UNIVERSAL ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

PREDRAG S. STANIMIROVIĆ AND DRAGAN S. DJORDJEVIĆ

ABSTRACT. In this paper we construct a few iterative processes for computing $\{1, 2\}$ inverses of a linear bounded operator, based on the hyper-power iterative method or the Neumann-type expansion. Under the suitable conditions these methods converge to the $\{1, 2, 3\}$ or $\{1, 2, 4\}$ inverses. Also, we specify conditions when the iterative processes converge to the Moore-Penrose inverse, the weighted Moore-Penrose inverse or to the group inverse. A few error estimates are derived. The advantages of the introduced methods over the Tanabe's method [16] for computing the reflexive generalized inverses are also investigated.

KEY WORDS: generalized inverses, Moore–Penrose inverse, hyper–power method, Neumann–type expansion

1. INTRODUCTION

Let X and Y be two finite dimensional complex Hilbert spaces and let $A : X \to Y$ be a linear operator. There are well-known properties of generalized inverses of A:

(1)
$$AXA = A$$
, (2) $XAX = X$, (3) $(AX)^* = AX$, (4) $(XA)^* = XA$.

For a subset S of the set $\{1, 2, 3, 4\}$, the set of operators obeying the conditions contained in S is denoted by $A\{S\}$. An operator in $A\{S\}$ is called an S-inverse of A and is denoted by $A^{(S)}$. In particular, for any A, the set $A\{1, 2, 3, 4\}$ consists of a single element, the Moore-Penrose inverse of A, denoted by A^{\dagger} [9]. The group inverse $A^{\#}$ is the unique operator which satisfies (1), (2) and

$$AA^{\#} = A^{\#}A$$

Any element from the class $A\{1,2\}$ is also called the reflexive generalized inverse of A.

¹⁹⁹¹ Mathematics Subject Classification. 65F20, 65F30, 15A24.

Let A = PQ be a full-rank decomposition of A, where P and Q are two full rank linear operators. Then all $\{1, 2\}$ inverses of A can be represented in the form

(6)
$$X = W_1 (QW_1)^{-1} (W_2 P)^{-1} W_2 = W_1 (W_2 A W_1)^{-1} W_2,$$

where W_1 and W_2 are suitable choosen operators, such that QW_1 and W_2P are invertible [13].

The weighted Moore-Penrose inverse is investigated in [3], [12]. For the sake of completeness we restate here the main results of these papers. Let there be given positive-definite (and hermitian) operators M and N. For any operator A there exists the unique solution $X = A_{M,N}^{\dagger} \in A\{1,2\}$ satisfying the following equations in X [3], [12]:

$$(3M) \qquad (MAX)^* = MAX \qquad (4N) \qquad (XAN)^* = XAN.$$

If A = PQ is a full rank factorization of A, then [12]:

 $\mathbf{2}$

(7)
$$A_{M,N}^{\dagger} = (QN)^* (Q(QN)^*)^{-1} ((MP)^*P)^{-1} (MP)^*.$$

The hyper-power method of the order 2 dates back to the well-known paper of Schulz [14]. Altman devised the hyper-power method of any arbitrary order $q \ge 2$, for inverting a nonsingular bounded operator on a Banach space [1]. In [10] the convergence of the same method is proved under the condition which is weaker than the one assumed in [1], and some better error estimates are derived.

Zlobec [19] and Petryshyn [11] showed that the qth order hyper-power iterative method with $q \ge 2$ for the determination of inverses of nonsingular matrices and linear operators, can be generalized to the determination of the Moore-Penrose inverse of an arbitrary matrix, or a bounded linear operator with closed range.

Zlobec in [19] defined the following two hyper-power iterative methods of an arbitrary high order $q \ge 2$:

$$T_k = I_X - Y_k A,$$

 $Y_{k+1} = (I_X + T_k + \dots + T_k^{q-1})Y_k, \quad k = 0, 1, \dots$

$$T'_{k} = I_{Y} - AY'_{k},$$

$$Y'_{k+1} = Y'_{k}(I_{Y} + T'_{k} + \dots + {T'_{k}}^{q-1}), \quad k = 0, 1, \dots$$

It is well-known [19], that if we take

$$Y_0 = Y'_0 = \alpha A^*, \qquad 0 < \alpha \le \frac{2}{\operatorname{tr}(A^*A)},$$

then $\lim_{k \to \infty} Y_k = \lim_{k \to \infty} Y'_k = A^{\dagger}$.

The process which generates the sequence Y_k is more superior than the process which generates the sequence Y'_k in the case m > n [6]. The hyper-power iterative method of the order 2 is studied in [15] in view of the singular value decomposition of a matrix. In [6] the hyper-power iterative method is adapted for computing $A^{\dagger}B$, where A and B are arbitrary complex matrices with equal number of rows.

The paper is organized as follows. In Section 2 we construct iterative methods for computing the reflexive generalized inverses of a linear operator. These methods are based on the hyper-power iterative methods. We select two arbitrary matrices and adequate initial values for these methods to generate different generalized inverses for the concerned operator. In Section 3 we give a few error estimates, look for the optimal value of the parameter α and show that the method is self-correcting. In Section 4 we develop analogous iterative methods which arise from the Neumanntype expansion and compare our method with the Tanabe's method [16]. Finally, we give several examples which illustrate our theory.

2. Iterative methods

In the following lemma we introduce an improvement of the hyper-power iterative method, and construct iterative method which generates all of the reflexive generalized inverses.

Lemma 2.1. Let rank $(A) = r \ge 2$ and W_1 , W_2 are two arbitrary operators, such that W_2AW_1 is invertible operator. If $q \ge 2$ is an integer, then the following two iterative processes:

$$Y_0 = Y'_0 = \alpha (W_2 A W_1)^*, \qquad 0 < \alpha \le \frac{2}{\operatorname{tr}((W_2 A W_1)^* W_2 A W_1)},$$

$$T_{k} = T_{X} - Y_{k}W_{2}AW_{1},$$

$$Y_{k+1} = (I_{X} + T_{k} + \dots + T_{k}^{q-1})Y_{k}$$

$$X_{k+1} = W_{1}Y_{k+1}W_{2} \quad k = 0, 1, \dots$$

TZ TTZ ATTZ

$$T'_{k} = I_{Y} - W_{2}AW_{1}Y'_{k},$$

$$Y'_{k+1} = Y'_{k}(I_{Y} + T'_{k} + \dots + {T'_{k}}^{q-1}),$$

$$X'_{k+1} = W_{1}Y'_{k+1}W_{2} \quad k = 0, 1, \dots$$

generate the class of $\{1,2\}$ inverses of A.

Proof. Using the results form [19], we conclude

$$\lim_{k \to \infty} Y_k = \lim_{k \to \infty} Y'_k = (W_2 A W_1)^{\dagger} = (W_2 A W_1)^{-1}.$$

According to (6), it is obvious that

m

$$\lim_{k \to \infty} X_k = \lim_{k \to \infty} X'_k = X = W_1 (W_2 A W_1)^{-1} W_2 \in A\{1, 2\}.$$

Therefore, we just formed two iterative processes for computing all of the $\{1, 2\}$ inverses of A. However, under the suitable conditions, we can get some iterative methods for computing $\{1, 2, 3\}$ or $\{1, 2, 4\}$ inverses, the Moore-Penrose inverse, the weighted Moore-Penrose inverse or the group inverse of A. For the sake of simplicity we use the following notation: $B = W_2 A W_1$, $C = A W_1$, $D = W_2 A$.

Theorem 2.1. Let $\operatorname{rank}(A) = r \ge 2$ and QW_1 , W_2P be invertible operators.

(a) If W_2 is an unitary operator with respect to the considered scalar product and

$$0 < \alpha \le \min\left\{\frac{2}{\operatorname{tr}(B^*B)}, \frac{2}{\operatorname{tr}(C^*C)}\right\},\,$$

then $X_k \to X = W_1(AW_1)^{\dagger} \in A\{1, 2, 3\}$ as $k \to \infty$.

(b) If W_1 is an unitary operator with respect to the considered scalar product and

$$0 < \alpha \le \min\left\{\frac{2}{\operatorname{tr}(B^*B)}, \frac{2}{\operatorname{tr}(D^*D)}\right\},\,$$

then $X'_k \to X = (W_2 A)^{\dagger} W_2 \in A\{1, 2, 4\}$ as $k \to \infty$.

- (c) If (a) and (b) are valid, then $X_k \to A^{\dagger}$.
- (d) If (b) is valid and $W_2 = P^*$, then $X'_k \to X = A^{\dagger}$.
- (e) If (a) is valid and $W_1 = Q^*$, then $X_k \to X = A^{\dagger}$.
- (f) If $W_1 = Q^*$ and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$, then $X_k \to X = Q^*(W_2AQ^*)^{-1}W_2 \in A\{1, 2, 4\}$.
- (g) If $W_2 = P^*$ and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$, then $X_k \to X = W_1(P^*AW_1)^{-1}P^* \in A\{1, 2, 3\}$.
- (h) If $W_1 = Q^*$, $W_2 = P^*$ and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$, then $X_k \to A^{\dagger}$.
- (i) If $W_1 = (QN)^*$, $W_2 = (MP)^*$ and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$, then $X_k \to A_{MN}^{\dagger}$.
- (j) In the case m = n, $W_1 = P$, $W_2 = Q$ and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$, we get $X_k \to A^{\#}$.

Proof. (a) Obviously,

4

$$X_{k+1} = W_1 Y_{k+1} W_2 = W_1 (I_X + T_k + \dots + T_k^{q-1}) Y_k W_2.$$

Let $Z_k = Y_k W_2$. Then

$$Z_{k+1} = Y_{k+1}W_2 = (I_X + T_k + \dots + T_k^{q-1})Y_kW_2 = (I_X + T_k + \dots + T_k^{q-1})Z_k,$$

where $T_k = I_X - Y_k W_2 A W_1 = I_X - Z_k (A W_1)$. Since

$$Z_0 = Y_0 W_2 = \alpha W_1^* A^* W_2^* W_2 = \alpha W_1^* A^* = \alpha (AW_1)^*,$$

we have [19] $Z_k \to (AW_1)^{\dagger}$, as $k \to \infty$. This implies

$$T_k^l = (I_X - Z_k A W_1)^l \xrightarrow[k \to \infty]{} (I_X - (A W_1)^{\dagger} A W_1)^l, \text{ for } l = 1, 2, \dots$$

Since $((AW_1)^{\dagger}AW_1)^2 = (AW_1)^{\dagger}AW_1$, we get

$$T_{k}^{l} \xrightarrow[k \to \infty]{} I_{X} - {l \choose 1} (AW_{1})^{\dagger} AW_{1} + {l \choose 2} (AW_{1})^{\dagger} AW_{1} + \dots + (-1)^{l} {l \choose l} (AW_{1})^{\dagger} AW_{1}$$

= $I_{X} - (AW_{1})^{\dagger} AW_{1}.$

Hence

$$Z_{k+1} = (I_X + T_k + \dots + T_k^{q-1}) Z_k \xrightarrow[k \to \infty]{}$$
$$\left[I_X + (I_X - (AW_1)^{\dagger} AW_1) + \dots + (I_X - (AW_1)^{\dagger} AW_1) \right] (AW_1)^{\dagger} = (AW_1)^{\dagger}.$$

Now, it follows that $X_k \to W_1(AW_1)^{\dagger} = X$, as $k \to \infty$. Since $(AW_1(AW_1)^{\dagger})^* = AW_1(AW_1)^{\dagger}$, we get $(AX)^* = AX$ and X is an $\{1, 2, 3\}$ inverse for A.

(b) Let W_1 be unitary. For the sequences

$$X'_{k+1} = W_1 Y'_{k+1} W_2 = W_1 Y'_k (I_Y + T'_k + \dots + T'_k) W_2$$

and $Z'_k = W_1 Y'_k$ we have

$$Z'_{k+1} = W_1 Y'_{k+1} = W_1 Y'_k (I_Y + T'_k + \dots + T'_k).$$

Since $T'_k = I_Y - W_2 A Z'_k$ and $Z'_0 = W_1 Y'_0 = \alpha W_1 W_1^* A^* W_2^* = \alpha (W_2 A)^*$, we use the method from (a) to conclude that $Z'_k \to (W_2 A)^{\dagger}$ and $X'_{k+1} \to (W_2 A)^{\dagger} W_2 = X$. Since $((W_2 A)^{\dagger} W_2 A)^* = (W_2 A)^{\dagger} W_2 A$, we get $(XA)^* = XA$, and consequently, X is $\{1, 2, 4\}$ inverse of A.

(c) Follows from (a) and (b).

6

(d) In (b) we obtain $X_k \to (W_2 A)^{\dagger} W_2 \in A\{1, 2, 4\}$. We mention one important property of the Moore–Penrose inverse [2], [4]:

(8)
$$(UV)^{\dagger} = V^{\dagger}U^{\dagger} \iff U^{\dagger}UVV^*U^* = VV^*U^* \text{ and } VV^{\dagger}U^*UV = U^*UV.$$

We take $U = W_2 P$ and V = Q in the expression $AX = PQ(W_2 PQ)^{\dagger}W_2$. Operator $W_2 P$ is invertible, and Q^{\dagger} is the right inverse of the full rank operator Q. So the right side of (8) is valid in this case. Now, we get

$$AX = PQQ^{\dagger}(W_2P)^{-1}W_2 = P(W_2P)^{-1}W_2.$$

Also $(AX)^* = W_2^* (P^* W_2^*)^{-1} P^*$. Now, if $W_2 = P^*$, we get $(AX)^* = AX$. On the other hand, if (b) is valid, then $X = (W_2 A)^{\dagger} W_2$ is an $\{1, 2, 4\}$ inverse of A, and we immediately conclude $X = A^{\dagger}$.

(e) If W_2 is an unitary operator, we have that $\lim_{k\to\infty} X_k = X = W_1(AW_1)^{\dagger} \in A\{1,2,3\}$. Using U = P and $V = QW_1$, we conclude that (8) is valid. Consequently $XA = W_1(PQW_1)^{\dagger}PQ = W_1(QW_1)^{-1}P^{\dagger}PQ = W_1(QW_1)^{-1}Q$. Also $(XA)^* = Q^*(W_1^*Q^*)^{-1}W_1^*$. Obviously, if $W_1 = Q^*$, we get $X = A^{\dagger}$.

(f), (g) Follows from (6) and the well–known results [13]:

the general solution of the equations (1), (2), (4) is given by

$$X = Q^* (QQ^*)^{-1} (W_2 P)^{-1} W_2 = Q^* (W_2 A Q^*)^{-1} W_2;$$

the general solution of the equations (1), (2), (3) is given by

$$X = W_1(QW_1)^{-1}(P^*P)^{-1}P^* = W_1(P^*AW_1)^{-1}P^*$$

(h) Follows from $A^{\dagger} = Q^* (QQ^*)^{-1} (P^*P)^{-1} P^*$ [3], [13].

(i) Comparing (6) and (7), we conclude that $A_{M,N}^{\dagger}$ can be selected from the class $A\{1,2\}$ using $W_1 = (QN)^*$ and $W_2 = (MP)^*$.

(j) Follows from $A^{\#} = P(QP)^{-2}Q$ [5]. \Box

In the case rank(A) = 1 we can use the next known proposition [19]:

Proposition 2.1. Let A be of the rank r = 1. Then

$$A^{\dagger} = \frac{1}{\operatorname{tr}(A^*A)} A^*.$$

 $\overline{7}$

Theorem 2.2. Let rank(A) = 1 and QW_1 , W_2P be invertible operators.

(a) $X = W_1(AW_1)^{\dagger} \in A\{1, 2, 3\}$ is given by

$$X = \frac{1}{\operatorname{tr}((AW_1)^* AW_1)} W_1 (AW_1)^*.$$

(b) $Y = (W_2 A)^{\dagger} W_2 \in A\{1, 2, 4\}$ is given by

$$Y = \frac{1}{\operatorname{tr}((W_2 A)^* W_2 A)} (W_2 A)^* W_2.$$

(c)
$$Z = W_1(W_2AW_1)^{-1}W_2 \in A\{1,2\}$$
 is presented by

$$Z = \frac{1}{\operatorname{tr}((W_2AW_1)^*W_2AW_1)}W_1(W_2AW_1)^*W_2.$$

Proof. (a) Since QW_1 is invertible and P is left invertible, we have that $AW_1 = PQW_1 \neq 0$, which implies $\operatorname{rank}(AW_1) \geq 1$. Using $\operatorname{rank}(AW_1) \leq \operatorname{rank}(A) = 1$, we get $\operatorname{rank}(AW_1) = 1$. Thus, from Proposition 2.1. we get

$$(AW_1)^{\dagger} = \frac{1}{\operatorname{tr}((AW_1)^*AW_1)}(AW_1)^*.$$

Now we prove that $X = W_1(AW_1)^{\dagger}$ is an $\{1, 2, 3\}$ inverse of A. It is easy to see that $W_1(AW_1)^{\dagger}$ is an $\{2, 3\}$ inverse of A. In order to prove that AXA = A holds, we use the property (8) with U = P and $V = QW_1$. Thus

$$AXA = PQW_1(PQW_1)^{\dagger}PQ = PQW_1(QW_1)^{-1}P^{\dagger}PQ = PQ = A.$$

(b) In a similar way can be proved that $\operatorname{rank}(W_2A) = 1$. We just need to prove that AYA = A. We also use (8) with $U = W_2P$ and V = Q. Then

$$AYA = PQ(W_2PQ)^{\dagger}W_2PQ = PQQ^{\dagger}(W_2P)^{-1}W_2PQ = PQ = A.$$

3. Error bounds

Since
$$X = W_1 (W_2 A W_1)^{-1} W_2$$
 and $X_k = W_1 Y_k W_2$, we have

$$||X - X_k|| \le ||W_1|| \cdot ||(W_2 A W_1)^{-1} - Y_k|| \cdot ||W_2||.$$

So we just have to make bounds for $||(W_2AW_1)^{-1} - Y_k||$. Operator $B = W_2AW_1$ is invertible, so B^*B is invertible and positive-definite. The spectrum of B^*B is $\sigma(B^*B) = \{\lambda_1, \lambda_2, \ldots, \lambda_r\}$ and we can take that

$$0 < \lambda_1 < \lambda_2 < \cdots < \lambda_r.$$

We need some matrix norm $\|\cdot\|$ such that $\|T_0\| < 1$. Let $\|\cdot\|_{sp}$ be the spectral norm, i.e.

$$||C||_{sp} = \sqrt{\max \lambda(C^*C)}$$

where $\max \lambda(C^*C)$ denotes the greatest eigenvalue of C^*C .

Lemma 3.1. Let $T_0 = I - \alpha B^* B$ and

$$0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}.$$

If $rank(A) \ge 2$ then $||T_0||_{sp} < 1$.

Proof. Since $T_0^*T_0 = I - 2\alpha B^*B + \alpha^2 (B^*B)^2$, we get

$$\lambda \in \sigma(B^*B) \Longleftrightarrow 1 - 2\alpha\lambda + \alpha^2\lambda^2 = (\alpha\lambda - 1)^2 \in \sigma(T_0^*T_0).$$

So $(\alpha\lambda - 1)^2 < 1$ if and only if $\alpha\lambda < 2$ for all $\lambda \in \sigma(B^*B)$. We see that $||T_0||_{sp} < 1$ is valid for $0 < \alpha < \frac{2}{\lambda_r}$. Since $\operatorname{tr}(B^*B) = \sum_{j=1}^r \lambda_j > \lambda_r$, we get

$$\frac{2}{\operatorname{tr}(B^*B)} < \frac{2}{\lambda_r}. \qquad \qquad \square$$

We use Lemma 3.1 and the error estimates for the norm $||(W_2AW_1)^{-1} - Y_k||$, given in [10], [8], [7], to verify the next theorem:

Theorem 3.1. Providing that assumptions of Theorem 2.1. are valid, we get:

$$\begin{aligned} \text{(a)} & \|X - X_k\|_{sp} \leq \frac{\|Y_k T_k\|_{sp}}{1 - \|T_k\|_{sp}} \|W_1\|_{sp} \|W_2\|_{sp}, \\ \text{(b)} & \|X - X_k\|_{sp} \leq \|T_{k-1}\|_{sp}^{q-1} \frac{\|Y_{k-1} T_{k-1}\|_{sp}}{1 - \|T_{k-1}\|_{sp}} \|W_1\|_{sp} \|W_2\|_{sp}, \\ \text{(c)} & \|X - X_k\|_{sp} \leq \|T_0\|_{sp}^{q^k} \frac{\|Y_0\|_{sp}}{1 - \|T_0\|_{sp}} \|W_1\|_{sp} \|W_2\|_{sp}, \\ \text{(d)} & \|X - X_k\|_{sp} \leq \frac{\|Y_k'\|_{sp} \|T_k'\|_{sp}}{1 - \|T_k'\|_{sp}} \|W_1\|_{sp} \|W_2\|_{sp}, \\ \text{(e)} & \|X - X_k\|_{sp} \leq \frac{\|Y_k'\|_{sp} \|T_{k-1}'\|_{sp}^q}{1 - \|T_{k-1}'\|_{sp}^q} \|W_1\|_{sp} \|W_2\|_{sp}, \\ \text{(f)} & \|X - X_k\|_{sp} \leq \frac{\|Y_k'\|_{sp} \|T_{k-1}'\|_{sp} \|(T_{k-1}')^{q-1}\|_{sp}}{1 - \|T_{k-1}'\|_{sp}} \|W_1\|_{sp} \|W_2\|_{sp}, \end{aligned}$$

(f) The order of convergence of the defined processes is q, i.e.

$$||X - X_{k+1}||_{sp} = O(||X - X_k||_{sp}^q), \quad k \to \infty.$$

If W_1 and W_2 are unitary operators, then $X = A^{\dagger}$, by Theorem 2.1. So we immediately get the error bounds for $||A^{\dagger} - X_k||_{sp}$, since $||W_1||_{sp} = ||W_2||_{sp} = 1$.

Now we look for the optimal value of α .

8

Proposition 3.1. Let $\operatorname{rank}(A) \geq 2$. In each case of Theorem 2.1., the optimal value of α is the upper bound for the interval given in that case.

Proof. Since I and αBB^* are commuting selfadjoint operators, the proof is identical to the corresponding in [19, Proposition 1]. \Box

Remark 3.1. It is well-known that the hyper-power method for computing the inverse of an invertible operator is self-correcting, but it is not self-correcting for computing generalized inverses [17], [18]. There is the well-known Zielke's iterative refinement process which solves the self-correcting problem. Namely, the iterative refinement for computing the Moore-Penrose inverse of A has the form:

$$\tilde{X}_k = A^* X_k^* X_k X_k^* A^*$$
$$\tilde{T}_k = I - \tilde{X}_k A$$
$$X_{k+1} = (I + \tilde{T}_k + \dots + \tilde{T}_k^{q-1}) \tilde{X}_k.$$

This modification is not necessary in each step.

Our iterative method for computing the sequence Y_k is self-correcting, so this method is self-correcting for computing the Z_k and X_k . We do not need any iterative refinements. So we solve, on an elementary way, the self-correcting problem for the iterative computation of generalized inverses.

4. Using the Neumann-type expansion

It is well-known [16], [19] that the q-th order hyper-power method generates the partial sums of the infinite series

$$\sum_{i=0}^{\infty} \left[(I - X_0 A)^i X_0 \right] \quad \text{or} \quad \sum_{i=0}^{\infty} \left[X_0 \left(I - A X_0 \right)^i \right],$$

i.e.

$$X_{k} = \sum_{i=0}^{q^{k}-1} \left[(I - X_{0}A)^{i} X_{0} \right] \quad \text{or} \quad X_{k} = \sum_{i=0}^{q^{k}-1} \left[X_{0} \left(I - AX_{0} \right)^{i} \right].$$

In the case $\rho(I - X_0 A) < 1$ the inverse A^{-1} of a nonsingular matrix admits the Neumann-type expansion [16]

$$A^{-1} = \sum_{i=0}^{\infty} \left[(I - X_0 A)^i X_0 \right].$$

Similarly, in the case $\rho(I - AX_0) < 1$

$$A^{-1} = \sum_{i=0}^{\infty} \left[X_0 \left(I - A X_0 \right)^i \right].$$

Zlobec [19] shown that A^{\dagger} can be computed by means of the infinite series under the assumption $0 < \alpha \leq \frac{2}{\operatorname{tr}(A^*A)}$.

Our strategy is to adapt the infinite series in order to compute $(W_2AW_1)^{-1}$. In this way, we develop corresponding iterative method for computing the reflexive generalized inverses $W_1(W_2AW_1)^{-1}W_2$. We determine conditions for the defined method to generate the $\{1, 2, 3\}$, $\{1, 2, 4\}$ inverses, the Moore-Penrose or the group inverse.

If $q \ge 2$, rank $(A) = r \ge 2$, $B = W_2 A W_1$, $C = A W_1$, $D = W_2 A$, the iterative processes, based on the Neumann-type expansion, are defined as follows:

$$X_{0} = X'_{0} = \alpha B^{*}, \qquad 0 < \alpha \le \frac{2}{\operatorname{tr}(B^{*}B)},$$
$$X_{k} = W_{1} \cdot \sum_{i=0}^{q^{k}-1} \left[(I - X_{0}B)^{i} X_{0} \right] \cdot W_{2}, \quad \text{or}$$
$$X'_{k} = W_{1} \cdot \sum_{i=0}^{q^{k}-1} \left[X_{0} \left(I - BX_{0} \right)^{i} \right] \cdot W_{2}, \quad k = 0, 1, .$$

The following results, analogous to the results from Theorem 2.1. can be easily verified.

Theorem 4.1. Let $\operatorname{rank}(A) = r \ge 2$ and QW_1 , W_2P be invertible operators.

(a) If W_2 is an unitary operator and

10

$$0 < \alpha \le \min\left\{\frac{2}{\operatorname{tr}(B^*B)}, \frac{2}{\operatorname{tr}(C^*C)}\right\},\,$$

then $X_k \to X = W_1(AW_1)^{\dagger}$ as $k \to \infty$ and X is an $\{1, 2, 3\}$ inverse of A. (b) If W_1 is an unitary operator and

$$0 < \alpha \le \min\left\{\frac{2}{\operatorname{tr}(B^*B)}, \frac{2}{\operatorname{tr}(D^*D)}\right\},\,$$

then $X'_k \to X = (W_2 A)^{\dagger} W_2 \in A\{1, 2, 4\}$ as $k \to \infty$.

- (c) If (a) and (b) are valid, then $X_k \to A^{\dagger}$.
- (d) If (b) is valid and $W_2 = P^*$, then $X'_k \to X = A^{\dagger}$.
- (e) If (a) is valid and $W_1 = Q^*$, then $X_k \to X = A^{\dagger}$.

(f) If
$$W_1 = Q^*$$
 and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$,
then $X_k \to X = Q^*(W_2AQ^*)^{-1}W_2 \in A\{1, 2, 4\}$.

(g) If
$$W_2 = P^*$$
 and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$,
then $X_k \to X = W_1(P^*AW_1)^{-1}P^* \in A\{1, 2, 3\}$.
(h) If $W_1 = Q^*$, $W_2 = P^*$ and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$,
then $X_k \to A^{\dagger}$.
(i) If $W_1 = (QN)^*$, $W_2 = (MP)^*$ and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$,
then $X_k \to A_{M,N}^{\dagger}$.
(j) In the case $m = n$, $W_1 = P$, $W_2 = Q$ and $0 < \alpha \le \frac{2}{\operatorname{tr}(B^*B)}$,

we get $X_k \to A^{\#}$.

Proof. Follows from

$$\begin{aligned} X_{k} &= W_{1} \cdot \sum_{i=0}^{q^{k}-1} \left[\left(I - X_{0} B \right)^{i} X_{0} \right] \cdot W_{2} = \\ &= W_{1} \cdot \sum_{i=0}^{q^{k}-1} \left[\left(I - X_{0} W_{2} A W_{1} \right)^{i} X_{0} W_{2} \right], \quad k = 0, 1, \dots \end{aligned}$$
$$\begin{aligned} X_{k}' &= W_{1} \cdot \sum_{i=0}^{q^{k}-1} \left[X_{0} \left(I - B X_{0} \right) \right)^{i} X_{0} \right] \cdot W_{2} = \\ &= \sum_{i=0}^{q^{k}-1} \left[W_{1} X_{0} \left(I - W_{2} A W_{1} X_{0} \right)^{i} \right] \cdot W_{2}, \quad k = 0, 1, \dots \end{aligned}$$

Remark 4.1. Now we give some comparisons with the paper of Tanabe [16]. In [16] there are given necessary and sufficient conditions for the starting approximation X_0 of the hyper-power iterative method or the Neumann-type series, ensuring convergence of these methods to an arbitrary reflexive generalized inverse. Advantages of this paper related to [16] are:

- (a) It is more convenient to use the initial conditions in Theorem 2.1. than the conditions from [16, Theorem 2.1.].
- (b) We give a few error estimates.
- (c) We know exact conditions ensuring convergence of defined processes to the $\{1, 2, 3\}$ inverses, the $\{1, 2, 4\}$ inverses, the Moore-Penrose inverse, the group inverse or the weighted Moore-Penrose inverse of A.

5. Examples

Example 5.1. Consider the matrix $A = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}$. If we select unitary matrix $W_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $W_2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, we get $B = W_2 A W_1 = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$, $\operatorname{tr}(BB^*) = 3$, $D = W_2 A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$, $\operatorname{tr}(DD^*) = 3$, $\alpha = \min\left\{\frac{2}{3}, \frac{2}{3}\right\}$.

Using the package MATHEMATICA we construct the following iterative process of the order 4:

$$Y_{0} = \alpha B^{*} = \begin{pmatrix} \frac{2}{3} & 0\\ \frac{2}{3} & -\frac{2}{3} \end{pmatrix},$$

$$T_{0} = I - BY_{0} = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3}\\ \frac{2}{3} & \frac{1}{3} \end{pmatrix},$$

$$Y_{1} = Y_{0}(I + T_{0} + T_{0}^{2} + T_{0}^{3}) = \begin{pmatrix} \frac{56}{81} & \frac{56}{81}\\ 0 & -\frac{56}{81} \end{pmatrix}.$$

$$T_{1} = I - BY_{1} = \begin{pmatrix} \frac{25}{81} & 0\\ 0 & \frac{25}{81} \end{pmatrix},$$

$$Y_{2} = Y_{1}(I + T_{1} + T_{1}^{2} + T_{1}^{3}) = \begin{pmatrix} \frac{42656096}{43046721} & \frac{42656096}{43046721}\\ 0 & -\frac{42656096}{43046721} \end{pmatrix}.$$

In a similar way can be obtained

12

$$Y_3 = \begin{pmatrix} \frac{3433683797009448119270886198656}{3433683820292512484657849089821} & \frac{3433683797009448119270886198656}{3433683820292512484657849089821} \\ 0 & -\frac{3433683797009448119270886198656}{3433683820292512484657849089821} \end{pmatrix}.$$

Now we get the following sequence $X_k = W_1 Y_k W_2$:

$$\begin{split} X_1 &= \begin{pmatrix} 0 & -\frac{56}{81} & 0 \\ \frac{56}{81} & \frac{56}{81} & \frac{56}{81} \end{pmatrix}, \\ X_2 &= \begin{pmatrix} 0 & -\frac{42656096}{43046721} & 0 \\ \frac{42656096}{43046721} & \frac{42656096}{43046721} & \frac{42656096}{43046721} \end{pmatrix}, \\ X_3 &= \begin{pmatrix} 0 & -\frac{3433683797009448119270886198656}{3433683820292512484657849089821} & 0 \\ \frac{3433683797009448119270886198656}{3433683820292512484657849089821} & \frac{34336838797009448119270886198656}{3433683820292512484657849089821} & \frac{34336838797009448119270886198656}{3433683820292512484657849089821} & \frac{3433683879700948}{3433683820292512484657849089821} & \frac{3433683879700948}{3433683820292512484657849089821} & \frac{3433683879700948}{3433683820292512484657849089821} & \frac{3433683879700948}{343368382092512484657849089821} & \frac{3433683879700948}{3433683820929512484657849089821} & \frac{343368379700948}{3433683820929512484657849089821} & \frac{343368379700948}{3433683879700948} & \frac{34368379700948}{343368387970948} & \frac{34368379700948}{343368387970948} & \frac{343368363797098}{34336838797098} & \frac{3433683797098}{34336836837$$

Example 5.2. For the same matrices A, W_1 and $W_2 = P^* = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, we get

$$B = W_2 A W_1 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}, \quad \operatorname{tr}(BB^*) = 5,$$
$$D = W_2 A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \quad \operatorname{tr}(DD^*) = 5,$$
$$\alpha = \min\left\{\frac{2}{5}, \frac{2}{5}\right\}.$$

The following sequence $X_k = W_1 Y_k W_2$ can be obtained:

$$X_1 = \begin{pmatrix} \frac{272}{625} & -\frac{272}{625} & 0\\ 0 & 0 & \frac{544}{625} \end{pmatrix},$$

$$X_2 = \begin{pmatrix} \frac{76272421952}{152587890625} - \frac{76272421952}{152587890625} & 0\\ 0 & 0 & \frac{15254843904}{152587890625} \end{pmatrix},$$

The first row of X_3 is

 $\frac{271050543121374391659953053961243098931900672}{542101086242752217003726400434970855712890625} - \frac{271050543121374391659953053961243098931900672}{542101086242752217003726400434970855712890625} 0$

and the second row of X_3 is

$0 \quad 0 \quad \frac{542101086242748783319906107922486197863801344}{542101086242752217003726400434970855712890625} \ .$

The limit of this sequence is $X = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = A^{\dagger}.$

Example 5.3. For the same matrix A and $W_1 = Q^* = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $W_2 = P^* = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, we can generate the same sequence X_k as in Example 5.2.

Example 5.4. Now we expand Example 5.1. to include illustrations for the values of α less than the optimal, or for values which do not produce the convergence.

Modifying only $\alpha = 1/2 < 2/3$ in Example 5.1., we obtain the following sequence:

$$\begin{split} X_1 &= \begin{pmatrix} \frac{3}{16} & -\frac{11}{16} & \frac{3}{16} \\ \frac{11}{16} & \frac{1}{2} & \frac{11}{16} \end{pmatrix}, \\ X_2 &= \begin{pmatrix} \frac{987}{65536} & -\frac{63939}{65536} & \frac{987}{65536} \\ \frac{63939}{65536} & \frac{7869}{65536} & \frac{63939}{65536} \end{pmatrix}, \\ X_3 &= \begin{pmatrix} \frac{10610209857723}{18446744073709551616} & -\frac{18446726906029374051}{18446744073709551616} & \frac{10610209857723}{18446744073709551616} \\ \frac{18446726906029374051}{18446744073709551616} & \frac{2305839536977439541}{230584309213693952} & \frac{18446726906029374051}{18446744073709551616} \end{pmatrix}. \end{split}$$

14 PREDRAG S. STANIMIROVIĆ AND DRAGAN S. DJORDJEVIĆ

The obtained sequence converges to the same matrix as in Example 5.1., but the convergence is slower.

Similarly, using $\alpha = 1/3 < 1/2 < 2/3$ we obtain the following:

$$\begin{split} X_1 &= \begin{pmatrix} \frac{1}{27} & -\frac{4}{81} & \frac{1}{27} \\ \frac{47}{81} & \frac{26}{81} & \frac{47}{81} \end{pmatrix}, \\ X_2 &= \begin{pmatrix} \frac{726103}{14348907} & -\frac{39522143}{43046721} & \frac{726103}{14348907} \\ \frac{39522143}{43046721} & \frac{37343834}{43046721} & \frac{39522143}{43046721} \end{pmatrix}, \\ X_7 &= \begin{pmatrix} \frac{83909608561183162716808087}{1144561273430837494885949696427} & \frac{3433276514496608404104017015327}{3433683820292512484657849089281} & \frac{83909608561183162716808087}{1144561273430837494885949696427} \end{pmatrix}$$

 $\begin{array}{c} \Lambda_{3} = & \left(\frac{3433276514496608404104017015327}{3433683820292512484657849089281} + \frac{3433024785670924854615866591066}{3433683820292512484657849089281} + \frac{3433276514496608404104017015327}{3433683820292512484657849089281} + \frac{343327651496608404104017015327}{3433683820292512484657849089281} + \frac{343327657}{3433683820292512484657849} + \frac{343327657}{3433683820292512486578} + \frac{3433276}{3433683820292512486578} + \frac{3433276}{3433683820292512486578} + \frac{3433276}{3433683820292512486578} + \frac{3433276}{3433683820292512486578} + \frac{3433276}{3433683820292512486578} + \frac{343276}{343368382029251} + \frac{3433276}{3433683820292512486578} + \frac{343326}{3433683820292512486578} + \frac{34326}{3433683820292512486} + \frac{34326}{3433683820292512486} + \frac{34326}{343368382029251248} + \frac{34326}{34336836} + \frac{34326}{34326} + \frac{34326}{34326} + \frac{3432}{3436} + \frac{34326}{3436} + \frac{3432}{34$

The values of α , greather than the optimal one leads to the divergence of the methods. For example, $\alpha = 1 > 2/3$ imply the following divergent sequence:

$$\begin{split} X_1 &= \begin{pmatrix} -3 & 1 & -3 \\ -1 & 2 & -1 \end{pmatrix}, \\ X_2 &= \begin{pmatrix} -987 & 609 & -987 \\ -609 & 378 & -609 \end{pmatrix}, \\ X_3 &= \begin{pmatrix} -10610209857723 & 6557470319841 & -10610209857723 \\ -6557470319841 & 4052739537882 & -6557470319841 \end{pmatrix}. \end{split}$$

Finally, a small decreasing of the parameter α near the optimal value $\frac{2}{\operatorname{tr}(B^*B)}$ imply slightly slowing down the speed of the convergence. For example, $\alpha = 2/3 - 0.001$ generates the following sequence:

$$\begin{split} X_1 &= \begin{pmatrix} 0.00221225 & -0.692092 & 0.00221225 \\ 0.692092 & 0.68988 & 0.692092 \end{pmatrix}, \\ X_2 &= \begin{pmatrix} 0.000255561 & -0.991009 & 0.000255561 \\ 0.991009 & 0.990753 & 0.991009 \end{pmatrix}, \\ X_3 &= \begin{pmatrix} 7.1253910^{-10} & -1. & 7.1253910^{-10} \\ 1. & 1. & 1. \end{pmatrix}. \end{split}$$

REFERENCES

- Altman, M., An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space, Pacific J. Math. 10 (1960), 1107–113.
- [2] Arghiriade, E., Remarques sur l'inverse generalise d'un produit de matrices, Lincei-Rend. Sc. fis. mat. e nat. XLII (1967), 621–625.
- Ben-Israel, A.; Grevile, T.N.E., Generalized inverses: Theory and applications, Wiley-Interscience, New York, 1974.
- Bouldin, R.H., The pseudoinverse of a product, SIAM J. Appl. Math. 24 No 4 (1973), 489–495.
- [5] Cline, R.E., Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5 No 1 (1968), 182–197.
- [6] Garnett, J., Ben-Israel, A. and Yau, S.S., A hyperpower iterative method for computing matrix products involving the generalized inverse, SIAM J. Numer. Anal. 8 (1971), 104–109.
- [7] Herzberger, J., Using error-bounds hyperpower methods to calculate inclusions for the inverse of a matrix, BIT **30** (1990), 508–515.
- [8] Milovanović, G.V., Numerical analysis, part I, Naučna knjiga, Beograd, 1985 (in Serbian).
- [9] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413.
- [10] Petryshyn, W.V., On the inversion of matrices and linear operators, Proc. Amer. Math. Soc. 16 (1965), 893–901.
- [11] Petryshyn, W.V., On generalized inverses and on the uniform convergence of $(I \beta K)^n$ with application to iterative methods, J. Math. Anal. Appl. 18 (1967), 417–439.
- [12] Pyle, L.D., The weighted generalized inverse in nonlinear programming-active set selection using a variable-metric generalization of the simplex algorithm, International simposium on extremal methods and systems analysis, Lecture Notes in Economics and Mathematical Systems: Vol. 174, 1977, pp. 197–231.
- [13] Radić, M, Some contributions to the inversions of rectangular matrices, Glasnik Matematički 1 (21) -No. 1 (1966), 23–37.
- [14] Schulz, G., Iterative Berechnung der reziproken Matrix, Zeitsch. Angew. Math. Mech. 13 (1933), 57–59.
- [15] Söderström, T. and Stewart, G.W., On the numerical properties of an iterative method for computing the Moore-Penrose generalized inverse, SIAM J. Numer. Anal. 11 (1974), 61–74.
- [16] Tanabe, K., Neumann-type expansion of reflexive generalized inverses of a matrix and the hyperpower iterative method, Linear Algebra Appl. 10 (1975), 163–175.
- [17] Zielke, G., Iterative refinement of generalized matrix inverses now practicable, SIGNUM Newsletter 13.4 (1978), 9–10.
- [18] Zielke, G., A survey of generalized matrix inverses, Computational Mathematics, Banach center Publications 13 (1984), 499–526.

16 PREDRAG S. STANIMIROVIĆ AND DRAGAN S. DJORDJEVIĆ

[19] Zlobec, S., On computing the generalized inverse of a linear operator, Glasnik Matematički 2(22) No 2 (1967), 265–271.

UNIVERSITY OF NIŠ FACULTY OF PHILOSOPHY DEPARTMENT OF MATHEMATICS ĆIRILA I METODIJA 2 18000 NIŠ YUGOSLAVIA

ACTA MATH. HUNGARICA 79 (3) (1998), 253–268.