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Abstract. Let X be a complex infinite dimensional Banach space. We
use σa(T ) and σea(T ) respectively, to denote the approximate point spec-
trum and the essential approximate point spectrum of a bounded opera-
tor T on X. Also, πa0(T ) denotes the set of all isolated eigenvalues of
σa(T ) of finite geometric multiplicity. We give sufficient conditions such
that the spectral mapping theorem holds for the set σa(T )\πa0(T ) and
for all analytic functions which are not constant on the connected compo-
nents of their domains. Using the Rakočević’s concept from [5] and [7],
we say that an operator T on X obeys a-Weyl’s theorem provided that
σea(T ) = σa(T )\πa0(T ). We investigate connections between a-Weyl’s
theorem and the spectral mapping theorem. We also prove some pertur-
bation results concerning a-Weyl’s theorem and various essential spectra.
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1. Introduction

Let X be a complex infinite dimensional Banach space and let B(X) and

K(X), respectively, denote the Banach algebra of all bounded operators

on X and the ideal of all compact operators on X. If T ∈ B(X), then

σ(T ) denotes the spectrum of T and ρ(T ) denotes the resolvent set of

T . The next sets are well-known semigroups of semi–Fredholm operators

on X: Φ+(X) = {T ∈ B(X) : R(T ) is closed and dimN (T ) < ∞} and

Φ−(X) = {T ∈ B(X) : R(T ) is closed and dimX/R(T ) < ∞}. The
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semigroup of Fredholm operators is Φ(X) = Φ+(X) ∩ Φ−(X). If T is

semi–Fredholm, define the index of T by i(T ) = dimN (T )− dimX/R(T ).

We also consider sets Φ0(X) = {T ∈ Φ(X) : i(T ) = 0} (Weyl operators)

and Φ−+(X) = {T ∈ Φ+(X) : i(T ) ≤ 0} (see [5]). The Weyl spectrum

of T ∈ B(X) is σw(T ) = {λ ∈ C : T − λ /∈ Φ0(X)}. We use σp(T ) and

σa(T ), respectively, to denote the point spectrum and approximate point

spectrum of T ∈ B(X). Also, we use C to denote the complex plane. We

use π00(T ) to denote the set of all λ ∈ C such that λ is an isolated point

of σ(T ) and 0 < dimN (T −λ) < ∞. We say that T obeys Weyl’s theorem,

if

σw(T ) = σ(T )\π00(T ) (see [4]).

Let πa0 denotes the set of all λ ∈ C such that λ is isolated in σa(T )

and 0 < dimN (T − λ) < ∞. If λ ∈ π00(T ), or λ ∈ πa0(T ), then λ has

finite geometric multiplicity. Also, σea(T ) =
⋂{σa(T +K) : K ∈ K(X)} is

the essential approximate point spectrum. It is well-known that σea(T ) =

{λ ∈ C : T − λ /∈ Φ−+(X)} [5]. We take σab(T ) = ∩{σa(T + K) : K ∈
K(X), TK = KT} to denote the Browder essential approximate point

spectrum. It is well-known that λ /∈ σab(T ) if and only if T − λ ∈ Φ−+(X)

and the ascent a(T − λ) < ∞ [6]. We say that T obeys a-Weyl’s theorem,

if

σea(T ) = σa(T )\πa0(T ), (see [6], [7]).

It is well-known that if T ∈ B(X) obeys a-Weyl’s theorem, then it also

obeys Weyl’s theorem, but the converse is not true [7]. Let Hol (T ) de-

notes the set of all complex-valued functions f , defined and regular in some

neighbourhood of σ(T ), such that f is not constant on the connected com-

ponents of its domain of definition. Recall the definition of the reduced

minimum modulus of T (see [7] and references cited there):

γ(T ) = inf
{ ‖Ax‖

dist(x,N (T ))
: x /∈ N (T )

}
.
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It is well–known that γ(T ) > 0 if and only if R(T ) is closed. An operator

T ∈ B(X) is called a Riesz operator, provided that T − λ ∈ Φ(X) for all

λ ∈ C\{0}. All quasinilpotent operators are Riesz operators. Finally, we

use a(T ) to denote the ascent of T ∈ B(X) and ∂S to denote the boundary

of the set S ⊆ C. Recall the definitions of ascent and descent in [6] and

references cited there.

2. Results

We begin with one generalization of Oberai’s result [4].

Theorem 2.1. Let T ∈ B(X) and f ∈ Hol(T ). Then

σa(f(T ))\πa0(f(T )) ⊂ f(σa(T )\πa0(T )).

Proof. It is well–known that f(σa((T )) = σa(f(T )) [3]. Suppose that

λ ∈ σa(f(T ))\πa0(f(T )) ⊂ f(σa(T )). We consider three cases.

Case I. Suppose that λ is not an isolated point of f(σa(T )). Then there

is a convergent sequence (µn) in σa(T ) such that f(µn) → λ and µn → µ0.

Now, λ = f(µ0) ∈ f(σa(T )\πa0(T )).

Case II. Now, let λ be an isolated point of f(σa(T )) and λ is not an

eigenvalue of f(T ). We can write

(1) f(T )− λ = (T − µ1) · · · (T − µn)g(T ),

such that µ1 ∈ σa(T ), µ2, . . . , µn ∈ σ(T ) and g(T ) is invertible. Also,

operators on the right side of (1) mutually commute. Since λ is not an

eigenvalue of f(T ), non of µ1, . . . , µn can be an eigenvalue of T . Therefore

λ = f(µ1) ∈ f(σa(T )\πa0(T )).

Case III. Let λ be an eigenvalue of f(T ) of infinite geometric multiplicity.

We also have

f(T )− λ = (T − µ1) · · · (T − µn)g(T ).
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Since λ is an eigenvalue of f(T ) of infinite multiplicity, we get that there

is some µi, such that µi is an eigenvalue of T of infinite multiplicity. Then

µi ∈ σa(T )\πa0(T ) and λ ∈ f(σa(T )\πa0(T )). ¤

Definition. We say that T ∈ B(X) is a-isolated provided that all iso-

lated points of σa(T ) are eigenvalues of T .

It is well-known that ∂σ(T ) ⊂ σa(T ), so all isolated points of σ(T ) are

also isolated points of σa(T ). Recall that T ∈ B(X) is isolated, provided

that all isolated points of σ(T ) are eigenvalues of T [4]. Now it is obvious

that if T is a-isolated, then it is also isolated.

Theorem 2.2. Let T ∈ B(X) be a-isolated and f ∈ Hol(T ). Then

f(σa(T )\πa0(T )) = σa(f(T ))\πa0(f(T )).

Proof. According to Theorem 2.1 it is enough to prove the inclusion ⊂.

Let λ ∈ f(σa(T )\πa0(T )) ⊂ σa(f(T )). Suppose that λ ∈ πa0(f(T )). Then

λ is isolated in σa(f(T )) and

f(T )− λ = (T − µ1) · · · (T − µn)g(T ),

for some µ1, . . . , µn ∈ σ(T ), and g(T ) is invertible. If some µi belongs to

σa(T ), then µi is isolated in σa(T ) and it must be an eigenvalue of T . Since

λ is an eigenvalue of finite multiplicity, then all µi ∈ σa(T ) are eigenvalues

of T of finite multiplicities. We get that all µi ∈ σa(T ) are in πa0(T ).

Therefore we get the contradiction, since λ ∈ f(σa(T )\πa0(T )). ¤

Let T ∈ B(X) and let f be an analytic function defined in a neighbour-

hood of σ(T ). It is well-known that the next inclusion holds [6]:

(2) σea(f(T )) ⊂ f(σea(T )).

It is also known that this inclusion may be proper [5]. The next theorem

gives some sufficient conditions such that the equality holds in (2).
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Theorem 2.3. Let T ∈ B(X) be a-isolated, T obeys a-Weyl’s theorem

and let f ∈ Hol(T ). Then f(T ) obeys a-Weyl’s theorem if and only if

f(σea(T )) = σea(f(T )).

Proof. By Theorem 2.2 we have

f(σea(T )) = f(σa(T )\πa0(T )) = σa(f(T ))\πa0(f(T )).

The right side is equal to σea(f(T )) if and only if f(σea(T )) = σea(f(T )). ¤

If λ is an isolated point of σ(T ) and E(λ, T ) denotes the corresponding

spectral projection, then λ ∈ π0(T ) if and only if E(λ, T ) is a finite-rank

operator. We say that π0(T ) consists of isolated eigenvalues of T of finite

algebraic multiplicity. Notice that π0(T ) ⊆ πa0(T ). We shall use the

follwing Erovenko’s result [2, Teorema 1]:

Proposition 2.4. Let T ∈ B(X) and f is defined and analytic on

some neighbourhood of σ(T ). If λ0 ∈ σ(T ) and f(λ0) = µ ∈ π0(f(T )),

then λ0 ∈ π0(T ).

The next results are also related to Theorems 2.2 and 2.3.

Proposition 2.5. Let T ∈ B(X), f ∈ Hol (T ) and πa0(f(T )) =

π0(f(T )). Then

f(σa(T )\πa0(T )) = σa(f(T ))\πa0(f(T )).

Proof. By Theorem 2.1, it is enough to prove the inclusion ⊂. Let

λ ∈ f(σa(T )\πa0(T )) ⊂ σa(f(T )).

Suppose that λ ∈ πa0(f(T )) = π0(f(T )). If µ ∈ σ(T ) and f(µ) = λ, by

Proposition 2.4 it follows that µ ∈ π0(T ) ⊂ πa0(T ). So for all µ ∈ σ(T ),

if f(µ) = λ then µ ∈ πa0(T ) ⊆ σa(T ). We get the contradiction, since

λ ∈ f(σa(T )\πa0(T )). ¤
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Corollary 2.6. Let T ∈ B(X), f ∈ Hol (T ), πa0(f(T )) = π0(f(T ))

and a-Weyl’s theorem holds for T . Then a-Weyl’s theorem holds for f(T )

if and only if

f(σea(T )) = σea(f(T )).

Proof. This proof is the same as the proof of Theorem 2.3. ¤

Now, note that we can easily modify a result from [5, Theorem 5.6].

Theorem 2.7. The operator T ∈ B(X) obeys a-Weyl’s theorem if and

only if the next two conditions hold:

(i) if λ ∈ πa0(T ), then R(T − λ) is closed and

(ii) if T − λ ∈ Φ−+(X), then λ is an isolated point of σa(T ).

The main difference is that in [5] the second condition is: if T − λ ∈
Φ−+(X), then λ is not an interior point of σa(T ).

To verify the equivalence of our Theorem 2.7 and the statement from [5,

Theorem 5.6], suppose that T−λ ∈ Φ−+(X) and λ is not an interior point of

σa(T ). There is some ε > 0, such that if 0 < |µ−λ| < ε then T−µ ∈ Φ−+(X)

and dimN (T − µ) is a constant not greater then dimN (T − λ). Some of

those µ belongs to the set C\σa(T ), so dimN (T −µ) = 0 if 0 < |µ−λ| < ε.

We get that λ is an isolated point of σa(T ).

The next results are connected with the Browder essential approximate

point spectrum.

Proposition 2.8. If T ∈ B(X) obeys a-Weyl’s theorem, then σea(T ) =

σab(T ).

Proof. Notice that σea(T ) ⊂ σab(T ). If T obeys a-Weyl’s theorem, then

conditions (i) and (ii) of Theorem 2.7 are valid. Suppose that λ ∈ σab(T )\
σea(T ). Then T − λ ∈ Φ−+(X) and by Theorem 2.7, we get that λ is an

isolated point of σa(T ). Also, it is well-known that σab(T ) = σea(T )
⋃{λ ∈



7

σa(T ) : λ is not an isolated point of σa(T )} [6, Corollary 2.4.]. It follows

that λ must not be an isolated point of σa(T ) and we get the contradic-

tion. ¤

Corollary 2.9. Suppose that T ∈ B(X) obeys a-Weyl’s theorem. If

T − λ ∈ Φ−+(X), then the ascent of T − λ is finite.

Proof. Follows by Proposition 2.8 and [6, Theorem 2.1]. ¤

Theorem 2.10. Let T ∈ B(X). Then T obeys a-Weyl’s theorem if and

only if the next conditions hold:

(i) if λ ∈ σa(T )\σea(T ), then a(T − λ) < ∞, and

(ii) if λ ∈ πa0(T ), then λ /∈ σab(T ).

Proof. Suppose that (i) and (ii) hold. If λ ∈ πa0(T ), then λ /∈ σea(T ).

Suppose that λ ∈ σa(T )\πa0(T ) and λ /∈ σea(T ). By (i) we get that

a(T − λ) < ∞ and by [6] λ /∈ σab(T ). Since λ ∈ σa(T )\σab(T ), we have

that λ is an isolated point of σa(T ) and dimN (T −λ) < ∞, so λ ∈ πa0(T ).

This is in contradiction with λ ∈ σa(T )\πa0(T ). The opposite implication

follows by Proposition 2.8 and [6, Theorem 2.1]. ¤

Theorem 2.11. Let T ∈ B(X) and let f be an arbitrary analytic func-

tion, defined on a neighbourhood of σ(T ). If the next three conditions hold

for f and T :

(i) if λ ∈ σa(T ) \ σea(T ), then a(T − λ) < ∞,

(ii) if λ ∈ πa0(t), then f(λ) /∈ σea(f(t)),

(iii) f(T ) obeys a-Weyl’s theorem,

then T obeys a-Weyl’s theorem.

Proof. By Theorem 2.10, it is enough to prove that if λ ∈ πa0(T ), then

λ /∈ σab(T ). Suppose that λ ∈ πa0(T ) ∩ σab(T ). Then f(λ) ∈ f(σab(T )) =

σab(f(T )) [6]. Since f(T ) obeys a-Weyl’s theorem, by Proposition 2.8
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we get σab(f(T )) = σea(f(T )), or f(λ) ∈ σea(f(T )). By (ii), we get the

contradiction. ¤

Theorem 2.12. Let T ∈ B(X) be such that σea(T ) = σab(T ). Then T

obeys a-Weyl’s theorem if and only if one of the following three conditions

holds:

(i) if λ ∈ πa0(T ), then R(T − λ) is closed.

(ii) if λ ∈ πa0(T ), then γ is discontinuous at T − λ.

(iii1) if λ ∈ π00(T ), then the descent of T − λ is finite, and

(iii2) if λ ∈ πa0(T )\π00(T ), then R(T − λ) is closed.

Proof. (i) Follows by Theorem 2.7 and [6, Corollary 2.4].

(ii) If the condition (ii) holds, by [7, Theorem 2.4.] it follows that T

obeys a-Weyl’s theorem. Now suppose that the condition (i) holds, i.e.

a-Weyl’s theorem holds for T . Let λ ∈ ∆s
a(T ) = {µ : T − µ ∈ Φ−+(X), 0 <

dimN (T −µ)}. Then λ /∈ σea(T ) = σab(T ), λ is an isolated point of σa(T )

and λ ∈ πa0(T ). The rest of the proof follows again from [7, Theorem 2.4].

(iii) If the condition (iii) holds, by [7, Theorem 2.9] it follows that T

obeys a-Weyl’s theorem. We now prove the opposite implication. We

use the next sets: ∆s
4(T ) = {λ ∈ C : A − λ ∈ Φ(X), i(A − λ) = 0},

∆s
−(T ) = {λ ∈ ∆s

a(T ) : dimN (T − λ) < codimR(T − λ) < ∞} and

∆s
−∞(T ) = {λ ∈ ∆s

a(T ) : codimR(T−λ) = ∞}, introduced in [7]. Suppose

that λ ∈ ∆s
4(T )∪∆s

−(T ). Then λ−T ∈ Φ+
−(X) and λ /∈ σea(T ) = σab(T ).

Now by [6], it follows that the ascent of T − λ is finite. Suppose that

λ ∈ ∆s
−∞(T ). Then T − λ ∈ Φ−+(X), so λ /∈ σea(T ) = σab(T ). By [6]

we get that λ is an isolated point of σa(T ). There exists a neighbourhood

B(λ) of λ, such that for all µ ∈ B(λ)\{λ} it is satisfied dimN (T ) = 0. We

get that λ satisfies the condition (λ) of [7]. By [7, Theorem 2.9] it follows

that T obeys a-Weyl’s theorem. ¤
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We now prove some perturbation theorems.

Theorem 2.13. Let T ∈ B(X) and let N be a quasinilpotent operator

commuting with T . Then σea(T ) = σea(T + N).

Proof. We shall use the following well-known fact [8, 30. Theorem]: if

T ∈ Φ+(X), K is a Riesz operator and KT = TK, then T +λK ∈ Φ+(X)

for all λ ∈ C. It is enough to prove the implication: if 0 /∈ σea(T ),

then 0 /∈ σea(T + N). Suppose that 0 /∈ σea(T ). Then T ∈ Φ−+(X)

and T + λN ∈ Φ+(X) for all λ ∈ C. Now it is obvious that T and

T + N are in the same component of Φ+(X), so i(T + N) = i(T ) ≤ 0 and

T + N ∈ Φ−+(X). We get that 0 /∈ σea(T + N). ¤

One can easily verify the next well-known fact:

(3)
if T, K ∈ B(X), K is nilpotent and TK = KT,

then σa(T ) = σa(T + K).

Theorem 2.14. Let T ∈ B(X) and let N be a nilpotent operator com-

muting with T . If a-Weyl’s theorem holds for T then it also holds for

T + N .

Proof. Firstly we prove that πa0(T +N) = πa0(T ). It is enough to prove

that if 0 ∈ πa0(T ), then 0 ∈ πa0(T + N). Suppose that 0 ∈ πa0(T ), so

0 < dimN (T ) < ∞.

We prove that dimN (T + N) < ∞. If (T + N)x = 0 for some x 6= 0,

then Tx = −Nx. Since N commutes with T , it follows that for every

positive integer m: Tmx = (−1)mNmx. Let n be the smallest positive

integer such that Nn = 0. We get that there is some positive integer r,

r ≤ n, such that T rx = 0. Thus N (T + N) ⊆ N (T r) and N (T + N) is

finite dimensional.
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We prove that dimN (T+N) > 0. There is some x 6= 0 such that Tx = 0.

Then (T +N)nx = 0, 0 ∈ σp(T +N) ⊆ σa(T +N) and dimN (T +N) > 0.

By (3) we know that σa(T ) = σa(T +N), so it follows that 0 ∈ πa0(T +N).

Thus, using Theorem 2.13 we get

σea(T + N) = σea(T ) = σa(T )\πa0(T ) = σa(T + N)\πa0(T + N).

Thus a-Weyl’s theorem holds for T + N . ¤

Now we give one simple connection with the work of Buoni [1]. Let H

be a complex, infinite dimensional Hilbert space, T ∈ B(H) and α ∈ ρ(T ).

For arbitrary µ ∈ C\{0}, there is some λ ∈ C such that (λ−α)µ = 1. Let

A = (T −α)−1. It is well-known that λ ∈ σ(T ) if and only if µ ∈ σ(A) [1].

We prove some analogous results concerning the sets σa(T ) and σea(T ).

Lemma 2.15. Let T , A, α, λ and µ be as above.

(a) λ ∈ σa(T ) if and only if µ ∈ σa(A).

(b) λ ∈ σea(T ) if and only if µ ∈ σea(A).

(c) λ ∈ πa0(T ) if and only if µ ∈ πa0(A).

Proof. (a) If λ /∈ σa(T ), then T−λ is one–to–one and R(T−λ) is closed.

Now, by [1, Lema 2.2. and Lema 2.3.], A−µ is 1–1 and R(A−µ) is closed,

so µ /∈ σa(A). The opposite implication is analogous.

(b) If λ /∈ σea(T ), then T − λ ∈ Φ−+(X). By [1], A − µ ∈ Φ+(X) and

i(A − µ) = i(T − λ) ≤ 0, so µ /∈ σea(A). The opposite implication is

analogous.

(c) Suppose that λ ∈ σa(T ) and λ is not isolated in σa(T ). Then there

is a sequence λi of σa(T ), such that λi → λ and λi 6= α. We may take

µi = 1/(λi − α) ∈ σa(A) (by (a)) and it is obvious that µi → µ, so

µ ∈ σa(A) and µ is not isolated in σa(A).We get that λ is an isolated point

of σa(T ) if and only if µ is an isolated point of σa(A). Now, if λ ∈ πa0(T ),
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since dimN (A−µ) = dimN (T −λ), we get that µ ∈ πa0(A). The opposite

implication is obvious. ¤

Using Lemma 2.15, we get the next

Corollary 2.16. If 0 /∈ σa(T ), then a-Weyl’s theorem holds for T if

and only if it holds for A.
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