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Abstract

If R is a ring with involution, and a' is the Moore-Penrose inverse
of a € R, then the element a is called: EP, if aa’ = afa; partial
isometry, if a* = af; star-dagger, if a*a’ = afa*. In this paper we
characterize partial isometries, EP and star-dagger elements in rings
with involution. Thus, we extend some well-known results to more
general settings.
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1 Introduction

Let R be an associative ring with the unit 1, and let a« € R. Then a is group
invertible if there is a” € R such that

aa”a = a, a”aa” = a#, aa” = a”a.

Recall that a” is uniquely determined by previous equations [2]. We use
R7# to denote the set of all group invertible elements of R. If a is invertible,
then a# coincides with the ordinary inverse of a.
An involution a — a* in a ring R is an anti-isomorphism of degree 2,
that is,
(a*)"=a, (a+b)"=a"+b", (ab)*=0b"a".

An element a € R satisfying aa™ = a*a is called normal. An element a € R
satisfying a = a* is called Hermitian (or symmetric). In the rest of the
paper we assume that R is a ring with involution.
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We say that b = a' is the Moore-Penrose inverse (or MP-inverse) of a,
if the following hold [10]:

aba = a, bab="b, (ab)" =ab, (ba)* = ba.

There is at most one b such that above conditions hold (see [5, 7, 10]), and
such b is denoted by af. The set of all Moore-Penrose invertible elements
of R will be denoted by Rt. If @ is invertible, then a' coincides with the
ordinary inverse of a.

An element a € RT satisfying a* = af is called @ partial isometry. An
element a € R satisfying a*a’ = afa* is called star-dagger [6].

Definition 1.1. [8] An element a € R is *-cancellable if
a'ar=0=ax =0 and zaa"=0= za=0. (1)

Applying the involution to (1), we observe that a is *-cancellable if and
only if a* is *-cancellable. In C*-algebras all elements are *-cancellable.

Theorem 1.1. [8] Let a € R. Then a € R' if and only if a is *-cancellable
and a*a is group invertible.

Theorem 1.2. [4, 9] For any a € R, the following is satisfied:
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In this paper we will use the following definition of EP elements [8].

Definition 1.2. An element a of a ring R with involution is said to be EP
if e € R¥ NRT and a¥ = al.

Lemma 1.1. An element a € R is EP if and only if a € R' and aa’ = ala.



We observe that a € R* NRT if and only if a* € R* NRT (see [8]) and
a is EP if and only if a* is EP. In [8], the equality (a*)# = (a™)* is proved.

Theorem 1.3. [8] An elementa € R is EP if and only if a is group invertible
and a*a is symmetric.

In praticular, if a € R, then (aa*)’ = (aa*)#, and aa* is EP.
Previous results are also contained in [4].

Lemma 1.2. [9] If a € R' is normal, then a is EP.

Theorem 1.4. [9] Suppose that a € RY. Then a is normal if and only if
a € R¥ and one of the following equivalent conditions holds:

(i) aa*a™ = a*aa*;
(i) aaa® = aa*a.

In [1], O.M. Baksalary, G.P.H. Styan and G. Trenkler used the repre-
sentation of complex matrices provided in [6] to explore various classes of
matrices, such as partial isometries, EP and star-dagger elements. Inspired
by [1], in this paper we use a different approach, exploiting the structure of
rings with involution to investigate partial isometries, EP and star-dagger
elements. We give several characterizations, and the proofs are based on
ring theory only. The paper is organized as follows. In Section 2, character-
izations of MP-invertible or both MP-invertible and group invertible partial
isometries in rings with involution are given. In Section 3, star-dagger, group
invertible and EP elements in rings with involution are investigated.

2 Characterizations of partial isometries

In the following theorem we present some equivalent conditions for the
Moore-Penrose invertible element a of a ring with involution to be a partial
isometry.

Theorem 2.1. Suppose that a € RY. The following statements are equiva-
lent:

(i) a is a partial isometry;
(ii) aa* = aa';

(iii) a*a = a'a.



Proof. (i) = (ii): If a is a partial isometry, then a* = a!. So aa* = aa' and
the condition (ii) holds.
(i) = (iii): Suppose that aa* = aa’. Then we get the following:

a*a = a'(aa*)a = alaa’a = a'a.

Hence, the condition (iii) is satisfied.
(iii) = (i): Applying the equality a*a = a'a, we obtain

o =a*aa’ = alaal = af.
Thus, the element a is a partial isometry. ]

Since for a € R the equalities a* = a*aa’ = afaa* hold, we deduce that
a is a partial isometry if and only if a*aa’ = af, or if and only if afaa* = af.

In the following theorem we assume that the element a is both Moore—
Penrose invertible and group invertible. Then, we study the conditions
involving af, a# and a* to ensure that a is a partial isometry. Theorems 2.1
and 2.2 are inspired by Theorem 1 in [1].

Theorem 2.2. Suppose that a € Rt NR#. Then a is a partial isometry if
and only if one of the following equivalent conditions holds:

Proof. If a is a partial isometry, then a* = af. It is not difficult to verify
that conditions (i)-(iv) hold.

Conversely, to conclude that a is a partial isometry, we show that either
the condition a* = a' is satisfied, or one of the preceding already established
condition of this theorem holds.

(i) By the equality a*a® = a'a?, we get
#

a* = a*aa’ = a*aa®aa’ = a*a*aaa’ = ata*aaad’ = ataat = af.

(ii) The equality a#a* = a#al gives

a* = ataa* = ataaa®a* = a’aaa®at = ataa’ = at.



(iii) Multiplying aa*a™ = a* by a' from the left side, we obtain
a*a® = ala”.
Thus, the condition (i) is satisfied, so a is a partial isometry.
(iii) Multiplying a*a*a = a” by a' from the right side, we get

a*a* =a”al.
Hence, the equality (ii) holds, and a is a partial isometry. O

In the following theorem we give necessary and sufficient conditions for
an element ¢ of a ring with involution to be a partial isometry and EP. It
should be mentioned that the following result generalizes Theorem 2 in [1].

Theorem 2.3. Suppose that a € RtY. Then a is a partial isometry and EP
if and only if a € R¥ and one of the following equivalent conditions holds:



(xvi) aa*al = a¥;
(xvii

(xviii

(xx

(xxi) aala* = a¥;

)
)
(xix) a*a® = a;
)
)
)

(xxii) a*a’a = a™.

Proof. If a € Rl is a partial isometry and EP, then a € R# and a* = af =
a™. Tt is not difficult to verify that conditions (i)-(xxii) hold.

Conversely, we assume that a € R#¥. We known that a € R#* N RT if
and only if a* € R¥ N R and a is EP if and only if a* is EP. We will
prove that a is a partial isometry and EP, or we will show that the element
a or a* satisfies one of the preceding already established conditions of this
theorem. If a* satisfies one of the preceding already established conditions
of this theorem, then a* is a partial isometry and EP and so a is a partial
isometry and EP.

(i) If @ is a partial isometry and normal, then a is a partial isometry and
EP, by Lemma 1.2.

(ii) From the condition a* = a*, we obtain

aa* = aa® = a*a = a*a.

So, element a is normal. Then, by Lemma 1.2, a is EP and, by definition,
a# = af. Hence, a* = a# = al, i.e. ais a partial isometry.
(iii) Suppose that aa* = afa. Then

a?aa* = a”ala = (a¥)?aa’a = (a¥)%a = o™, (2)

which implies
aa*a® = a(a”aa*)a” = aa®a¥ = o, (3)

From the equalities (2) and (3), we get aa*a” = a*aa*. Now, by Theorem
1.4, a is normal. Then a is EP by Lemma 1.2, and

aa' = ala = aa’,

by (iii). Thus, a is a partial isometry, by the condition (ii) of Theorem 2.1.



(iv) Applying the involution to a*a = aal, we obtain

by Theorem 1.2. Hence, a* satisfies the condition (iii).
(v) The equality aa* = aa™ gives

aaa” = aaa” = aa”a = aa*a.

Therefore, a is normal by Theorem 1.4. From Lemma 1.2, a is EP and, by
definition, a” = af. Now, by (v), aa* = aa' and, by the condition (ii) of
Theorem 2.1, a is a partial isometry.

(vi) Applying the involution to a*a = aa™, we get

a*(a*)* — (CL#)*CL* — (CL*)#CL* — a*(a*)#7

by the equality (a™)* = (a*)* [8]. Thus, a* satisfies the equality (v).
(vii) Assume that a*a’ = afa”. Then

a(a#)2 = aaaTa(a#)2 = a2(aTa#) = a%a*al

2(a*aNaa’ = a’aTa™aa’ = aaalaa® ol

aa# =

=)

I
S|

= a®a*al = aal.

Since aa' is symmetric, aa™ is symmetric too. By Theorem 1.3, a is EP and
a” = al. Then, by (vii), a*a” = afa™, i.e. the condition (i) of Theorem 2.2
is satisfied. Hence, a is a partial isometry.

(viii) Applying the involution to a'a* = a*a', we have

ie.
(a*)* (@)t = (a*)T(a")*.
So a* satisfies the condition (vii).
(ix) The condition a'a* = afa# implies
aa” = aa(a”)? = aaata(a™)? = a®(aTa®) = a®ala*
= d®(a'a*)aa’ = d®a’a”aa’ = aaalaa™a’
a

261,#&.r = CLCLT.

Thus aa” is symmetric, and by Theorem 1.3 a is EP. From a! = a# and
(ix) we get afa* = a#al, i.e. the equality (viii) holds.



(x) Applying the involution to a*al = a*a', we get
(ah)*(a*)* = (a")*(a?)*,

which gives
(a*)'(a")" = (a")(a*)*

i.e. a* satisfies the condition (ix).
(xi) Using the assumption a*a? = a*#af, we have

a*a = (a*a#)aQ = a#aTa2 = (a#)QaaTa2 = (a#)2a2 = a#a = aa#.

Hence, the condition (vi) is satisfied.
(xii) If a*a’ = a*a®, then (x) holds, since:

a*a' = (a*aNaad’ = a¥a”aa’ = a¥al.
(xiii) By the equality a*a™ = a'al, we obtain
a*aa”a’ = (a*a”)aa’ = aTaTaa’ = ala’ = a*a® = a*a(a™)?,

which implies
a*a(a”a’ — (a™)?) = 0. (4)

Since a € RI, a is *-cancellable by Theorem 1.1. From (4) and *-cancel-
lation, we get a(aa’ — (a)?) = 0, i.e.

aa’a’ = a. (5)
Multiplying (5) by a from the left side, we have
aa’ = aa’”.

Therefore, aa* is symmetric, so a is EP by Theorem 1.3. Now, from a! = a#
and (xiii) we get a*a” = a¥al, i.e. the condition (xi) is satisfied.
(xiv) The assumption a*a? = a”a? gives

a*a = (a*a™)aa = a*aaa = a¥a = aa”.
So the equality (vi) holds.
(xv) From aa*a’ = af, we get
aa* = a%aaad* = a*(aa*a*)* = a¥ (aa*aTaa*)*

= a"(a'aa®)* = a”(a")* = a”a = aa”.



Thus, the equality (v) is satisfied.
(xvi) Multiplying aa*a! = a¥ by al from the left side, we get

a*a’ = ala®.
Therefore, the condition (vii) holds.
(xvii) Multiplying aa*a” = a' by a from the left side, we obtain the
condition (xiii).
(xviii) Suppose that aa’a* = af. Then

aala’a = aaT(aTa)* = (aa'a*)(a")* = a'(ah)*

a'(aata®)* = a'a(aa)* = alaaal.
Now, from this equality and (xviii), we have

ata* = a’a"aa* = (a ) 2aa(a™)?aa* = (a¥)%a(a’aaa)a(a™)?aa
T

= a%ad'a’aa”aa* = a®aa’alaa* = a¥ (aa'a*) = a¥al.

Hence, the equality (ii) of Theorem 2.2 holds and then a is a partial isometry.
From a* = a! and (xviii), we obtain

aa*a’ = aa'a* = af,

i.e. the equality (xv) is satisfied.
(xix) Multiplying a*a® = a by a* from the right side, we get

a*a = aa®.

So the condition (vi) holds.
(xx) Multiplying a?a* = a by a* from the left side, we have

aa* = a*a = aa*.

Thus, the equality (v) is satisfied.
(xxi) Multiplying aa'a* = a¥ by a' from the left side, we obtain

ata* = ata#.

Hence, a satisfies the condition (ix).
(xxii) Multiplying a*afa = a# by a' from the right side, we get

a*a’ = a*al.

Therefore, the condition (x) holds. O



The following result is well-known for complex matrices (see Theorem 1
in [1]). However, we are not in a position to prove this result for elements
of a ring with involution, so we state it as a conjecture.

Conjecture. Suppose that a € RT. Then a is a partial isometry if and only
if one of the following equivalent conditions holds:

(i) a*aa* = af;

(ii) aa*aa*a = a.

3 EP, star-dagger and group-inverible elements

First, we state the following result concerning sufficient conditions for Moore-
Penrose invertible element a in ring with involution to be star—dagger. This
result is proved for complex matrices in [1].

Theorem 3.1. Suppose that a € RY. Then each of the following conditions
1s sufficient for a to be star—dagger:

(i
(ii

) af;
) ;

(iii) a = a'al;
) ;
) a

a* =a*
* aTa*

)
I

(iv :
al *a*.

(v

Proof. (i) Using the equation a* = a*al, we get

a*aa’ = a* = a*a = a*ad'al,

ie.
a*a(a’ —alal) = 0. (6)

From a € RY, by Theorem 1.1 we know that a is *-cancellable. Then, by
(6) and *-cancellation, we have

ala’ —afa’) =0
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which gives
aa’ = aa'al. (7)

Now, by (i) and (7),
a*a' = a* = alaa® = a'(aa")aa* = aTaata’aa* = ala*.
(ii) Applying the involution to a* = afa*, we obtain
(a*)* = (a*)*(a")* = (a)"(a")".

Since the condition (i) holds for a*, we deduce that a* is star-dagger. Thus
(a®)*(a")" = (a*)T(a")", Le.

a(a')* = (ah)*a (8)
Applying the involution to (8), we get ala* = a*al.
(iii) The condition a' = afa’ implies
a*a' = a*a(a’a’) = a*aad’ = a* = a'aa* = a'alaa* = a'a”.
(iv) From the equality a* = a'af, we have
a*a’ = a*a(a’a’) = a*aa* = a'alaa* = ala”.
(v) If af = a*a*, then
a*a' = a*a*a* = ala*.
O

Now, we prove an alternative characterization of the group inverse in a
ring. This result is proved for complex matrices in [1] where the authors use
the rank of a matrix.

Theorem 3.2. Let R be an associative ring with the unit 1, and let a € R.
Then b € R is the group inverse of a if and only if

ba’=a, a’b=a, bR =baR.

Proof. If b = a¥, then, by definition, a = ba®? = a?b. It is clear that
baR C bR. To show that bR C baR, we assume that y € bR. Then y = bz
for some x € R. Since bab = b, we have y = bx = babx € baR. Hence,
bR = ba'R.

Suppose that ba® = a,a’b = a,bR = baR. Now, ab = ba’b = ba and
aba = baa = a. Since b = bl € bR = baR, then b = bax for some x € R.
Thus, b = bax = ba?bx = ba(bax) = bab and b = a™. O
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Finally, we prove the result involving EP elements in a ring.

Theorem 3.3. Suppose that a,b € R. Then the following statements are
equivalent:

(i) aba = a and a is EP;
(ii) a € RTNR#* and a' = a'ba;
(iii) @ € RTNR* and a* = a*ba;
(iv) a € Rt NR# and a* = aba*;
(v) a € Rt NR# and a' = aba'.
Proof. (i) = (ii): Let aba = a and let a be EP. We get
al = a” = (a¥)%a = (a¥)?%aba = a™ba = alba,
i.e. the condition (ii) holds.
(ii) = (iii): From af = afba, we get
a* = a*ad’ = a*aa’ba = a*ba.
Therefore, the condition (iii) is satisfied.
(iii) = (ii): The condition a* = a*ba is equivalent to
a*aal = a*aatba,
which implies
a*a(a’ — a'ba) = 0. 9)
From a € R and Theorem 1.1 it follows that a is *-cancellable. Thus, by
(9) and *-cancellation, a(a’ — a'ba) = 0 which yields
aa’ = aa'ba. (10)
Multiplying (10) by a' from the left side, we obtain a' = a'ba. So the
condition (ii) holds.
(ii) = (i): If a' = a'ba, then
aa” = aa'aa” = aa'baaa® = aa’ba = aal.
Hence, aa® is symmetric. By Theorem 1.3, a is EP and a# = af. Now, by
(ii) we get a® = a”ba and consequently a = a?a™ = a’a”ba = aba. Thus,
the condition (i) is satisfied.

(i) = (iv) = (v) = (i): These implications can be proved analogously.
0

Notice that in the case of complex matrices, the equivalencies (i)« (iii) < (iv)
are proved in [3], and the equivalencies (i)< (ii)<(v) are proved in [1].

12



4 Conclusions

In this paper we consider Moore-Penrose invertible or both Moore-Penrose
invertible and group invertible elements in rings with involution to charac-
terize partial isometries, EP and star-dagger elements in terms of equations
involving their adjoints, Moore-Penorse and group inverses. All of these re-
sults are already known for complex matrices. However, we demonstrated
the new technique in proving the results. In the theory of complex matri-
ces various authors used an elegant representation of complex matrices and
the matrix rank to characterize partial isometries, EP elements and star-
dagger. In this paper we applied a purely algebraic technique, involving
different characterizations of the Moore-Penrose inverse.

Acknowledgement. We are grateful to the for helpful comments con-
cerning the paper.
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