∗. Now, if W2 = P ∗, we get (AX)∗ = AX. On the
other hand, if (b) is valid, then X = (W2A)†W2 is an {1, 2, 4} inverse of A, and we
immediately conclude X = A†.

(e) If W2 is an unitary operator, we have that lim
k→∞

Xk = X = W1(AW1)† ∈
A{1, 2, 3}. Using U = P and V = QW1, we conclude that (8) is valid. Consequently
XA = W1(PQW1)†PQ = W1(QW1)−1P †PQ = W1(QW1)−1Q. Also (XA)∗ =
Q∗(W ∗

1 Q∗)−1W ∗
1 . Obviously, if W1 = Q∗, we get X = A†.

(f), (g) Follows from (6) and the well–known results [13]:

the general solution of the equations (1), (2), (4) is given by

X = Q∗(QQ∗)−1(W2P )−1W2 = Q∗(W2AQ∗)−1W2;

the general solution of the equations (1), (2), (3) is given by

X = W1(QW1)−1(P ∗P )−1P ∗ = W1(P ∗AW1)−1P ∗.

(h) Follows from A† = Q∗(QQ∗)−1(P ∗P )−1P ∗ [3], [13].

(i) Comparing (6) and (7), we conclude that A†M,N can be selected from the class
A{1, 2} using W1 = (QN)∗ and W2 = (MP )∗.

(j) Follows from A# = P (QP )−2Q [5]. ¤

In the case rank(A) = 1 we can use the next known proposition [19]:

Proposition 2.1. Let A be of the rank r = 1. Then

A† =
1

tr(A∗A)
A∗.
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Theorem 2.2. Let rank(A) = 1 and QW1, W2P be invertible operators.
(a) X = W1(AW1)† ∈ A{1, 2, 3} is given by

X =
1

tr((AW1)∗AW1)
W1(AW1)∗.

(b) Y = (W2A)†W2 ∈ A{1, 2, 4} is given by

Y =
1

tr((W2A)∗W2A)
(W2A)∗W2.

(c) Z = W1(W2AW1)−1W2 ∈ A{1, 2} is presented by

Z =
1

tr((W2AW1)∗W2AW1)
W1(W2AW1)∗W2.

Proof. (a) Since QW1 is invertible and P is left invertible, we have that AW1 =
PQW1 6= 0, which implies rank(AW1) ≥ 1. Using rank(AW1) ≤ rank(A) = 1, we
get rank(AW1) = 1. Thus, from Proposition 2.1. we get

(AW1)
† =

1
tr((AW1)∗AW1)

(AW1)∗.

Now we prove that X = W1(AW1)
† is an {1, 2, 3} inverse of A. It is easy to see

that W1(AW1)
† is an {2, 3} inverse of A. In order to prove that AXA = A holds,

we use the property (8) with U = P and V = QW1. Thus

AXA = PQW1(PQW1)
†
PQ = PQW1(QW1)−1P †PQ = PQ = A.

(b) In a similar way can be proved that rank(W2A) = 1. We just need to prove
that AY A = A. We also use (8) with U = W2P and V = Q. Then

AY A = PQ(W2PQ)†W2PQ = PQQ†(W2P )−1W2PQ = PQ = A. ¤

3. Error bounds

Since X = W1(W2AW1)−1W2 and Xk = W1YkW2, we have

‖X −Xk‖ ≤ ‖W1‖ · ‖(W2AW1)−1 − Yk‖ · ‖W2‖.
So we just have to make bounds for ‖(W2AW1)−1 − Yk‖. Operator B = W2AW1

is invertible, so B∗B is invertible and positive–definite. The spectrum of B∗B is
σ(B∗B) = {λ1, λ2, . . . λr} and we can take that

0 < λ1 < λ2 < · · · < λr.

We need some matrix norm ‖ · ‖ such that ‖T0‖ < 1. Let ‖ · ‖sp be the spectral
norm, i.e.

‖C‖sp =
√

maxλ(C∗C),

where max λ(C∗C) denotes the greatest eigenvalue of C∗C.
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Lemma 3.1. Let T0 = I − αB∗B and

0 < α ≤ 2
tr(B∗B)

.

If rank(A) ≥ 2 then ‖T0‖sp < 1.

Proof. Since T ∗0 T0 = I − 2αB∗B + α2(B∗B)2, we get

λ ∈ σ(B∗B) ⇐⇒ 1− 2αλ + α2λ2 = (αλ− 1)2 ∈ σ(T ∗0 T0).

So (αλ− 1)2 < 1 if and only if αλ < 2 for all λ ∈ σ(B∗B). We see that ‖T0‖sp < 1

is valid for 0 < α <
2
λr

. Since tr(B∗B) =
r∑

j=1

λj > λr, we get

2
tr(B∗B)

<
2
λr

. ¤

We use Lemma 3.1 and the error estimates for the norm ‖(W2AW1)−1 − Yk‖,
given in [10], [8], [7], to verify the next theorem:

Theorem 3.1. Providing that assumptions of Theorem 2.1. are valid, we get:

(a) ‖X −Xk‖sp ≤ ‖YkTk‖sp

1− ‖Tk‖sp
‖W1‖sp‖W2‖sp,

(b) ‖X −Xk‖sp ≤ ‖Tk−1‖q−1
sp

‖Yk−1Tk−1‖sp

1− ‖Tk−1‖sp
‖W1‖sp‖W2‖sp,

(c) ‖X −Xk‖sp ≤ ‖T0‖qk

sp

‖Y0‖sp

1− ‖T0‖sp
‖W1‖sp‖W2‖sp,

(d) ‖X −Xk‖sp ≤ ‖Y ′
k‖sp‖T ′k‖sp

1− ‖T ′k‖sp
‖W1‖sp‖W2‖sp,

(e) ‖X −Xk‖sp ≤
‖Y ′

k‖sp‖T ′k−1‖q
sp

1− ‖T ′k−1‖q
sp

‖W1‖sp‖W2‖sp,

(f) ‖X −Xk‖sp ≤
‖Y ′

k‖sp‖T ′k−1‖sp‖(T ′k−1)
q−1‖sp

1− ‖T ′k−1‖sp
‖W1‖sp‖W2‖sp,

(f) The order of convergence of the defined processes is q, i.e.

‖X −Xk+1‖sp = O
(‖X −Xk‖q

sp

)
, k →∞.

If W1 and W2 are unitary operators, then X = A†, by Theorem 2.1. So we
immediately get the error bounds for ‖A† −Xk‖sp, since ‖W1‖sp = ‖W2‖sp = 1.

Now we look for the optimal value of α.
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Proposition 3.1. Let rank(A) ≥ 2. In each case of Theorem 2.1., the optimal
value of α is the upper bound for the interval given in that case.

Proof. Since I and αBB∗ are commuting selfadjoint operators, the proof is identical
to the corresponding in [19, Proposition 1]. ¤

Remark 3.1. It is well-known that the hyper–power method for computing the in-
verse of an invertible operator is self–correcting, but it is not self–correcting for
computing generalized inverses [17], [18]. There is the well-known Zielke’s iterative
refinement process which solves the self–correcting problem. Namely, the iterative
refinement for computing the Moore–Penrose inverse of A has the form:

X̃k = A∗X∗
kXkX∗

kA∗

T̃k = I − X̃kA

Xk+1 = (I + T̃k + · · ·+ T̃ q−1
k )X̃k.

This modification is not necessary in each step.
Our iterative method for computing the sequence Yk is self–correcting, so this

method is self–correcting for computing the Zk and Xk. We do not need any
iterative refinements. So we solve, on an elementary way, the self–correcting problem
for the iterative computation of generalized inverses.

4. Using the Neumann-type expansion

It is well–known [16], [19] that the q-th order hyper–power method generates the
partial sums of the infinite series

∞∑

i=0

[
(I −X0A)i

X0

]
or

∞∑

i=0

[
X0 (I −AX0)

i
]
,

i.e.

Xk =
qk−1∑

i=0

[
(I −X0A)i

X0

]
or Xk =

qk−1∑

i=0

[
X0 (I −AX0)

i
]
.

In the case ρ(I − X0A) < 1 the inverse A−1 of a nonsingular matrix admits the
Neumann-type expansion [16]

A−1 =
∞∑

i=0

[
(I −X0A)i

X0

]
.

Similarly, in the case ρ(I −AX0) < 1

A−1 =
∞∑

i=0

[
X0 (I −AX0)

i
]
.
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Zlobec [19] shown that A† can be computed by means of the infinite series under
the assumption 0 < α ≤ 2

tr(A∗A) .

Our strategy is to adapt the infinite series in order to compute (W2AW1)−1. In
this way, we develop corresponding iterative method for computing the reflexive
generalized inverses W1(W2AW1)−1W2. We determine conditions for the defined
method to generate the {1, 2, 3}, {1, 2, 4} inverses, the Moore-Penrose or the group
inverse.

If q ≥ 2, rank(A) = r ≥ 2, B = W2AW1, C = AW1, D = W2A, the iterative
processes, based on the Neumann-type expansion, are defined as follows:

X0 = X ′
0 = αB∗, 0 < α ≤ 2

tr(B∗B)
,

Xk = W1 ·
qk−1∑

i=0

[
(I −X0B)i

X0

]
·W2, or

X ′
k = W1 ·

qk−1∑

i=0

[
X0 (I −BX0)

i
]
·W2, k = 0, 1, . . .

The following results, analogous to the results from Theorem 2.1. can be easily
verified.

Theorem 4.1. Let rank(A) = r ≥ 2 and QW1, W2P be invertible operators.

(a) If W2 is an unitary operator and

0 < α ≤ min
{

2
tr(B∗B)

,
2

tr(C∗C)

}
,

then Xk → X = W1(AW1)† as k →∞ and X is an {1, 2, 3} inverse of A.
(b) If W1 is an unitary operator and

0 < α ≤ min
{

2
tr(B∗B)

,
2

tr(D∗D)

}
,

then X ′
k → X = (W2A)†W2 ∈ A{1, 2, 4} as k →∞.

(c) If (a) and (b) are valid, then Xk → A†.
(d) If (b) is valid and W2 = P ∗, then X ′

k → X = A†.

(e) If (a) is valid and W1 = Q∗, then Xk → X = A†.

(f) If W1 = Q∗ and 0 < α ≤ 2
tr(B∗B)

,

then Xk → X = Q∗(W2AQ∗)−1W2 ∈ A{1, 2, 4}.
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(g) If W2 = P ∗ and 0 < α ≤ 2
tr(B∗B)

,

then Xk → X = W1(P ∗AW1)−1P ∗ ∈ A{1, 2, 3}.
(h) If W1 = Q∗, W2 = P ∗ and 0 < α ≤ 2

tr(B∗B)
,

then Xk → A†.

(i) If W1 = (QN)∗, W2 = (MP )∗ and 0 < α ≤ 2
tr(B∗B)

,

then Xk → A†M,N .

(j) In the case m = n, W1 = P , W2 = Q and 0 < α ≤ 2
tr(B∗B)

,

we get Xk → A#.

Proof. Follows from

Xk = W1 ·
qk−1∑

i=0

[
(I −X0B)i

X0

]
·W2 =

= W1 ·
qk−1∑

i=0

[
(I −X0W2AW1)

i
X0W2

]
, k = 0, 1, . . .

X ′
k = W1 ·

qk−1∑

i=0

[
X0 (I −BX0))

i
X0

]
·W2 =

=
qk−1∑

i=0

[
W1X0 (I −W2AW1X0)

i
]
·W2, k = 0, 1, . . . ¤

Remark 4.1. Now we give some comparisons with the paper of Tanabe [16]. In [16]
there are given necessary and sufficient conditions for the starting approximation
X0 of the hyper-power iterative method or the Neumann-type series, ensuring con-
vergence of these methods to an arbitrary reflexive generalized inverse. Advantages
of this paper related to [16] are:

(a) It is more convenient to use the initial conditions in Theorem 2.1. than the
conditions from [16, Theorem 2.1.].

(b) We give a few error estimates.
(c) We know exact conditions ensuring convergence of defined processes to the

{1, 2, 3} inverses, the {1, 2, 4} inverses, the Moore-Penrose inverse, the group
inverse or the weighted Moore–Penrose inverse of A.
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5. Examples

Example 5.1. Consider the matrix A =
(

1 0

−1 0

0 1

)
. If we select unitary matrix

W1 =
(

0 1

1 0

)
, and W2 =

(
1 0 1

0 1 0

)
, we get

B = W2AW1 =
(

1 1

0 −1

)
, tr(BB∗) = 3,

D = W2A =
(

1 1

−1 0

)
, tr(DD∗) = 3,

α = min
{

2
3
,
2
3

}
.

Using the package MATHEMATICA we construct the following iterative process of
the order 4:

Y0 = αB∗ =
( 2

3 0

2
3 − 2

3

)
,

T0 = I −BY0 =
(− 1

3
2
3

2
3

1
3

)
,

Y1 = Y0(I + T0 + T 2
0 + T 3

0 ) =
( 56

81
56
81

0 − 56
81

)
.

T1 = I −BY1 =
( 25

81 0

0 25
81

)
,

Y2 = Y1(I + T1 + T 2
1 + T 3

1 ) =
( 42656096

43046721
42656096
43046721

0 − 42656096
43046721

)
.

In a similar way can be obtained

Y3 =
( 3433683797009448119270886198656

3433683820292512484657849089821
3433683797009448119270886198656
3433683820292512484657849089821

0 − 3433683797009448119270886198656
3433683820292512484657849089821

)
.

Now we get the following sequence Xk = W1YkW2:

X1=
(

0 − 56
81 0

56
81

56
81

56
81

)
,

X2=
(

0 − 42656096
43046721 0

42656096
43046721

42656096
43046721

42656096
43046721

)
,

X3=
(

0 −3433683797009448119270886198656
3433683820292512484657849089821 0

3433683797009448119270886198656
3433683820292512484657849089821

3433683797009448119270886198656
3433683820292512484657849089821

3433683797009448119270886198656
3433683820292512484657849089821

)
.

We have obtained a sequence converging to X =
(

0 −1 0

1 1 1

)
∈ A{1, 2, 4}.
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Example 5.2. For the same matrices A, W1 and W2 = P ∗ =
(

1 −1 0

0 0 1

)
, we get

B = W2AW1 =
(

0 2

1 0

)
, tr(BB∗) = 5,

D = W2A =
(

2 0

0 1

)
, tr(DD∗) = 5,

α = min
{

2
5
,
2
5

}
.

The following sequence Xk = W1YkW2 can be obtained:

X1 =
( 272

625 − 272
625 0

0 0 544
625

)
,

X2 =
( 76272421952

152587890625 − 76272421952
152587890625 0

0 0 152544843904
152587890625

)
,

The first row of X3 is

271050543121374391659953053961243098931900672
542101086242752217003726400434970855712890625 − 271050543121374391659953053961243098931900672

542101086242752217003726400434970855712890625 0

and the second row of X3 is

0 0 542101086242748783319906107922486197863801344
542101086242752217003726400434970855712890625 .

The limit of this sequence is X =
(

1
2 − 1

2 0

0 0 1

)
= A†.

Example 5.3. For the same matrix A and W1 = Q∗ =
(

1 0

0 1

)
, W2 = P ∗ =(

1 −1 0

0 0 1

)
, we can generate the same sequence Xk as in Example 5.2.

Example 5.4. Now we expand Example 5.1. to include illustrations for the values
of α less than the optimal, or for values which do not produce the convergence.

Modifying only α = 1/2 < 2/3 in Example 5.1., we obtain the following sequence:

X1=
( 3

16 − 11
16

3
16

11
16

1
2

11
16

)
,

X2=
( 987

65536 − 63939
65536

987
65536

63939
65536

7869
8192

63939
65536

)
,

X3=
( 10610209857723

18446744073709551616 − 18446726906029374051
18446744073709551616

10610209857723
18446744073709551616

18446726906029374051
18446744073709551616

2305839536977439541
2305843009213693952

18446726906029374051
18446744073709551616

)
.
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The obtained sequence converges to the same matrix as in Example 5.1., but the
convergence is slower.

Similarly, using α = 1/3 < 1/2 < 2/3 we obtain the following:

X1=
( 7

27 − 47
81

7
27

47
81

26
81

47
81

)
,

X2=
( 726103

14348907 − 39522143
43046721

726103
14348907

39522143
43046721

37343834
43046721

39522143
43046721

)
,

X3=
( 83909608561183162716808087
1144561273430837494885949696427 −3433276514496608404104017015327

3433683820292512484657849089281
83909608561183162716808087

1144561273430837494885949696427

3433276514496608404104017015327
3433683820292512484657849089281

3433024785670924854615866591066
3433683820292512484657849089281

3433276514496608404104017015327
3433683820292512484657849089281

)
.

The values of α, greather than the optimal one leads to the divergence of the
methods. For example, α = 1 > 2/3 imply the following divergent sequence:

X1=
(−3 1 −3

−1 2 −1

)
,

X2=
(−987 609 −987

−609 378 −609

)
,

X3=
(−10610209857723 6557470319841 −10610209857723

−6557470319841 4052739537882 −6557470319841

)
.

Finally, a small decreasing of the parameter α near the optimal value 2
tr(B∗B) imply

slightly slowing down the speed of the convergence. For example, α = 2/3−0.001
generates the following sequence:

X1=
(

0.00221225 −0.692092 0.00221225

0.692092 0.68988 0.692092

)
,

X2=
(

0.000255561 −0.991009 0.000255561

0.991009 0.990753 0.991009

)
,

X3=
(

7.1253910−10 −1. 7.1253910−10

1. 1. 1.

)
.
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