ON a-WEYL'S THEOREM

DRAGAN S. DJORDJEVIĆ and SLAVIŠA V. DJORDJEVIĆ

ABSTRACT. Let X be a complex infinite dimensional Banach space. We use $\sigma_a(T)$ and $\sigma_{ea}(T)$ respectively, to denote the approximate point spectrum and the essential approximate point spectrum of a bounded operator T on X. Also, $\pi_{a0}(T)$ denotes the set of all isolated eigenvalues of $\sigma_a(T)$ of finite geometric multiplicity. We give sufficient conditions such that the spectral mapping theorem holds for the set $\sigma_a(T) \setminus \pi_{a0}(T)$ and for all analytic functions which are not constant on the connected components of their domains. Using the Rakočević's concept from [5] and [7], we say that an operator T on X obeys a-Weyl's theorem provided that $\sigma_{ea}(T) = \sigma_a(T) \setminus \pi_{a0}(T)$. We investigate connections between a-Weyl's theorem and the spectral mapping theorem. We also prove some perturbation results concerning a-Weyl's theorem and various essential spectra.

Key words: Approximate point spectrum, essential approximate point spectrum, a-Weyl's theorem, spectral mapping theorems, perturbations of spectra.

AMS 1991 Subject Classification: 47A53, 47A10, 47A55.

1. INTRODUCTION

Let X be a complex infinite dimensional Banach space and let B(X) and K(X), respectively, denote the Banach algebra of all bounded operators on X and the ideal of all compact operators on X. If $T \in B(X)$, then $\sigma(T)$ denotes the spectrum of T and $\rho(T)$ denotes the resolvent set of T. The next sets are well-known semigroups of semi–Fredholm operators on X: $\Phi_+(X) = \{T \in B(X) : \mathcal{R}(T) \text{ is closed and } \dim \mathcal{N}(T) < \infty\}$ and $\Phi_-(X) = \{T \in B(X) : \mathcal{R}(T) \text{ is closed and } \dim X/\mathcal{R}(T) < \infty\}$. The

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

semigroup of Fredholm operators is $\Phi(X) = \Phi_+(X) \cap \Phi_-(X)$. If T is semi–Fredholm, define the index of T by $i(T) = \dim \mathcal{N}(T) - \dim X/\mathcal{R}(T)$. We also consider sets $\Phi_0(X) = \{T \in \Phi(X) : i(T) = 0\}$ (Weyl operators) and $\Phi_+^-(X) = \{T \in \Phi_+(X) : i(T) \leq 0\}$ (see [5]). The Weyl spectrum of $T \in B(X)$ is $\sigma_w(T) = \{\lambda \in \mathbf{C} : T - \lambda \notin \Phi_0(X)\}$. We use $\sigma_p(T)$ and $\sigma_a(T)$, respectively, to denote the point spectrum and approximate point spectrum of $T \in B(X)$. Also, we use \mathbf{C} to denote the complex plane. We use $\pi_{00}(T)$ to denote the set of all $\lambda \in \mathbf{C}$ such that λ is an isolated point of $\sigma(T)$ and $0 < \dim \mathcal{N}(T - \lambda) < \infty$. We say that T obeys Weyl's theorem, if

$$\sigma_w(T) = \sigma(T) \setminus \pi_{00}(T) \qquad (\text{see } [\mathbf{4}]).$$

Let π_{a0} denotes the set of all $\lambda \in \mathbf{C}$ such that λ is isolated in $\sigma_a(T)$ and $0 < \dim \mathcal{N}(T - \lambda) < \infty$. If $\lambda \in \pi_{00}(T)$, or $\lambda \in \pi_{a0}(T)$, then λ has finite geometric multiplicity. Also, $\sigma_{ea}(T) = \bigcap \{\sigma_a(T+K) : K \in K(X)\}$ is the essential approximate point spectrum. It is well-known that $\sigma_{ea}(T) =$ $\{\lambda \in \mathbf{C} : T - \lambda \notin \Phi_+^-(X)\}$ [5]. We take $\sigma_{ab}(T) = \bigcap \{\sigma_a(T+K) : K \in K(X), TK = KT\}$ to denote the Browder essential approximate point spectrum. It is well-known that $\lambda \notin \sigma_{ab}(T)$ if and only if $T - \lambda \in \Phi_+^-(X)$ and the ascent $a(T - \lambda) < \infty$ [6]. We say that T obeys a-Weyl's theorem, if

$$\sigma_{ea}(T) = \sigma_a(T) \setminus \pi_{a0}(T), \qquad (\text{see } [\mathbf{6}], [\mathbf{7}]).$$

It is well-known that if $T \in B(X)$ obeys *a*-Weyl's theorem, then it also obeys Weyl's theorem, but the converse is not true [7]. Let Hol(T) denotes the set of all complex-valued functions f, defined and regular in some neighbourhood of $\sigma(T)$, such that f is not constant on the connected components of its domain of definition. Recall the definition of the reduced minimum modulus of T (see [7] and references cited there):

$$\gamma(T) = \inf \left\{ \frac{\|Ax\|}{\operatorname{dist}(x, \mathcal{N}(T))} : x \notin \mathcal{N}(T) \right\}.$$

It is well-known that $\gamma(T) > 0$ if and only if $\mathcal{R}(T)$ is closed. An operator $T \in B(X)$ is called a Riesz operator, provided that $T - \lambda \in \Phi(X)$ for all $\lambda \in \mathbb{C} \setminus \{0\}$. All quasinilpotent operators are Riesz operators. Finally, we use a(T) to denote the ascent of $T \in B(X)$ and ∂S to denote the boundary of the set $S \subseteq \mathbb{C}$. Recall the definitions of ascent and descent in [6] and references cited there.

2. Results

We begin with one generalization of Oberai's result [4].

THEOREM 2.1. Let $T \in B(X)$ and $f \in Hol(T)$. Then

$$\sigma_a(f(T)) \setminus \pi_{a0}(f(T)) \subset f(\sigma_a(T) \setminus \pi_{a0}(T)).$$

Proof. It is well–known that $f(\sigma_a((T)) = \sigma_a(f(T))$ [3]. Suppose that $\lambda \in \sigma_a(f(T)) \setminus \pi_{a0}(f(T)) \subset f(\sigma_a(T))$. We consider three cases.

Case I. Suppose that λ is not an isolated point of $f(\sigma_a(T))$. Then there is a convergent sequence (μ_n) in $\sigma_a(T)$ such that $f(\mu_n) \to \lambda$ and $\mu_n \to \mu_0$. Now, $\lambda = f(\mu_0) \in f(\sigma_a(T) \setminus \pi_{a0}(T))$.

Case II. Now, let λ be an isolated point of $f(\sigma_a(T))$ and λ is not an eigenvalue of f(T). We can write

(1)
$$f(T) - \lambda = (T - \mu_1) \cdots (T - \mu_n)g(T),$$

such that $\mu_1 \in \sigma_a(T), \mu_2, \ldots, \mu_n \in \sigma(T)$ and g(T) is invertible. Also, operators on the right side of (1) mutually commute. Since λ is not an eigenvalue of f(T), non of μ_1, \ldots, μ_n can be an eigenvalue of T. Therefore

$$\lambda = f(\mu_1) \in f(\sigma_a(T) \setminus \pi_{a0}(T)).$$

Case III. Let λ be an eigenvalue of f(T) of infinite geometric multiplicity. We also have

$$f(T) - \lambda = (T - \mu_1) \cdots (T - \mu_n)g(T).$$

Since λ is an eigenvalue of f(T) of infinite multiplicity, we get that there is some μ_i , such that μ_i is an eigenvalue of T of infinite multiplicity. Then $\mu_i \in \sigma_a(T) \setminus \pi_{a0}(T)$ and $\lambda \in f(\sigma_a(T) \setminus \pi_{a0}(T))$. \Box

Definition. We say that $T \in B(X)$ is *a*-isolated provided that all isolated points of $\sigma_a(T)$ are eigenvalues of T.

It is well-known that $\partial \sigma(T) \subset \sigma_a(T)$, so all isolated points of $\sigma(T)$ are also isolated points of $\sigma_a(T)$. Recall that $T \in B(X)$ is isolated, provided that all isolated points of $\sigma(T)$ are eigenvalues of T [4]. Now it is obvious that if T is *a*-isolated, then it is also isolated.

THEOREM 2.2. Let $T \in B(X)$ be a-isolated and $f \in Hol(T)$. Then

$$f(\sigma_a(T) \setminus \pi_{a0}(T)) = \sigma_a(f(T)) \setminus \pi_{a0}(f(T)).$$

Proof. According to Theorem 2.1 it is enough to prove the inclusion \subset . Let $\lambda \in f(\sigma_a(T) \setminus \pi_{a0}(T)) \subset \sigma_a(f(T))$. Suppose that $\lambda \in \pi_{a0}(f(T))$. Then λ is isolated in $\sigma_a(f(T))$ and

$$f(T) - \lambda = (T - \mu_1) \cdots (T - \mu_n)g(T),$$

for some $\mu_1, \ldots, \mu_n \in \sigma(T)$, and g(T) is invertible. If some μ_i belongs to $\sigma_a(T)$, then μ_i is isolated in $\sigma_a(T)$ and it must be an eigenvalue of T. Since λ is an eigenvalue of finite multiplicity, then all $\mu_i \in \sigma_a(T)$ are eigenvalues of T of finite multiplicities. We get that all $\mu_i \in \sigma_a(T)$ are in $\pi_{a0}(T)$. Therefore we get the contradiction, since $\lambda \in f(\sigma_a(T) \setminus \pi_{a0}(T))$. \Box

Let $T \in B(X)$ and let f be an analytic function defined in a neighbourhood of $\sigma(T)$. It is well-known that the next inclusion holds [6]:

(2)
$$\sigma_{ea}(f(T)) \subset f(\sigma_{ea}(T)).$$

It is also known that this inclusion may be proper [5]. The next theorem gives some sufficient conditions such that the equality holds in (2).

THEOREM 2.3. Let $T \in B(X)$ be a-isolated, T obeys a-Weyl's theorem and let $f \in Hol(T)$. Then f(T) obeys a-Weyl's theorem if and only if $f(\sigma_{ea}(T)) = \sigma_{ea}(f(T))$.

Proof. By Theorem 2.2 we have

$$f(\sigma_{ea}(T)) = f(\sigma_a(T) \setminus \pi_{a0}(T)) = \sigma_a(f(T)) \setminus \pi_{a0}(f(T)).$$

The right side is equal to $\sigma_{ea}(f(T))$ if and only if $f(\sigma_{ea}(T)) = \sigma_{ea}(f(T))$.

If λ is an isolated point of $\sigma(T)$ and $E(\lambda, T)$ denotes the corresponding spectral projection, then $\lambda \in \pi_0(T)$ if and only if $E(\lambda, T)$ is a finite-rank operator. We say that $\pi_0(T)$ consists of isolated eigenvalues of T of finite algebraic multiplicity. Notice that $\pi_0(T) \subseteq \pi_{a0}(T)$. We shall use the following Erovenko's result [2, Teopema 1]:

PROPOSITION 2.4. Let $T \in B(X)$ and f is defined and analytic on some neighbourhood of $\sigma(T)$. If $\lambda_0 \in \sigma(T)$ and $f(\lambda_0) = \mu \in \pi_0(f(T))$, then $\lambda_0 \in \pi_0(T)$.

The next results are also related to Theorems 2.2 and 2.3.

PROPOSITION 2.5. Let $T \in B(X)$, $f \in Hol(T)$ and $\pi_{a0}(f(T)) = \pi_0(f(T))$. Then

$$f(\sigma_a(T) \setminus \pi_{a0}(T)) = \sigma_a(f(T)) \setminus \pi_{a0}(f(T)).$$

Proof. By Theorem 2.1, it is enough to prove the inclusion \subset . Let

$$\lambda \in f(\sigma_a(T) \setminus \pi_{a0}(T)) \subset \sigma_a(f(T)).$$

Suppose that $\lambda \in \pi_{a0}(f(T)) = \pi_0(f(T))$. If $\mu \in \sigma(T)$ and $f(\mu) = \lambda$, by Proposition 2.4 it follows that $\mu \in \pi_0(T) \subset \pi_{a0}(T)$. So for all $\mu \in \sigma(T)$, if $f(\mu) = \lambda$ then $\mu \in \pi_{a0}(T) \subseteq \sigma_a(T)$. We get the contradiction, since $\lambda \in f(\sigma_a(T) \setminus \pi_{a0}(T))$. \Box COROLLARY 2.6. Let $T \in B(X)$, $f \in Hol(T)$, $\pi_{a0}(f(T)) = \pi_0(f(T))$ and a-Weyl's theorem holds for T. Then a-Weyl's theorem holds for f(T)if and only if

$$f(\sigma_{ea}(T)) = \sigma_{ea}(f(T)).$$

Proof. This proof is the same as the proof of Theorem 2.3. \Box

Now, note that we can easily modify a result from [5, Theorem 5.6].

THEOREM 2.7. The operator $T \in B(X)$ obeys a-Weyl's theorem if and only if the next two conditions hold:

- (i) if $\lambda \in \pi_{a0}(T)$, then $\mathcal{R}(T-\lambda)$ is closed and
- (ii) if $T \lambda \in \Phi_+^-(X)$, then λ is an isolated point of $\sigma_a(T)$.

The main difference is that in [5] the second condition is: if $T - \lambda \in \Phi^-_+(X)$, then λ is not an interior point of $\sigma_a(T)$.

To verify the equivalence of our Theorem 2.7 and the statement from [5, Theorem 5.6], suppose that $T - \lambda \in \Phi^-_+(X)$ and λ is not an interior point of $\sigma_a(T)$. There is some $\epsilon > 0$, such that if $0 < |\mu - \lambda| < \epsilon$ then $T - \mu \in \Phi^-_+(X)$ and dim $\mathcal{N}(T - \mu)$ is a constant not greater then dim $\mathcal{N}(T - \lambda)$. Some of those μ belongs to the set $\mathbb{C} \setminus \sigma_a(T)$, so dim $\mathcal{N}(T - \mu) = 0$ if $0 < |\mu - \lambda| < \epsilon$. We get that λ is an isolated point of $\sigma_a(T)$.

The next results are connected with the Browder essential approximate point spectrum.

PROPOSITION 2.8. If $T \in B(X)$ obeys a-Weyl's theorem, then $\sigma_{ea}(T) = \sigma_{ab}(T)$.

Proof. Notice that $\sigma_{ea}(T) \subset \sigma_{ab}(T)$. If T obeys a-Weyl's theorem, then conditions (i) and (ii) of Theorem 2.7 are valid. Suppose that $\lambda \in \sigma_{ab}(T) \setminus \sigma_{ea}(T)$. Then $T - \lambda \in \Phi^-_+(X)$ and by Theorem 2.7, we get that λ is an isolated point of $\sigma_a(T)$. Also, it is well-known that $\sigma_{ab}(T) = \sigma_{ea}(T) \bigcup \{\lambda \in I\}$

 $\mathbf{6}$

 $\sigma_a(T)$: λ is not an isolated point of $\sigma_a(T)$ [6, Corollary 2.4.]. It follows that λ must not be an isolated point of $\sigma_a(T)$ and we get the contradiction. \Box

COROLLARY 2.9. Suppose that $T \in B(X)$ obeys a-Weyl's theorem. If $T - \lambda \in \Phi^-_+(X)$, then the ascent of $T - \lambda$ is finite.

Proof. Follows by Proposition 2.8 and [6, Theorem 2.1].

THEOREM 2.10. Let $T \in B(X)$. Then T obeys a-Weyl's theorem if and only if the next conditions hold:

- (i) if $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$, then $a(T \lambda) < \infty$, and
- (ii) if $\lambda \in \pi_{a0}(T)$, then $\lambda \notin \sigma_{ab}(T)$.

Proof. Suppose that (i) and (ii) hold. If $\lambda \in \pi_{a0}(T)$, then $\lambda \notin \sigma_{ea}(T)$. Suppose that $\lambda \in \sigma_a(T) \setminus \pi_{a0}(T)$ and $\lambda \notin \sigma_{ea}(T)$. By (i) we get that $a(T - \lambda) < \infty$ and by [6] $\lambda \notin \sigma_{ab}(T)$. Since $\lambda \in \sigma_a(T) \setminus \sigma_{ab}(T)$, we have that λ is an isolated point of $\sigma_a(T)$ and dim $\mathcal{N}(T - \lambda) < \infty$, so $\lambda \in \pi_{a0}(T)$. This is in contradiction with $\lambda \in \sigma_a(T) \setminus \pi_{a0}(T)$. The opposite implication follows by Proposition 2.8 and [6, Theorem 2.1]. \Box

THEOREM 2.11. Let $T \in B(X)$ and let f be an arbitrary analytic function, defined on a neighbourhood of $\sigma(T)$. If the next three conditions hold for f and T:

- (i) if $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$, then $a(T \lambda) < \infty$,
- (ii) if $\lambda \in \pi_{a0}(t)$, then $f(\lambda) \notin \sigma_{ea}(f(t))$,
- (iii) f(T) obeys a-Weyl's theorem,

then T obeys a-Weyl's theorem.

Proof. By Theorem 2.10, it is enough to prove that if $\lambda \in \pi_{a0}(T)$, then $\lambda \notin \sigma_{ab}(T)$. Suppose that $\lambda \in \pi_{a0}(T) \cap \sigma_{ab}(T)$. Then $f(\lambda) \in f(\sigma_{ab}(T)) = \sigma_{ab}(f(T))$ [6]. Since f(T) obeys *a*-Weyl's theorem, by Proposition 2.8

we get $\sigma_{ab}(f(T)) = \sigma_{ea}(f(T))$, or $f(\lambda) \in \sigma_{ea}(f(T))$. By (ii), we get the contradiction. \Box

THEOREM 2.12. Let $T \in B(X)$ be such that $\sigma_{ea}(T) = \sigma_{ab}(T)$. Then T obeys a-Weyl's theorem if and only if one of the following three conditions holds:

- (i) if $\lambda \in \pi_{a0}(T)$, then $\mathcal{R}(T-\lambda)$ is closed.
- (ii) if $\lambda \in \pi_{a0}(T)$, then γ is discontinuous at $T \lambda$.
- (iii₁) if $\lambda \in \pi_{00}(T)$, then the descent of $T \lambda$ is finite, and
- (iii₂) if $\lambda \in \pi_{a0}(T) \setminus \pi_{00}(T)$, then $\mathcal{R}(T \lambda)$ is closed.

Proof. (i) Follows by Theorem 2.7 and [6, Corollary 2.4].

(ii) If the condition (ii) holds, by [7, Theorem 2.4.] it follows that T obeys *a*-Weyl's theorem. Now suppose that the condition (i) holds, i.e. *a*-Weyl's theorem holds for T. Let $\lambda \in \Delta_a^s(T) = \{\mu : T - \mu \in \Phi_+^-(X), 0 < \dim \mathcal{N}(T-\mu)\}$. Then $\lambda \notin \sigma_{ea}(T) = \sigma_{ab}(T), \lambda$ is an isolated point of $\sigma_a(T)$ and $\lambda \in \pi_{a0}(T)$. The rest of the proof follows again from [7, Theorem 2.4].

(iii) If the condition (iii) holds, by [7, Theorem 2.9] it follows that T obeys *a*-Weyl's theorem. We now prove the opposite implication. We use the next sets: $\Delta_4^s(T) = \{\lambda \in \mathbf{C} : A - \lambda \in \Phi(X), i(A - \lambda) = 0\}, \Delta_{-}^s(T) = \{\lambda \in \Delta_a^s(T) : \dim \mathcal{N}(T - \lambda) < \operatorname{codim} \mathcal{R}(T - \lambda) < \infty\}$ and $\Delta_{-\infty}^s(T) = \{\lambda \in \Delta_a^s(T) : \operatorname{codim} \mathcal{R}(T - \lambda) = \infty\}$, introduced in [7]. Suppose that $\lambda \in \Delta_4^s(T) \cup \Delta_{-}^s(T)$. Then $\lambda - T \in \Phi_{-}^+(X)$ and $\lambda \notin \sigma_{ea}(T) = \sigma_{ab}(T)$. Now by [6], it follows that the ascent of $T - \lambda$ is finite. Suppose that $\lambda \in \Delta_{-\infty}^s(T)$. Then $T - \lambda \in \Phi_{+}^-(X)$, so $\lambda \notin \sigma_{ea}(T) = \sigma_{ab}(T)$. By [6] we get that λ is an isolated point of $\sigma_a(T)$. There exists a neighbourhood $B(\lambda)$ of λ , such that for all $\mu \in B(\lambda) \setminus \{\lambda\}$ it is satisfied $\dim \mathcal{N}(T) = 0$. We get that λ satisfies the condition (λ) of [7]. By [7, Theorem 2.9] it follows that T obeys *a*-Weyl's theorem. \Box

We now prove some perturbation theorems.

THEOREM 2.13. Let $T \in B(X)$ and let N be a quasinilpotent operator commuting with T. Then $\sigma_{ea}(T) = \sigma_{ea}(T+N)$.

Proof. We shall use the following well-known fact [8, 30. Theorem]: if $T \in \Phi_+(X)$, K is a Riesz operator and KT = TK, then $T + \lambda K \in \Phi_+(X)$ for all $\lambda \in \mathbb{C}$. It is enough to prove the implication: if $0 \notin \sigma_{ea}(T)$, then $0 \notin \sigma_{ea}(T + N)$. Suppose that $0 \notin \sigma_{ea}(T)$. Then $T \in \Phi_+^-(X)$ and $T + \lambda N \in \Phi_+(X)$ for all $\lambda \in \mathbb{C}$. Now it is obvious that T and T + N are in the same component of $\Phi_+(X)$, so $i(T + N) = i(T) \leq 0$ and $T + N \in \Phi_+^-(X)$. We get that $0 \notin \sigma_{ea}(T + N)$. \Box

One can easily verify the next well-known fact:

(3)
if
$$T, K \in B(X)$$
, K is nilpotent and $TK = KT$,
then $\sigma_a(T) = \sigma_a(T + K)$.

THEOREM 2.14. Let $T \in B(X)$ and let N be a nilpotent operator commuting with T. If a-Weyl's theorem holds for T then it also holds for T + N.

Proof. Firstly we prove that $\pi_{a0}(T+N) = \pi_{a0}(T)$. It is enough to prove that if $0 \in \pi_{a0}(T)$, then $0 \in \pi_{a0}(T+N)$. Suppose that $0 \in \pi_{a0}(T)$, so $0 < \dim \mathcal{N}(T) < \infty$.

We prove that $\dim \mathcal{N}(T+N) < \infty$. If (T+N)x = 0 for some $x \neq 0$, then Tx = -Nx. Since N commutes with T, it follows that for every positive integer m: $T^m x = (-1)^m N^m x$. Let n be the smallest positive integer such that $N^n = 0$. We get that there is some positive integer r, $r \leq n$, such that $T^r x = 0$. Thus $\mathcal{N}(T+N) \subseteq \mathcal{N}(T^r)$ and $\mathcal{N}(T+N)$ is finite dimensional. We prove that $\dim \mathcal{N}(T+N) > 0$. There is some $x \neq 0$ such that Tx = 0. Then $(T+N)^n x = 0$, $0 \in \sigma_p(T+N) \subseteq \sigma_a(T+N)$ and $\dim \mathcal{N}(T+N) > 0$. By (3) we know that $\sigma_a(T) = \sigma_a(T+N)$, so it follows that $0 \in \pi_{a0}(T+N)$.

Thus, using Theorem 2.13 we get

$$\sigma_{ea}(T+N) = \sigma_{ea}(T) = \sigma_a(T) \setminus \pi_{a0}(T) = \sigma_a(T+N) \setminus \pi_{a0}(T+N).$$

Thus *a*-Weyl's theorem holds for T + N. \Box

Now we give one simple connection with the work of Buoni [1]. Let H be a complex, infinite dimensional Hilbert space, $T \in B(H)$ and $\alpha \in \rho(T)$. For arbitrary $\mu \in \mathbb{C} \setminus \{0\}$, there is some $\lambda \in \mathbb{C}$ such that $(\lambda - \alpha)\mu = 1$. Let $A = (T - \alpha)^{-1}$. It is well-known that $\lambda \in \sigma(T)$ if and only if $\mu \in \sigma(A)$ [1]. We prove some analogous results concerning the sets $\sigma_a(T)$ and $\sigma_{ea}(T)$.

LEMMA 2.15. Let T, A, α , λ and μ be as above.

- (a) $\lambda \in \sigma_a(T)$ if and only if $\mu \in \sigma_a(A)$.
- (b) $\lambda \in \sigma_{ea}(T)$ if and only if $\mu \in \sigma_{ea}(A)$.
- (c) $\lambda \in \pi_{a0}(T)$ if and only if $\mu \in \pi_{a0}(A)$.

Proof. (a) If $\lambda \notin \sigma_a(T)$, then $T - \lambda$ is one-to-one and $\mathcal{R}(T - \lambda)$ is closed. Now, by [1, Lema 2.2. and Lema 2.3.], $A - \mu$ is 1–1 and $\mathcal{R}(A - \mu)$ is closed, so $\mu \notin \sigma_a(A)$. The opposite implication is analogous.

(b) If $\lambda \notin \sigma_{ea}(T)$, then $T - \lambda \in \Phi^-_+(X)$. By [1], $A - \mu \in \Phi_+(X)$ and $i(A - \mu) = i(T - \lambda) \leq 0$, so $\mu \notin \sigma_{ea}(A)$. The opposite implication is analogous.

(c) Suppose that $\lambda \in \sigma_a(T)$ and λ is not isolated in $\sigma_a(T)$. Then there is a sequence λ_i of $\sigma_a(T)$, such that $\lambda_i \to \lambda$ and $\lambda_i \neq \alpha$. We may take $\mu_i = 1/(\lambda_i - \alpha) \in \sigma_a(A)$ (by (a)) and it is obvious that $\mu_i \to \mu$, so $\mu \in \sigma_a(A)$ and μ is not isolated in $\sigma_a(A)$. We get that λ is an isolated point of $\sigma_a(T)$ if and only if μ is an isolated point of $\sigma_a(A)$. Now, if $\lambda \in \pi_{a0}(T)$,

10

since $\dim \mathcal{N}(A - \mu) = \dim \mathcal{N}(T - \lambda)$, we get that $\mu \in \pi_{a0}(A)$. The opposite implication is obvious. \Box

Using Lemma 2.15, we get the next

COROLLARY 2.16. If $0 \notin \sigma_a(T)$, then a-Weyl's theorem holds for T if and only if it holds for A.

Acknowledgment. We are grateful to Professor Vladimir Rakočević for helpful suggestions and conversations concerning the paper.

References

- J. J. Buoni, An essential spectra mapping theorem. J. Math. Anal. Appl. 56 (1976), 55–60.
- [2] В. А. Еровенко, О существенном спектре функций от линейных операторов в Банаховом пространстве. Вестник Белорусского Государственного Университета 2, 1 (1987), 50-54.
- [3] R. Harte, Invertibility and singularity for bounded linear operators. New York, Marcel Dekker, 1988.
- [4] K. Oberai, On the Weyl spectrum II. Illinois J. Math. 21 (1977), 84–90.
- [5] V. Rakočević, On the essential approximate point spectrum II. Mat. Vesnik 36 (1984), 89–97.
- [6] V. Rakočević, Approximate point spectrum and commuting compact perturbations. Glasgow Math. J. 28 (1986), 193–198.
- [7] V. Rakočević, Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl. 34, 10 (1989), 915–919.
- [8] M. Schechter, R.Whitley Best Fredholm perturbation theorems. Studia Math. 90 (1988), 175–190.

University of Niš Faculty of Philosophy Department of Mathematics Ćirila i Metodija 2 18000 Niš Yugoslavia *E-mail*: dragan@archimed.filfak.ni.ac.yu

University of Niš Faculty of Philosophy Department of Mathematics Ćirila i Metodija 2 18000 Niš Yugoslavia *E-mail*: slavdj@archimed.filfak.ni.ac.yu

Rev. Roum. Math. Pures Appl. 44 (3) (1999), 361–369.

12