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CHARACTERIZING HERMITIAN, NORMAL
AND EP OPERATORS

Dragan S. Djordjević1 and J. J. Koliha

Abstract

In this paper further characterizations of Hermitian, normal and EP
operators on Hilbert spaces are established. Thus the recent results of
O. M. Baksalary and G. Trenkler (Linear Multilin. Algebra, to appear)
are extended to the infinite dimensional setting with proofs based on
operator matrices.

1 Introduction and preliminaries

In this paper we use H to denote arbitrary Hilbert space and L(H) the space
of all bounded linear operators on H. For A ∈ L(H) let R(A) and N (A),
respectively, denote the range and the null space of A. Recall that A is
Hermitian if A = A∗, and A is normal if AA∗ = A∗A. The Moore–Penrose
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inverse of a closed range operator A is the unique operator A† ∈ L(H)
satisfying the Penrose equations

AA†A = A, A†AA† = A†, (A†A)∗ = A†A, (AA†)∗ = AA†.

The operator A is EP if AA† = A†A; EP stands for ‘equal projection’ as in
this case R(A∗) = R(A). It is well known that if A is normal with closed
range, then A is EP. The converse is not true even in a finite dimensional
space.

There are many characterization of Hermitian, normal and EP operators
(see, for example [1, 2, 5, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19]. In this note we
extend the results obtained for complex matrices by O. M. Baksalary and
G. Trenkler [1] to closed range operators on an arbitrary Hilbert space.

We assume a basic familiarity with the properties of generalized inverses,
as in [3, 4, 6, 13]. In particular we recall that the group inverse of A ∈ L(H)
is the unique operator A# ∈ L(H) such that

AA# = A#A, AA#A = A, A#AA# = A#.

The ascent and descent of A ∈ L(H) are defined by

ascA = inf{p : N (Ap) = N (Ap+1)}, dscA = inf{p : R(Ap) = R(Ap+1)};

if they are finite, they are equal, and their common value is ind (A), the index
of A. An operator A ∈ L(H) is group invertible if and only if ind (A) ≤ 1.

Our techniques are based on properties of operator matrices. We will
need the following result, a special case of the result obtained in [10] for a
generalized Drazin inverse.

Lemma 1.1. Let X and Y be Banach spaces, A1 ∈ L(X) and A2 ∈ L(Y, X).
Then

A =
[
A1 A2

0 0

]
:

[
X
Y

]
→

[
X
Y

]

is group invertible if and only if A1 is group invertible. In this case

A# =
[
A1

# (A1
#)2A2

0 0

]
. (1.1)

Proof. Relies on a direct verification of the equations defining the group
inverse.
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In the paper we will make use of the following two operator matrix
representations. Recall that an operator A ∈ L(H) is positive, written
A ≥ 0, if 〈Ax, x〉 ≥ 0 for all x ∈ H. We shall write A > 0 if A is positive
and invertible.

Lemma 1.2. A closed range operator A ∈ L(H) has the following matrix
representations with respect to the orthogonal sums of closed subspaces H =
R(A∗)⊕N (A) = R(A)⊕N (A∗) :

(a) We have

A =
[
A1 A2

0 0

]
:

[ R(A)
N (A∗)

]
→

[ R(A)
N (A∗)

]
, (1.2)

where B = A1A
∗
1 + A2A

∗
2 maps R(A) onto itself and B > 0. Also,

A† =
[
A∗1B

−1 0
A∗2B

−1 0

]
.

Moreover, if ind (A) ≤ 1, then A1 is invertible and

A# =
[
A−1

1 A−2
1 A2

0 0

]
.

(b) Alternatively,

A =
[
A3 0
A4 0

]
:

[R(A∗)
N (A)

]
→

[R(A∗)
N (A)

]
, (1.3)

where C = A∗3A3 + A∗4A4 maps R(A∗) onto itself and C > 0. Also,

A† =
[
C−1A∗3 C−1A∗4

0 0

]
.

Moreover, if ind (A) ≤ 1, then A3 is invertible and

A# =
[

A−1
3 0

A4A
−2
3 0

]
.

Proof. (a) The proof of the matrix form for A is straightforward; B is in-
vertible as it maps R(A) bijectively onto itself while R(A) is a Banach
space. Since A∗ =

[
A∗1 0
A∗2 0

]
, we get that AA∗ =

[
B 0
0 0

]
. Now, (AA∗)† =

(AA∗)# =
[

B−1 0
0 0

]
. From A† = A∗(AA∗)† we obtain the matrix form for

A†. If ind (A) ≤ 1, we apply Lemma 1.1 to get the expression for A#. The
group inverse of A1 is in fact equal to A−1

1 since N (A1)∩R(A1) = {0}, and
A1 is surjective.

(b) We apply the results of the preceding part of the proof to A∗, and
then take the Hilbert space adjoint of the operator matrix.
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We can compare our operator representation (1.2) with the matrix rep-
resentation due to Hartwig and Spindelböck [15] used as the main tool by
Baksalary and Trenkler in [1]:

A = U

[
ΣK ΣL
0 0

]
U∗,

where U is unitary, Σ is the diagonal matrix of the nonzero singular values
of A, and K, L satisfy the condition KK∗+LL∗ = Ir, with r the rank of A.
Then

A† = U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗, A# = U

[
K−1Σ−1 K−1Σ−1K−1L

0 0

]
U∗.

The purpose of this paper is to derive infinite dimensional analogues of
some results for complex matrices obtained by Cheng and Tian [7], Bak-
salary and Trenkler [1] and others. Our characterizations of the Hermitian,
normal and EP operators are based on the following lemma which follows
easily from the representations of Lemma 1.2.

Lemma 1.3. Let A ∈ L(H) have a closed range. Then relative to the
representations (1.2) and (1.3) of the preceding lemma,

(i) A is Hermitian if and only if A2 = 0 and A1 is Hermitian (or A4 = 0
and A3 is Hermitian).

(ii) A is normal if and only if A2 = 0 and A1 is normal (or A4 = 0 and
A3 is normal).

(iii) A is EP if and only if A2 = 0 (or A4 = 0). In this case A1 = A3 and

A =
[
A1 0
0 0

]
:

[R(A)
N (A)

]
→

[R(A)
N (A)

]
, A† = A# =

[
A−1

1 0
0 0

]
.

In order to illustrate differences between the finite and the infinite di-
mensional case, we consider the following example (see also [10]).

Example 1.1. Let A ∈ L(`2) be the left shift on the real `2 space, that is,
let A(x1, x2, . . . ) = (x2, x3, . . . ). Then A∗(x1, x2, . . . ) = (0, x1, x2, . . . ) and
A† = A∗. In this case AA† = I and A†A(x1, x2, . . . ) = (0, x2, x3, . . . ). Let
B = A∗. Then B∗ = B† = A. In this case (BB∗)† = BB∗. Operators A
and B are neither normal, nor EP, but they satisfy the following equalities
(which in the finite dimensional case would ensure the normality or the EP
property):

(i) AAA∗ = AA∗A;
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(ii) BB∗B = B∗BB;
(iii) BB∗B∗ = B∗BB∗.

We observe that the ascent of A and descent of B are infinite.

2 Characterizations of Hermitian operators

We start with a characterization of a Hermitian operator with closed range.
First we recall that any closed range Hermitian operator A ∈ L(H) is group
invertible, that is, ind (A) ≤ 1. Every closed range Hermitian operator is
EP.

The following conditions characterizing a Hermitian operator extend
those for a finite dimensional operator provided the range of the operator is
closed.

Theorem 2.1. Let A ∈ L(H) be a closed range operator. Then the following
are equivalent:

(i) A is Hermitian; (ii) AAA† = A∗; (iii) AA∗A† = A.

Proof. The conditions (ii) and (iii) hold for a closed range hermitian operator
as in this case A∗ = A and AA† = A†A.

(ii) =⇒ (i): From (ii) we obtain that A2 = A∗A. Using the representa-
tion (1.2), [

A2
1 A1A2

0 0

]
=

[
A∗1A1 A∗1A2

A∗2A1 A∗2A2

]
.

Hence, A∗2A2 = 0 and consequently A2 = 0. Since AA† =
[

I 0
0 0

]
, from (ii)

we obtain A1 = A∗1, which implies A = A∗ by Lemma 1.3 (i).
(iii) =⇒ (i): We use the representation (1.3). From (iii) we obtain

A†AA∗A†A = A†A2, which is equivalent to
[
A∗3 0
0 0

]
=

[
A3 0
0 0

]
;

hence A∗3 = A3. By (iii) again, A†AA∗A† = A†A, which is equivalent to
[
A3C

−1A3 A3C
−1A∗4

0 0

]
=

[
I 0
0 0

]
.

Hence A3C
−1A3 = I and A3C

−1A∗4 = 0. The first equation implies that
A3 is invertible, and so A4 = 0 by the second. By Lemma 1.3 (i), A is
Hermitian.
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The following theorem assumes that the given operator is of closed range
as well as of index not exceeding 1.

Theorem 2.2. Let A ∈ L(H) have a closed range. Then A is Hermitian
if and only if ind (A) ≤ 1, and any one the following equivalent conditions
hold:

(i) A∗AA# = A; (ii) A∗A∗A# = A∗;

(iii) A∗A†A† = A#; (iv) A∗A†A# = A†;

(v) A∗A†A# = A#; (vi) A∗A#A# = A#;

(vii) A#A∗A# = A†.

Proof. If A is Hermitian, then (i)–(vii) follow from the equations A∗ = A,
AA† = A†A, and A# = A†.

Conversely we prove that each of equations (i)–(vii) implies that A is
Hermitian. According to Lemma 1.3, it is enough to show that A2 = 0 and
A1 is Hermitian (or A4 = 0 and A3 Hermitian). Recall that A1 and A3 are
invertible.

(i) Postmultiplying (i) by A we get A∗A = A2; by the representation
(1.2), [

A∗1A1 A∗1A2

A∗2A1 A∗2A2

]
=

[
A2

1 A1A2

0 0

]
.

Hence A∗2A2 = 0 and A∗1A1 = A2
1. Then A2 = 0 and A∗1 = A1.

(ii) Using the representation (1.2) we obtain
[
(A∗1)

2A−1
1 (A∗1)

2A−2
1 A2

A∗2 A∗2A
−2
1 A2

]
=

[
A∗1 0
A∗2 0

]
.

Then (A∗1)
2A−1

1 = A∗1 and (A∗1)
2A−2

1 A2 = 0. Hence, A2 = 0 and A∗1 = A1.
(iii) First we observe that (iii) implies A∗A†A†A = A#A. Using the

representation (1.3), we obtain
[
A∗3C

−1A∗3 0
0 0

]
=

[
I 0

A4A
−1
3 0

]
.

Thus A4A
−1
3 = 0, that is, A4 = 0, and A∗3C

−1A∗3 = I, which implies A∗3 =
A3.

(iv) By the representation (1.3),
[
A∗3A

−2
3 0

0 0

]
=

[
C−1A∗3 C−1A∗4

0 0

]
.
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Then C−1A∗4 = 0 implies A4 = 0, and A∗3A
−2
3 = C−1A∗3 implies A∗3 = A3.

(v) From the representation (1.3) we get
[
A∗3A

−2
3 0

0 0

]
=

[
A−1

3 0
A4A

−2
3 0

]
;

then A4A
−2
3 = 0, which implies A4 = 0, and A∗3A

−2
3 = A−1

3 , which implies
A∗1 = A1.

(vi) Using the representation (1.2), we get the equality
[
A∗1A

−2
1 A∗1A

−3
1 A2

A∗2A
−2
1 A∗2A

−3
1 A2

]
=

[
A−1

1 A−2
1 A2

0 0

]

from which it follows that A∗2A
−2
1 = 0 and A∗1A

−2
1 = A−1

1 . Hence A2 = 0
and A1 = A∗1.

(vii) From (vii) we get AA#A∗A# = AA†. By (1.2) this yields
[
A−1

1 BA−1
1 A∗1A

−2
1 A2

0 0

]
=

[
I 0
0 0

]
.

From A∗1A
−2
1 A2 = 0 we get A2 = 0, and from A−1

1 BA−1
1 = I we get A∗1 =

A1.

3 Characterizations of normal operators

First we recall that a normal operator A with closed range is EP; hence
A† = A# and A†A = AA†. Further, from ind (A) ≤ 1 it follows that asc (A)
and dsc (A) are finite.

Theorem 3.1. A closed range operator A ∈ L(H) is normal if and only if
one of the following equivalent conditions holds.

(i) asc (A) < ∞ and AAA∗ = AA∗A;
(ii) dsc (A) < ∞ and AA∗A = A∗AA;
(iii) asc (A) < ∞ and AA∗A† = A†AA∗;
(iv) AA∗A† = A∗;
(v) A†A∗A = A∗.

Proof. If A is normal, then conditions (i)–(v) clearly hold.
Next we prove that any one of the conditions (i)–(v) implies that A is

normal. Recall that by Lemma 1.3 it is enough to show that A2 = 0 and A1

is normal (or A4 = 0 and A3 is normal).
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(i) First assume that A is surjective. Since asc (A) < ∞ it follows that
asc (A) = 0 and A is invertible. Now, from (i) it follows that A is normal.
In general the representation (1.2) yields

[
A1B 0

0 0

]
=

[
BA1 BA2

0 0

]
.

Hence, we get that BA2 = 0 and A1B = BA1. From the first relation
we obtain A2 = 0, implying that A1 is right invertible since B = A1A

∗
1

is invertible. Also, asc (A) < ∞ obviously implies asc (A1) < ∞. From
A1B = BA1 we obtain A1A1A

∗
1 = A1A

∗
1A1. Since A1 is right invertible, it is

surjective, and from the first part of the proof it follows that A1 is normal.
See Example 1.1 (i) to see that the assumption asc (A) < ∞ is crucial.

(ii) This implication is analogous to the previous one. See Example 1.1
(ii) to see the importance of dsc (A) < ∞.

(iii) From (iii) and the representation (1.2) we obtain

[
BA∗1B

−1 0
0 0

]
=

[
A∗1 0
A∗2 0

]
.

Hence, A2 = 0 and BA∗1B
−1 = A∗1. Since B = A1A

∗
1 is invertible, A1 is right

invertible. From asc (A) < ∞ we get that asc (A1) < ∞ and consequently
A1 is invertible. Now, from BA∗1B

−1 = A∗1 it follows that A1 is normal.
Example 1.1 (iii) shows that the statement (iii) of this theorem does not
hold without the assumption asc (A) < ∞.

(iv) In view of the representation (1.2), equation (iv) implies

[
BA∗1B

−1 0
0 0

]
=

[
A∗1 0
A∗2 0

]
.

We get that A2 = 0 and BA∗1B
−1 = A∗1, implying that A1 is normal.

(v) Follows from the previous implication, taking adjoints of operators
in (iv).

The next theorem deals with the case of a closed range operator with
index not exceeding 1; this means that the operator is both Moore–Penrose
and group invertible; in general, A† 6= A#.

Theorem 3.2. A closed range operator A ∈ L(H) is normal if and only if
ind (A) ≤ 1 and one of the following equivalent conditions holds.
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(i) AA∗A# = A∗A#A; (ii) AA∗A# = A#AA∗;

(iii) AA#A∗ = A#A∗A; (iv) A∗AA# = A#A∗A;

(v) A∗A∗A# = A∗A#A∗; (vi) A∗A†A# = A#A∗A†;

(vii) A∗A# = A#A∗; (viii) A∗A#A∗ = A#A∗A∗;

(ix) A∗A#A† = A†A∗A#; (x) A∗A#A# = A#A∗A#;

(xi) A†A∗A# = A#A†A∗; (xii) A†A#A∗ = A#A∗A†;

(xiii) A#A∗A# = A#A#A∗; (xiv) A∗A† = A#A∗;

(xv) A∗A# = A†A∗; (xvi) AA∗A# = A∗;

(xvii) A#A∗A = A∗.

Proof. If A is normal, then conditions (i)–(xvii) hold since A is EP and
commutes with A∗ and A†, while A† = A#.

To prove the reverse implications, we use the representations (1.2) or
(1.3). In view of Lemma 1.3 it is enough to prove that A2 = 0 and A1 is
normal (or A4 = 0 and A3 is normal).

(i) Using the representation (1.2), we see that (i) implies

[
BA−1

1 BA−2
1 A2

0 0

]
=

[
A∗1 A∗1A

−1
1 A2

A∗2 A∗2A
−1
1 A2

]
.

It follows that A2 = 0 and BA−1
1 = A∗1. Hence, A1 is normal.

(ii) By (1.2),
[
BA−1

1 BA−2
1 A2

0 0

]
=

[
A−1

1 A∗1 + A−2
1 A2A

∗
2 0

0 0

]
.

We obtain BA−2
1 A2 = 0 and BA−1

1 = A−1
1 A∗1 + A−2

1 A2A
∗
2. By the first

relation, A2 = 0, and by the second, A1 is normal.
(iii) When we use the representation (1.3), we get

[
A∗3 A∗4

A4A
−1
3 A∗3 A4A

−1
3 A∗4

]
=

[
A−1

3 C 0
A4A

−2
3 C 0

]
.

We obtain A4 = 0 and A∗3 = A−1
3 C, implying that A3 is normal.

(iv) Again, using the representation (1.3), we obtain

[
CA−1

3 0
0 0

]
=

[
A−1

3 C 0
A4A

−1
3 C 0

]
.
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We obtain A4A
−1
3 C = 0 and CA−1

3 = A−1
3 C. From the first relation we get

A4 = 0 and from the second we conclude that A3 is normal.
(v) Using the representation (1.3), we get

[
A∗3CA−2

3 0
0 0

]
=

[
CA−2

3 A∗3 CA−2
3 A∗4

0 0

]
.

Thus CA−2
3 A∗4 = 0 and A∗3CA−2

3 = CA−2
3 A∗3. Consequently, A4 = 0 and A3

is normal.
(vi) Using again the representation (1.3), we obtain

[
A∗3A

−1
3 0

0 0

]
=

[
A−1

3 A∗3 A−1
3 A∗4

A4A
−1
3 A∗3 A4A

−1
3 A∗4

]
.

Then A−1
3 A∗4 = 0 and A∗3A

−1
3 = A−1

3 A∗3, that is, A4 = 0 and A3 is normal.
(vii) From (1.2) we obtain the equality

[
A∗1A

−1
1 A∗1A

−2
1 A2

A∗2A
−1
1 A∗2A

−2
1 A2

]
=

[
A−2

1 B 0
0 0

]
.

From A∗2A
−1
1 = 0 and A∗1A

−1
1 = A−2

1 B we conclude that A2 = 0 and A1 is
normal.

(viii) Using (1.2) we get
[
A∗1A

−2
1 B 0

A∗2A
−2
1 B 0

]
=

[
A−2

1 BA∗1 0
0 0

]
.

Hence A∗2A
−2
1 B = 0 which implies A2 = 0, and A∗1A

−2
1 B = A−2

1 BA∗1, which
implies that A1 is normal.

(ix) From (ix) we get the equality
[
A∗1A

−2
1 0

A∗2A
−1
1 0

]
=

[
A∗1B

−1A∗1A
−1
1 A∗1B

−1A∗1A
−2
1 A2

A∗2B
−1A∗1A

−1
1 A∗2B

−1A∗1A
−2
1 A2

]
.

It follows that A∗1B
−1A∗1A

−2
1 A2 = 0 and A∗1A

−2
1 = A∗1B

−1A∗1A
−1
1 . We deduce

that A2 = 0 and A1 is normal.
(x) Using the representation (1.2), we get the equality

[
A∗1A

−2
1 A∗1A

−3
1 A2

A∗2A
−2
1 A∗2A

−3
1 A2

]
=

[
A−2

1 BA−1
1 A−2

1 BA−2
1 A2

0 0

]
.

Then A∗2A
−2
1 = 0 and A∗1A

−2
1 = A−2

1 BA−1
1 . Therefore A2 = 0 and A1 is

normal.
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(xi) From (1.2) we get

[
A∗1B

−1A∗1A
−1
1 A∗1B

−1A∗1A
−2
1 A2

A∗2B
−1A∗1A

−1
1 A∗2B

−1A∗1A
−2
1 A2

]
=

[
A−2

1 A∗1 0
0 0

]
.

Then A∗2B
−1A∗1A

−1
1 = 0 and A∗1B

−1A∗1A
−1
1 = A−2

1 A∗1, which implies that
A2 = 0 and A1 is normal.

(xii) Using (1.2) again we obtain the equality

[
A∗1B

−1A−2
1 B 0

A∗2B
−1A−2

1 B 0

]
=

[
A−2

1 BA∗1B
−1 0

0 0

]
.

Thus A∗2B
−1A−2

1 B = 0 and A∗1B
−1A−2

1 B = A−2
1 BA∗1B

−1, from which it
follows that A2 = 0 and A1 is normal.

(xiii) The representation (1.2) gives

[
A−2

1 BA−1
1 A−2

1 BA−2
1 A2

0 0

]
=

[
A1

−3B 0
0 0

]
.

We obtain A−2
1 BA−2

1 A2 = 0 and A−2
1 BA−1

1 = A−3
1 B, implying A2 = 0 and

the normality of A1.
(xiv) Applying (1.2) again, we have

[
(A∗1)

2B−1 0
A∗2A

∗
1B

−1 0

]
=

[
A−2

1 B 0
0 0

]
.

It follows that A∗2A
∗
1B

−1 = 0 and (A∗1)
2B−1 = A−2B. This implies that

A2 = 0 and A1 is normal.
(xv) Follows from the previous implication taking adjoints of operators

in (xiv), and using the relations (A∗)† = (A†)∗ and (A#)∗ = (A∗)#.
(xvi) On application of (1.2) we get

[
BA−1

1 BA−1
1 A2

0 0

]
=

[
A∗1 0
A∗2 0

]
.

From BA−2
1 A2 = 0 and BA−1

1 = A∗1 we obtain that A2 = 0 and A1 is
normal.

(xvii) Follows from the previous implication by taking adjoints of oper-
ators in (xvi).
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4 Characterization of EP operators

In the next theorem we deal with closed range operators A of index not
exceeding 1. These operators are simultaneously Moore–Penrose and group
invertible, but the two inverses are in general different.

Theorem 4.1. A closed range operator A ∈ L(H) is EP if and only if
ind (A) ≤ 1 and one of the following equivalent conditions holds.

(i) AA†A# = A†A#A; (ii) AA†A# = A#AA†;

(iii) AA#A∗ = A∗AA#; (iv) AA#A† = A†AA#;

(v) AA#A† = A#A†A; (vi) A†AA# = A#A†A;

(vii) (A†)2A# = A†A#A†; (viii) (A†)2A# = A#(A†)2;

(ix) A†A# = A#A†; (x) A†A#A† = A#(A†)2;

(xi) A†(A#)2 = A#A†A#; (xii) A†(A#)2 = (A#)2A†;

(xiii) (A#)2A† = A#A†A#; (xiv) AA# = A†A;

(xv) A∗A† = A∗A#; (xvi) A†A∗ = A#A∗;

(xvii) A†A† = A†A#; (xviii) A†A† = A†A#;

(xix) (A†)2 = (A#)2; (xx) A†A# = (A#)2;

(xxi) A†A# = (A#)2; (xxii) A(A†)2 = A#;

(xxiii) AA#A† = A#; (xxiv) A∗AA# = A∗;

(xxv) A†AA# = A†; (xxvi) A#A†A = A†.

Proof. If A is EP, then it commutes with its Moore–Penrose inverse and
A† = A#. It is not difficult to verify that conditions (i)–(xxvi) hold.

To prove any of the reverse implications, we use the representations of
Lemma 1.2. By Lemma 1.3 it is enough to prove that A2 = 0 or A4 = 0. For
the sake of brevity we display each of the equations (i)–(xxvi) in a matrix
form using either the representation (1.2) or (1.3). We let the reader verify
that in each case we have A1 = 0 or A4 = 0.

[
A−1

1 A−2
1 A2

0 0

]
=

[
A∗1B

−1 A∗1B
−1A−1

1 A2

A∗2B
−1 A∗2B

−1A−1
1 A2

]
, (i)

[
A−1

1 A−2
1 A2

0 0

]
=

[
A−1

1 0
0 0

]
, (ii)



Hermitian, normal and ep operators 51

[
A∗1 + A−1

1 A2A
∗
2 0

0 0

]
=

[
A∗1 A∗1A

−1
1 A2

A∗2 A∗2A
−1
1 A2

]
, (iii)

[
A−1

1 0
0 0

]
=

[
A∗1B

−1 A∗1B
−1A−1

1 A2

A∗2B
−1 A∗2B

−1A−1
1 A2

]
, (iv)

[
A−1

1 0
0 0

]
=

[
A−1

1 A−2
1 A2

0 0

]
, (v)

[
A−1

3 0
0 0

]
=

[
A−1

3 0
A−2

3 A4 0

]
, (vi)

[
C−1A∗3A

−2
3 0

0 0

]
=

[
A−2

3 C−1A∗3 A−2
3 C−1A∗4

0 0

]
, (vii)

[
A∗1B

−1A−1
1 A∗1B

−1A−2
1 A2

0 0

]
=

[
A−1

1 A∗1B
−1 0

0 0

]
(premultiply by A),

(viii)
[
A∗1B

−1A−1
1 A∗1B

−1A−2
1 A2

A∗2B
−1A−1

1 A∗2B
−1A−2

1 A2

]
=

[
A−2

1 0
0 0

]
, (ix)

take the adjoint of (vii), (x)
[
A∗1B

−1A−2
1 A∗1B

−1A−3
1 A2

A∗2B
−1A−2

1 A∗2B
−1A−3

1 A2

]
=

[
A−3

1 A−4
1 A2

0 0

]
, (xi)

[
A∗1B

−1A−2
1 A∗1B

−1A−3
1 A2

A∗2B
−1A−2

1 A∗2B
−1A−3

1 A2

]
=

[
A−3

1 0
0 0

]
, (xii)

take the adjoint of (xi), (xiii)
[
I A−1

1 A2

0 0

]
=

[
A∗1B

−1A1 A∗1B
−1A2

A∗2B
−1A1 A∗2B

−1A2

]
, (xiv)

[
(A∗1)

2B−1 0
A∗2A

∗
1B

−1 0

]
=

[
A∗1A

−1
1 A∗1A

−2
1 A2

A∗2A
−1
1 A∗2A

−2
1 A2

]
, (xv)

take the adjoint of (xv), (xvi)
[
A∗1B

−1A∗1B
−1 0

A∗2B
−1A∗1B

−1 0

]
=

[
A∗1B

−1A−1
1 A∗1B

−1A−2
1 A2

A∗2B
−1A−1

1 A∗2B
−1A−2

1 A2

]
, (xvii)

take the adjoint of (xvii), (xviii)
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[
A∗1B

−1A∗1B
−1 0

A∗2B
−1A∗1B

−1 0

]
=

[
A−2

1 A−3
1 A2

0 0

]
, (xix)

[
A∗1B

−1A−1
1 A∗1B

−1A−2
1 A2

A∗2B
−1A1

−1 A∗2B
−1A−2

1 A2

]
=

[
A−2

1 A−3
1 A2

0 0

]
, (xx)

take the adjoint of (xx), (xxi)
[
A∗1B

−1 0
0 0

]
=

[
A−1

1 A−1
1 A2

0 0

]
, (xxii)

[
A−1

1 0
0 0

]
=

[
A∗1B

−1 0
A∗2 0

]
, (xxiii)

[
A∗1B

−1 0
A∗2B

−1 0

]
=

[
A∗1 A∗1A

−1
1 A2

A∗2 A∗2A
−1
1 A2

]
, (xxiv)

[
A∗1B

−1 A∗1B
−1A−1

1 A2

A∗2B
−1 A∗2B

−1A−1
1 A2

]
=

[
A∗1B

−1 0
A∗2B

−1 0

]
, (xxv)

[
A−1

1 A−2
1 A2

0 0

]
=

[
A∗1B

−1 0
A∗2B

−1 0

]
. (xxvi)

This completes the proof.

In closing we observe that from our characterizations of closed range
Hermitian, normal and EP operators on a Hilbert space we recover the
results for finite complex matrices obtained by Baksalary and Trenkler [1],
Cheng and Tian [7], Hartwig and Spindelböck [15], and many others, as well
as some of the results obtained recently in [9] by the first author.
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