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Abstract

In this paper we present a number of new characterizations of EP
elements in rings with involution in purely algebraic terms, and con-
siderably simplify proofs of already existing characterizations.
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1 Introduction

The EP matrices and EP linear operators on Banach or Hilbert spaces have
been investigated by many authors (see, for example, [1, 2, 3, 4, 5, 7, 8, 9,
10, 11, 13, 15, 17, 18, 21]). In this paper we use the setting of rings with in-
volution to investigate EP elements, give new characterizations, and provide
simpler and more transparent proofs to already existing characterizations.

Let R be an associative ring, and let a ∈ R. Then a is group invertible
if there is a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a;

a# is uniquely determined by these equations. We use R# to denote the set
of all group invertible elements of R.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R satisfying a∗ = a is called symmetric.
∗The authors are supported by the Ministry of Science, Republic of Serbia, grant no.

144003.
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We say that b = a† is the Moore–Penrose inverse (or MP-inverse) of a,
if the following hold [23]:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

There is at most one b such that above conditions hold (see [6, 12, 14, 16]).
The set of all Moore–Penrose invertible elements of R will be denoted by
R†.
Definition 1.1. An element a ∈ R is *-cancellable if

(1) a∗ax = 0 ⇒ ax = 0 and xaa∗ = 0 ⇒ xa = 0.

Applying the involution to (1), we observe that a is *-cancellable if and
only if a∗ is *-cancellable. In C∗-algebras all elements are *-cancellable.

Theorem 1.1. [19] Let a ∈ R. Then a ∈ R† if and only if a is *-cancellable
and a∗a is group invertible.

In this paper we will use the following definition of EP elements [19].

Definition 1.2. An element a of a ring R with involution is said to be EP
if a ∈ R# ∩R† and a# = a†.

These elements are important since they are characterized by commuta-
tivity with their Moore–Penrose inverse. The following result is well known
for matrices, Hilbert space operators and elements of C∗-algebras, and it is
equally true in rings with involution:

Lemma 1.1. An element a ∈ R is EP if and only if a ∈ R† and aa† = a†a.

We observe that a ∈ R# ∩R† if and only if a∗ ∈ R# ∩R† (see [19]) and
a is EP if and only if a∗ is EP. For further comments on the definition of EP
elements see the last section of this paper. The following result is proved in
[19].

Theorem 1.2. An element a ∈ R is EP if and only if a is group invertible
and one of the following equivalent conditions holds:

(a) a#a is symmetric;

(b) (a#)∗ = aa#(a#)∗;

(c) (a#)∗ = (a#)∗a#a;

(d) a#(aπ)∗ = aπ(a#)∗, where aπ is the spectral idempotent of the element
a ([19]).
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2 EP elements in rings with involution

In this section EP elements in rings with involution are characterized by
conditions involving their group and Moore–Penrose inverse. Some of these
results are proved in [5] or in [1] for complex matrices, using mostly the rank
of a matrix, or other finite dimensional methods. Moreover, the operator
analogues of these results are proved in [8] and [9] for linear operators on
Hilbert spaces, using the operator matrices. In this paper we show that nei-
ther the rank (in the finite dimensional case) nor the properties of operator
matrices (in the infinite dimensional case) are necessary for the characteri-
zation of EP elements.

In the following theorem we present 34 necessary and sufficient conditions
for an element a of a ring with involution to be EP. These conditions are
known in special cases such as matrices and operators on Hilbert spaces ([1],
[5], [8] and [9]).

Theorem 2.1. An element a ∈ R is EP if and only if a ∈ R# ∩ R† and
one of the following equivalent conditions holds:

(i) aa†a# = a†a#a;

(ii) aa†a# = a#aa†;

(iii) a∗aa# = a∗;

(iv) aa#a∗ = a∗aa#;

(v) aa#a† = a†aa#;

(vi) aa#a† = a#a†a;

(vii) a†aa# = a#a†a;

(viii) (a†)2a# = a†a#a†;

(ix) a†a#a† = a#(a†)2;

(x) a†(a#)2 = a#a†a#;

(xi) a†(a#)2 = (a#)2a†;

(xii) (a#)2a† = a#a†a#;

(xiii) a(a†)2 = a#;
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(xiv) a∗a† = a∗a#;

(xv) a†a∗ = a#a∗;

(xvi) a†a† = a#a†;

(xvii) a†a† = a†a#;

(xviii) (a†)2 = (a#)2;

(xix) aa#a† = a#;

(xx) a#a† = (a#)2;

(xxi) a†a# = (a#)2;

(xxii) a†aa# = a†;

(xxiii) a#a†a = a†;

(xxiv) aa†a∗a = a∗aaa†;

(xxv) a†aaa∗ = aa∗a†a;

(xxvi) aa†(aa∗ − a∗a) = (aa∗ − a∗a)aa†;

(xxvii) a†a(aa∗ − a∗a) = (aa∗ − a∗a)a†a;

(xxviii) a∗a#a + aa#a∗ = 2a∗;

(xxix) a†a#a + aa#a† = 2a†;

(xxx) aaa† + a†aa = 2a;

(xxxi) aaa† + (aaa†)∗ = a + a∗;

(xxxii) a†aa + (a†aa)∗ = a + a∗;

(xxxiii) aa†a∗ = a∗aa†;

(xxxiv) a∗a†a = a†aa∗.

Proof. If a is EP, then it commutes with its Moore–Penrose inverse and
a# = a†. It is not difficult to verify that conditions (i)-(xxxiv) hold.

Conversely, we assume that a ∈ R# ∩R†. We known that a ∈ R# ∩R†
if and only if a∗ ∈ R# ∩R† and a is EP if and only if a∗ is EP. To conclude
that a is EP, we show that one of the conditions of Theorem 1.2 is satisfied,
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or that the element a or the element a∗ is subject to one of the preceding
already established conditions of this theorem. If a∗ satisfies one of the
preceding already established conditions of this theorem, then a∗ is EP and
so a is EP.

(i) Using the assumption aa†a# = a†a#a, we get the equality

aa# = aa†aa# = (aa†a#)a = (a†a#a)a = a†aa#a = a†a.

Since a†a is symmetric, we get that aa# is also symmetric.
(ii) From aa†a# = a#aa†, we obtain

aa# = aa#aa# = a2(a#)2 = aaa†a(a#)2 = a(aa†a#) = a(a#aa†) = aa†.

Since aa† is symmetric, aa# is also symmetric.
(iii) If a∗aa# = a∗, then we have

(aa#)∗ = (a#)∗a∗ = (a#)∗(a∗aa#) = (aa#)∗aa#.

Since (aa#)∗aa# is symmetric, so is aa#.
(iv) Suppose that aa#a∗ = a∗aa#. Then we get

a∗ = (aa†a)∗ = a†aa∗ = a†a(aa#a∗) = (a†a)∗(a∗aa#) = a∗aa#.

Now the condition (iii) holds, so a is EP.
(v) Applying aa#a† = a†aa#, we have

a#a = a#aa†a = (aa#a†)a = (a†aa#)a = a†a.

Therefore a#a is symmetric.
(vi) By the equality aa#a† = a#a†a, we get

a#a = a#aa†a = a(a#a†a) = a(aa#a†) = aa#aa† = aa†.

Then a#a is symmetric.
(vii) When we use the equality a†aa# = a#a†a, we obtain

a#a = (a#)2a2 = (a#)2aa†aa = (a#a†a)a = (a†aa#)a = a†a.

So a#a is symmetric.
(viii) The equality (a†)2a# = a†a#a† gives

(a†)2a# = ((a†)2a#)aa# = (a†a#a†)aa# = a†(a#)2aa†aa#

= a†(a#)2aa# = a†(a#)2.
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Now, from the previous equality and (viii), it follows

aa#a† = aa(a#)2a† = aaa†a(a#)2a† = aaa†a#a† = aa((a†)2a#)
= aa(a†(a#)2) = aaa†a(a#)2a# = aa(a#)2a#

= a(a#)2 = a# = (a#)2a = (a#)2aa†a = a#a†a.

The condition (vi) is obtained from (viii).
(ix) Suppose that a†a#a† = a#(a†)2. Applying the involution to (ix),

we get
(a†)∗(a#)∗(a†)∗ = (a†)∗(a†)∗(a#)∗.

Since (a†)∗ = (a∗)† and (a#)∗ = (a∗)# (see [19]), we have

(a∗)†(a∗)#(a∗)† = (a∗)†(a∗)†(a∗)#,

Therefore, the condition (viii) holds for a∗.
(x) Using the equality a†(a#)2 = a#a†a#, we get

a#a = (a#)2aa = (a#)2aa†aa = a#a†aa = (a#a†a#)a2a

= (a†(a#)2)a3 = a†a#a2 = a†a.

Hence, a#a is symmetric.
(xi) Using the assumption a†(a#)2 = (a#)2a†, we have

a#a = (a#)3a3 = (a#)3aa†aa2 = ((a#)2a†)a3 = (a†(a#)2)a3

= a†a#a2 = a†a.

Then a#a is symmetric.
(xii) Assume that (a#)2a† = a#a†a#. Applying the involution to (xii),

we get
(a∗)†(a∗)#(a∗)# = (a∗)#(a∗)†(a∗)#.

Hence, the condition (x) holds for a∗.
(xiii) From the condition a(a†)2 = a# follows

aa# = aa(a†)2 = aa(a†)2aa† = aa#aa† = aa†.

Hence, aa# is symmetric.
(xiv) By a∗a† = a∗a#, it follows

a(a†)2 = (aa†)∗a† = (a†)∗(a∗a†) = (a†)∗(a∗a#) = (aa†)∗a# = aa†a#

= aa†a(a#)2 = a(a#)2 = a#,
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i.e. the condition (xiii) is satisfied.
(xv) Applying the involution to a†a∗ = a#a∗, we obtain

(a∗)∗(a∗)† = (a∗)∗(a∗)#,

i.e. the condition (xvi) holds for a∗.
(xvi) The condition a†a† = a#a† implies

a†a∗ = a†(aa†a)∗ = a†(a†a)∗a∗ = (a†a†)aa∗ = (a#a†)aa∗

= a#(a†a)∗a∗ = a#(aa†a)∗ = a#a∗,

i.e. the equality (xv) is satisfied.
(xvii) Applying the involution to a†a† = a†a#, we get

(a∗)†(a∗)† = (a∗)#(a∗)†.

So, the equality (xvi) holds for a∗.
(xviii) Suppose that (a†)2 = (a#)2, then we have

a(a†)2 = a(a#)2 = a#.

Therefore, the condition (xiii) is satisfied.
(xix) Using aa#a† = a#, we get the equality

aa# = a(aa#a†) = aa†.

Hence, aa# is symmetric.
(xx) Assume that a#a† = (a#)2. Then it follows

aa#a† = a(a#)2 = a#.

Hence, the condition (xix) holds.
(xxi) Applying the involution to a†a# = (a#)2, we obtain

(a∗)#(a∗)† = (a∗)#(a∗)#.

Now, a∗ satisfies the condition (xx).
(xxii) Applying a†aa# = a†, we have

aa# = a(a†aa#) = aa†.

So, aa# is symmetric.
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(xxiii) The equality a#a†a = a† gives

a#a = a#aa†a = a(a#a†a) = aa†.

Therefore a#a is symmetric.
(xxiv) From aa†a∗a = a∗aaa†, we have

a∗aaa# = (a∗aaa†)aa# = (aa†a∗a)aa# = aa†a∗a = a∗aaa†,

i.e.

(2) a∗a(aa# − aa†) = 0.

Using the assumption a ∈ R†, by Theorem 1.1, we know that a is *-
cancellable. Then, by (2) and *-cancellation, we get

a(aa# − aa†) = 0,

i.e.
a = aaa†.

Now
a#a = a#(aaa†) = aa†.

So a#a is symmetric.
(xxv) The equality a†aaa∗ = aa∗a†a gives

a#aaa∗ = a#a(a†aaa∗) = a#a(aa∗a†a) = aa∗a†a = a†aaa∗,

i.e.

(3) (a#a− a†a)aa∗ = 0.

Since a ∈ R†, a is *-cancellable by Theorem 1.1. From (3) and *-cancel-
lation, we obtain

(a#a− a†a)a = 0,

i.e.
a = a†aa.

Using the previous equality, we get

aa# = (a†aa)a# = a†a.

Hence a#a is symmetric.
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(xxvi) The assumption

aa†(aa∗ − a∗a) = (aa∗ − a∗a)aa†

is equivalent to
aa∗ − aa†a∗a = aa∗ − a∗aaa†.

Then, we deduce that aa†a∗a = a∗aaa†, i.e. the condition (xxiv) is satisfied.
(xxvii) The equality

a†a(aa∗ − a∗a) = (aa∗ − a∗a)a†a

is equivalent to
a†aaa∗ − a∗a = aa∗a†a− a∗a

which implies
a†aaa∗ = aa∗a†a.

Thus, the equality (xxv) holds.
(xxviii) Using a∗a#a + aa#a∗ = 2a∗, we get

2a∗ = 2(aa†a)∗ = 2(a†a)∗a∗ = a†a(2a∗) = a†a(a∗a#a + aa#a∗)
= a∗a#a + a†aa∗ = a∗a#a + a∗.

This gives
a∗ = a∗a#a = a∗aa#,

and then a satisfies condition (iii).
(xxix) If a†a#a + aa#a† = 2a†, then we obtain

2aa† = a(2a†) = a(a†a#a + aa#a†) = aa†aa# + aa† = aa# + aa†,

i.e. aa† = aa#. Therefore, aa# is symmetric.
(xxx) Suppose that aaa† + a†aa = 2a, then we get

2aa# = (aaa† + a†aa)a# = aaa†a(a#)2 + a†a = aa(a#)2 + a†a = aa# + a†a,

i.e. aa# = a†a. So aa# is symmetric.
(xxxi) Multiplying aaa† + (aaa†)∗ = a + a∗ by a from the right side, we

get aa†a∗a = a∗a. Thus aa†a∗a is symmetric and

aa†a∗a = (aa†a∗a)∗ = a∗aaa†.

Then the condition (xxiv) holds.
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(xxxii) Multiplying a†aa + (a†aa)∗ = a + a∗ by a from the left side, we
obtain aa∗a†a = aa∗. Hence aa∗a†a is symmetric and

aa∗a†a = (aa∗a†a)∗ = a†aaa∗.

Now the equality (xxv) is satisfied.
(xxxiii) From aa†a∗ = a∗aa†, we have

aa#a∗ = aa#(a∗aa†) = aa#(aa†a∗) = aa†a∗ = a∗aa† = a∗.

Then, from the previous equality, we get

(a#a)∗ = a∗(a#)∗ = aa#a∗(a#)∗ = aa#(a#a)∗ = aa#(aa#)∗.

So a#a is symmetric.
(xxxiv) Applying a∗a†a = a†aa∗, we obtain

a∗aa# = (a†aa∗)aa# = (a∗a†a)aa# = a∗a†a = a†aa∗ = a∗.

Thus a satisfies condition (iii).

The following result is well-known for complex matrices and for linear
operators on Hilbert spaces (see [1], [5], [8] and [9]). However, we are not in
a position to prove this result for elements of a ring with involution, so we
state it as a conjecture.

Conjecture. An element a ∈ R is EP if and only if a ∈ R# ∩ R† and one
of the following equivalent conditions holds:

(i) (a†)2a# = a#(a†)2;

(ii) aa† = a2(a†)2;

(iii) a†a = (a†)2a2.
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3 Comparisons with other results

The original definition of a complex EP matrix A requires the equality of
the ranges R(A) and R(A∗) (hence EP for equal projections onto R(A) and
R(A∗)). For complex matrices this is equivalent to A† = A#. However, for
Hilbert space operators and elements of C∗-algebras this is no longer true
as only regular operators and elements of C∗-algebras possess the Moore–
Penrose inverse. (Here the regularity of a is understood in the sense of von
Neumann as the existence of b such that aba = a.) In rings with involution
the regularity is not enough to ensure the existence of a Moore–Penrose
inverse (see the discussion in [20, Section 3]).

In order to carefully distinguish between various conditions on an element
of a ring with involution, Patŕıcio and Puystjens in [22] introduced a whole
new terminology. In [22], an element is called *-EP if a∗R = aR. The
elements we call EP are called *-gMP elements in [22].

Adhering to our terminology, we can reproduce some of the results of
[22] as follows:

Theorem 3.1. [22, Corollary 3] If a is an element of a ring with involution,
then

a is EP ⇐⇒ aR = a∗R and a ∈ R# ⇐⇒ aR = a∗R and a ∈ R†.
Patŕıcio and Puystjens in [22] further discuss the necessary and sufficient

conditions for a regular element a to be EP.

Theorem 3.2. [22, Theorem 4] A regular element a of R is EP if and only
if a∗ = v−1au, where

u = (aa−)∗(aa∗ − 1) + 1, v = (a2 − 1)aa− + 1

are invertible for some (any) inner inverse a−.

Boasso in [3] made further inroads into the theory when he gave a def-
inition of EP elements of a Banach algebra in the absence of involution.
His definition relies on the characterization of Hermitian elements using the
topology of the underlying algebra due to Palmer and Vidav. However,
there are no obvious candidates for Hermitian elements in a ring (or alge-
bra) without involution, and so this avenue does not seem to be accessible
from the purely algebraic point of view.

Acknowledgement. We are grateful to the anonymous referees. Their
helpful suggestions led to the improved presentation of the paper.
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