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Abstract

We offer some extensions to C∗-algebra elements of factorization prop-
erties of EP operators on a Hilbert space.
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1 Results in a C∗-algebra

Several authors in [1, 6, 7] have recently addressed themselves to the ques-
tion of characterizing EP operators on Hilbert spaces or characterizing EP
elements in C∗-algebras, and Boasso [3] considered this question in Banach
spaces and algebras. Basic facts about EP matrices and operators can be
found in [2, 4, 5].

Let A be a unital C∗-algebra. An element a ∈ A is regular if a ∈ aAa;
any element x ∈ A satisfying axa = a is called a generalized inverse of a. By
Ainv and Areg we denote the set of all invertible and regular elements of A,
respectively. We note that a is regular if and only if a∗ is regular. A special
case of a generalized inverse of a ∈ A is the Moore–Penrose inverse, written
a†, which satisfies three additional conditions

a†aa† = a†, (a†a)∗ = a†a, (aa†)∗ = aa†.

The paper [9] gives a good account of the Moore-Penrose inverse in C∗-al-
gebras. In particular it proves that

a is regular ⇐⇒ aA is closed ⇐⇒ a is Moore–Penrose invertible.

For a ∈ A we define two annihilators

a◦ = {x ∈ A : ax = 0}, ◦a = {x ∈ A : xa = 0}.
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In this paper we state the results for the annihilators of the type a◦, and for
the cosets of the type aA. The results for the other types of annihilators
and cosets can be obtained from the symmetry relations

(a∗)◦ = a◦ ⇐⇒ ◦(a∗) = ◦a, aA = a∗A ⇐⇒ Aa = Aa∗.

In the following lemma we summarize some well known facts for a future
reference. A proof is given for completeness.

Lemma 1.1. The following are true for a ∈ A.
(i) a ∈ Ainv ⇐⇒ aA = A and a◦ = {0}.
(ii) a ∈ Areg ⇐⇒ A = (a∗A)⊕ a◦.
(iii) a∗A = A ⇐⇒ a ∈ Areg and a◦ = {0}.

Proof. (i) If a is invertible, then clearly A = aA and a◦ = {0}. Conversely,
let A = aA and a◦ = {0}. Define the left regular representation La : A → A
by La(x) = ax for all x ∈ A. Then La is a bijective bounded linear operator
on the Banach space A, and thus invertible. Let b = L−1

a (1). Then ab =
LaL

−1
a (1) = 1. Further, LaLb = Lab = L1 = I, that is, Lb = L−1

a . Hence
ab = 1 = ba.
(ii) If a is regular, the Moore–Penrose inverse a† exists, and

a†aA = a∗A, (1− a†a)A = a◦. (1.1)

The result follows from A = a†aA⊕ (1− a†a)A. For the converse consider
the left regular representations La and La∗ of a and a∗, respectively. If
A = (a∗A) ⊕ a◦, then A = R(La∗) ⊕N(La) = R(L∗

a) ⊕N(La). A classical
result implies that R(L∗

a) = a∗A is closed in A. Hence a∗ and a are regular.
(iii) If a∗A = A, then a∗ is regular, and so is a. There is u ∈ A with 1 = a∗u.
If ax = 0, then x∗ = x∗a∗u = (ax)∗u = 0, and x = 0. The converse follows
from part (ii).

Definition 1.2. An element a ∈ A is said to be EP if a ∈ Areg and aA =
a∗A (or, equivalently, if a ∈ Areg and a◦ = (a∗)◦).

The condition aA = a∗A gave the EP elements their name for equal
projections onto the range of a and a∗ in the case of matrices and closed range
Hilbert space operators. The set of all EP elements of A will be denoted
by Aep. There are many equivalent characterizations of EP elements in a
C∗-algebra (see, for instance, [9, 10, 11]), many more still for Hilbert space
operators and matrices. We mention only one well known characterization
relevant to our present enquiry (see, for instance, [11]).
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Lemma 1.3. An element a of a C∗-algebra is EP if and only if it is regular
and commutes with its Moore–Penrose inverse.

Proof. Let a be regular. If a† commutes with a, then a∗A = a†aA = aa†A =
(a∗)†a∗A = aA. Conversely, if a is EP, then aA = a∗A, and so Aa = Aa∗.
Thus a ∈ a†A ∩ Aa† in view of (1.1). Let a = ua†. Then a − a2a† =
u(a† − a†aa†) = 0. Let a = a†v. Then a − a†a2 = (a† − a†aa†)v = 0. Thus
a2a† = a = a†a2, and a†a = a†(a2a†) = (a†a2)a† = aa†.

Our first task is to characterize EP elements in terms of the existence
of projections; a projection in a C∗-algebra is an element p ∈ A satisfying
p2 = p = p∗.

Theorem 1.4. An element a ∈ A is EP if and only if there exists a projec-
tion p ∈ A such that

pa = a = ap, a ∈ (pAp)inv. (1.2)

Proof. Suppose that p is such a projection. Let q be the inverse of a in
the C∗-algebra pAp; then aq = p = qa, and q is a generalized inverse of a
as aqa = ap = a. In fact, q is the Moore–Penrose inverse of a: We have
qaq = qp = q as q ∈ pAp, and (aq)∗ = p∗ = p = aq; since a, q commute,
(qa)∗ = qa. Hence q = a†, and aa† = a†a. By Lemma 1.3, a is EP.

The converse follows on setting p = a†a.

In the preceding theorem we can express a† in terms of the projection p
and ordinary inverse in A:

a† = q = (a + 1− p)−1p (1.3)

using the relation between the ordinary and pAp inverses; it is known that
pap is invertible in pAp if and only if pap + 1− p is invertible in A.

We now turn our attention to characterizing EP elements in terms of fac-
torizations. The motivation for this part of the present paper is provided by
an interesting paper by Drivaliaris, Karanasios and Pappas [8] who studied
such characterizations for EP operators in a Hilbert space.

1.1 Factorization a = ba∗

In view of Definition 1.2, the simplest factorization of an EP element of A is
of the form a = ba∗ with b◦ = {0}, which implies the equality a◦ = (a∗)◦ of
annihilators. Then we have the following slightly more general result which
again follows from a direct verification of the equality of the annihilators.
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Theorem 1.5. Let a ∈ Areg. Then the following conditions are equiva-
lent:

(i) a is EP.
(ii) a = ba∗ = a∗c for some a, c ∈ A.
(iii) a∗a = b1a

∗ and aa∗ = c1a for some b1, c1 ∈ A.
(iv) a∗a = b2a

† and a† = c2a for some b2, c2 ∈ A.

Proof. The equivalence of (i) and (ii) is a well known result, see for instance
[11, Theorem 3.1]. Taking into account the equalities

(a∗a)◦ = a◦ and (aa∗)◦ = (a∗)◦ = (a†)◦, (1.4)

we deduce the equivalence of the remaining two conditions to (i).

1.2 Factorization a = ucw

First an auxiliary result.

Lemma 1.6. An element a ∈ Areg is EP if and only if a = ucu∗ for some
c, u ∈ A satisfying c◦ = (c∗)◦ and u◦ = {0}.

Proof. Let a have the specified factorization. We show that (ucu∗)◦ =
(uc∗u∗)◦. Let ucu∗x = 0. Then u∗x ∈ c◦ = (c∗)◦, that is, c∗u∗x = 0, and
x ∈ (uc∗u∗)◦ = (a∗)◦. The reverse inclusion is obtained by interchanging c
and c∗.

The converse follows on choosing c = a and u = 1.

An interesting question arises whether c in the preceding result needs to
be EP.

Theorem 1.7. Let a ∈ Areg. Then the following conditions are equiva-
lent:

(i) a is EP.
(ii) a = ucw = w∗d∗v∗ for some c, d, u, v, w ∈ A satisfying c◦ = d◦ and

u◦ = v◦ = {0}.
(iii) a∗a = u1c1w1 and aa∗ = v1d1w1 for some c1, d1, u1, v1, w1 ∈ A satis-

fying c◦1 = d◦1 and u◦1 = v◦1 = {0}.
(iv) a = u2c2w2 and a† = v2d2w2 for some c2, d2, u2, v2, w2 ∈ A satisfying

c◦2 = d◦2 and u◦2 = v◦2 = {0}.
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Proof. Suppose (ii) holds with c, d, u, v, w as specified. We show that a◦ =
(a∗)◦. Suppose that x ∈ a◦. Then ucwx = 0, and cwx = 0 as u◦ = {0}.
Since d◦ = c◦, we have dwx = 0, and a∗x = vdwx = 0. Thus a◦ ⊂ (a∗)◦ and
(i) holds. The reverse imclusion follows by interchanging a and a∗.

Conversely, if (i) holds, then by Lemma 1.6, a = ucu∗ with c ∈ Aep and
u◦ = {0}. Hence a∗ = uc∗u∗, where c◦ = (c∗)◦, and (ii) is proved.

Applying the identities (2.1) we deduce the equivalence of the remaining
two conditions to (i).

Theorem 1.8. An element a ∈ Areg is EP if and only if

a = ucw = w∗d∗u∗ (1.5)

for some c, d, u, w ∈ A with c◦ ⊂ d◦, (c∗)◦ ⊂ (d∗)◦ and u◦ = (w∗)◦ = {0}.

Proof. First we show that a◦ ⊂ (a∗)◦. Let ax = ucwx = 0. Then cwx = 0,
and dwx = 0 as c◦ ⊂ d◦. Hence a∗x = udwx = 0.

To prove the reverse inclusion let a∗x = w∗c∗u∗x = 0. Then c∗u∗x = 0,
and d∗u∗x = 0 as (c∗)◦ ⊂ (d∗)◦. Hence w∗d∗u∗x = 0, that is, ax = 0.

The converse follows by the choice u = w = 1, c = a and d = a∗.

1.3 Factorization a = bc

We now consider a factorization of a ∈ A of the form

a = bc, b∗A = A = cA. (1.6)

By Lemma 1.1, b∗A = A is equivalent to b being regular and b◦ = {0}.
Likewise, c is regular and (c∗)◦ = {0}. Hence the elements b∗b and cc∗ are
invertible in A, again by Lamma 1.1, as (b∗b)◦ = b◦ = {0} and b∗bA =
b∗A = A, and (cc∗)◦ = (c∗)◦ = {0} and cc∗A = cA = A. It then follows
that

b†b = (b∗b)−1b∗b = 1, cc† = cc∗(cc∗)−1 = 1. (1.7)

Lemma 1.9. If a has a factorization (1.6), then a is regular with a† = c†b†.

Proof. Using (1.7) we directly verify that x = c†b† satisfies the definition of
the Moore–Penrose inverse for a.

Theorem 1.10. Let a ∈ A have the factorization (1.6). Then a is regular
and the following conditions are equivalent:

(i) a ∈ Aep.
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(ii) bb† = c†c.
(iii) b(b∗b)−1b∗ = c∗(cc∗)−1c.
(iv) (b∗)◦ = c◦.

Proof. (i) implies (ii). If a ∈ Aep, then a†a = aa†. Substituting into this
equation from Lemma 1.9 and (1.7), we get the result.

(ii) is equivalent to (iii) as b† = (b∗b)−1b∗ and c† = c∗(cc∗)−1.
(iii) implies (iv). Let x ∈ (b∗)◦. By (iii), c∗(cc∗)−1cx = 0. But (c∗)◦ =

{0}, and so cx = 0 and x ∈ c◦. The converse follows by symmetry.
(iv) implies (i). We observe that a◦ = c◦ and (a∗)◦ = (b∗)◦.

2 Applications to Hilbert space operators

The results of the preceding section apply to Hilbert space operators, but
unlike in Drivaliaris, Karanasios and Pappas [8], a direct application would
cover only operators acting on the same space. In this section we develop
theory of EP operators from that of elements of a C∗-algebra B(H), and
describe a transcription of C∗-algebra results to results for operators between
Hilbert spaces. By B(H,K) we denote the set of all bounded linear operators
on H to K; we write B(H) = B(H,H). The direct sum H ⊕K of unrelated
Hilbert space H,K is always treated as an orthogonal sum.

We shall see that by using Theorem 1.4 we can bypass the necessity of
relating the algebra annihilator A◦ = {S ∈ B(H) : AS = 0} to the spatial
nullspace N(A) = {x ∈ H : Ax = 0} of an operator A ∈ B(H). It is well
known that an operator A is regular in B(H) (and Moore–Penrose invertible)
if and only if it has closed range.

First we give a canonical form of an EP operator on a Hilbert space H.

Theorem 2.1. An operator A ∈ B(H) is EP (relative to the C∗-algebra
B(H)) if and only if it is of the form

A = A1 ⊕⊥ 0 =
[
A1 0
0 0

]
,

where A1 is invertible.

Proof. Suppose A has the specified decomposition relative to the orthogonal
space decomposition H = K⊕⊥L, and suppose P = I⊕⊥0 is the orthogonal
projection of H onto K. We can then check that P satisfies the conditions
of Theorem 1.4: A and P clearly commute, and PA = (I ⊕⊥ 0)(A1 ⊕⊥ 0) =
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A1⊕⊥ 0 = A. To show that A is invertible in the C∗-algebra D = PB(H)P ,
set Q = A−1

1 ⊕⊥ 0. Then A,Q ∈ D commute, and

AQ = (A1 ⊕⊥ 0)(A−1
1 ⊕⊥ 0) = I ⊕⊥ 0 = P.

By Theorem 1.4, A is EP in the C∗-algebra B(H).
Conversely, assume that A is EP. By Theorem 1.4 there exists an or-

thogonal projection P such that AP = A = PA and A is invertible in the
C∗-algebra PB(H)P . Let A = A1 ⊕⊥ 0 be the decomposition of A, and
Q = Q1 ⊕⊥ 0 the decomposition of the PB(H)P inverse Q of A relative to
H = R(P ) ⊕⊥ N(P ). From AQ = P we get A1Q1 ⊕⊥ 0 = I ⊕⊥ 0, that is,
A1Q1 = I. Since A and Q commute, also Q1A1 = I, and A1 is invertible.

Remark 2.2. The canonical form of an EP operator given in Theorem 2.1
features prominently in [8, Section 3] in a slightly different form. In [8] the
authors show that an operator A ∈ B(H) is EP if and only there exist Hilbert
spaces K and L, a unitary operator U ∈ B(K ⊕ L,H), and an invertible
operator A1 ∈ B(K) such that A = U(A1 ⊕⊥ 0)U∗. We observe that the
existence of a unitary operator U ∈ B(K ⊕ L,H) means that the spaces
K ⊕ L and H are isometrically ∗-isomorphic to each other.

Theorem 2.3. An operator A ∈ B(H) is EP (relative to the C∗-algebra
B(H)) if and only if A has closed range and N(A) = N(A∗).

Proof. This follows from Theorem 2.1. If A is EP, then A has the decompo-
sition A = A1⊕⊥0 described in Theorem 2.1. Then R(A) = R(A1) is closed.
Further, A∗ = A∗

1⊕⊥ 0, and N(A) = N(A1) = N(A∗
1) = N(A∗). Conversely,

let A have closed range and let N(A) = N(A∗). Then H = R(A)⊕⊥ N(A),
and A has a decomposition A = A1 ⊕⊥ 0 with the properties described in
Theorem 2.1 relative to this space decomposition.

The preceding theorem is the key used to transcribe the C∗-algebra re-
sults of the preceding section in terms of operators between Hilbert spaces.

2.1 Factorization A = BA∗

An application of Theorem 1.5 together with

N(A∗A) = N(A) and N(AA∗) = N(A∗) = N(A†) (2.1)

yields the following result:

Theorem 2.4. Let A ∈ B(H) be a closed range operator. Then the following
conditions are equivalent:
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(i) A is EP.
(ii) A = BA∗ = A∗C for some B,C ∈ B(H).
(iii) A∗A = B1A

∗ and AA∗ = C1A for some B1, C1 ∈ B(H).
(iv) A∗A = B2A

† and A† = C2A for some B2, C2 ∈ B(H).

2.2 Factorization A = UCW

We can now give an operator version of Lemma 1.6 followed by the operator
version of Theorems 1.7 and 1.8.

Lemma 2.5. A closed range operator A ∈ B(H) is EP if and only if there
exists a Hilbert space K and operators B ∈ B(K), U ∈ B(K, H) such that
N(B) = N(B∗), N(U) = {0}, and A = UBU∗.

Proof. Suppose that a closed range operator A has the specified factoriza-
tion. It is not difficult to prove that N(A) = N(UBU∗) = N(UB∗U∗) =
N(A∗). By Theorem 2.3, A is EP. The converse follows on choosing K = H,
B = A and U = I.

Observe that we merely assume that N(B) = N(B∗) without requiring
B to be a closed range operator.

Theorem 2.6. A closed range operator A ∈ B(H) is EP if and only if there
exist Hilbert spaces K, L and operators U, V ∈ B(L,H), C,D ∈ B(K, L) and
W ∈ B(H,K) such that

A = UCW = W ∗D∗V ∗, (2.2)

where N(C) = N(D) and N(U) = N(V ) = {0}.

Proof. Suppose that the factorization of a closed range operator A with the
specified properties exists. We can then verify that N(A) = N(UCW ) =
N(V DW ) = N(A∗). By Theorem 2.3, A is EP. The converse follows on
choosing K = L = H, U = V = W = I and C = A, D = A∗.

Theorem 2.7. A closed range operator A ∈ B(H) is EP if and only if there
exist Hilbert spaces K, L and operators U ∈ B(L,H), C,D ∈ B(K, L) and
W ∈ B(H,K) such that

A = UCW = W ∗D∗U∗, (2.3)

where N(C) ⊂ N(D), N(C∗) ⊂ N(D∗) and N(U) = N(W ∗) = {0}.
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Proof. Proceeding as in the proof of Theorem 1.8 we show that under the
decomposition (2.3), N(A) = N(A∗). The converse follows on choosing
K = L = H, U = W = I and C = A, D = A∗.

Corollary 2.8. A closed range operator A ∈ B(H) is EP if and only if there
exist Hilbert spaces K, L and operators U ∈ B(L,H), C,D ∈ B(K, L) and
W ∈ B(H,K) such that

A = UCW = W ∗D∗U∗, (2.4)

where C = C1⊕⊥ 0 and D = D1⊕⊥ 0 relative to the same space decomposi-
tion, C1 is injective, and N(U) = N(W ∗) = {0}.

Proof. This follows from the preceding theorem when we observe that the
decompositions for C and D imply N(C) ⊂ N(D) and N(C∗) ⊂ N(D∗).

Theorem 2.7 can be extended by the inclusion of conditions equivalent
to (2.3) corresponding to conditions (iii) and (iv) of Theorem 1.7.

2.3 Factorization A = BC

Following our C∗-algebra investigation in the preceding section, we consider
an operator factorization of A ∈ B(H) of the form

A = BC, B∗ and C are surjective, (2.5)

where B ∈ B(K, H) and C ∈ B(H,K). From the conditions on B it fol-
lows that B is injective and has closed range. Further, B∗B and CC∗ are
invertible in B(K). Applying Theorem 1.10, we have:

Theorem 2.9. Let an operator A ∈ B(H) have the factorization (2.5).
Then A has closed range, and the following conditions are equivalent:

(i) A is EP.
(ii) BB† = C†C.
(iii) B(B∗B)−1B∗ = B∗(CC∗)−1C.
(iv) N(B∗) = N(C).

Remark 2.10. The preceding theorem is stronger than [8, Theorem 5.1] as
we do not assume—as it is done in [8]— that A has closed range.
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