ON ¢-WEYL’S THEOREM
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ABSTRACT. Let X be a complex infinite dimensional Banach space. We
use 04(T") and oeq(T) respectively, to denote the approximate point spec-
trum and the essential approximate point spectrum of a bounded opera-
tor T on X. Also, mq0(T) denotes the set of all isolated eigenvalues of
0a(T) of finite geometric multiplicity. We give sufficient conditions such
that the spectral mapping theorem holds for the set o (T)\mqo(T") and
for all analytic functions which are not constant on the connected compo-
nents of their domains. Using the Rakocevié’s concept from [5] and [7],
we say that an operator 7' on X obeys a-Weyl’s theorem provided that
0ea(T) = 0a(T)\mao(T). We investigate connections between a-Weyl’s
theorem and the spectral mapping theorem. We also prove some pertur-
bation results concerning a-Weyl’s theorem and various essential spectra.
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1. INTRODUCTION

Let X be a complex infinite dimensional Banach space and let B(X) and
K (X), respectively, denote the Banach algebra of all bounded operators
on X and the ideal of all compact operators on X. If T' € B(X), then
o(T) denotes the spectrum of T" and p(T') denotes the resolvent set of
T. The next sets are well-known semigroups of semi-Fredholm operators
on X: &, (X) = {T € B(X) : R(T) is closed and dimN(T) < oo} and
¢_(X) = {T € B(X) : R(T) is closed and dimX/R(T) < oo}. The
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semigroup of Fredholm operators is ®(X) = &, (X)N®_(X). If T is
semi-Fredholm, define the index of T by i(T") = dimN (T') — dimX/R(T).
We also consider sets ®(X) = {T € ®(X) : i(T) = 0} (Weyl operators)
and & (X) = {T' € &,(X) : i(T) < 0} (see [5]). The Weyl spectrum
of T'e B(X)is 045(T) ={A € C:T — X ¢ &y(X)}. We use 0,(T) and
0a(T), respectively, to denote the point spectrum and approximate point
spectrum of T' € B(X). Also, we use C to denote the complex plane. We
use moo(T") to denote the set of all A € C such that A is an isolated point
of o(T) and 0 < dimN (T — \) < oo. We say that T' obeys Weyl’s theorem,
if
ow(T) = o(T)\moo(T) (see [4]).

Let 7,0 denotes the set of all A € C such that A is isolated in o, (7T)
and 0 < dimN(T — \) < oo. If X € mo(T'), or A\ € mao(T), then X has
finite geometric multiplicity. Also, 0¢o(T) = (oo (T+K) : K € K(X)} is
the essential approximate point spectrum. It is well-known that o.,(T) =
AeC:T-X¢g o (X)} [5]. We take 0p(T) = Moo(T + K) : K €
K(X),TK = KT} to denote the Browder essential approximate point
spectrum. It is well-known that A ¢ 0,4, (T) if and only if ' — A € & (X)
and the ascent a(T — \) < oo [6]. We say that T obeys a-Weyl’s theorem,
if

0ea(T) = 0a(T)\mao(T), (see [6], [7]).
It is well-known that if T € B(X) obeys a-Weyl’s theorem, then it also
obeys Weyl’s theorem, but the converse is not true [7]. Let Hol (T') de-
notes the set of all complex-valued functions f, defined and regular in some
neighbourhood of o(T), such that f is not constant on the connected com-
ponents of its domain of definition. Recall the definition of the reduced
minimum modulus of 7" (see [7] and references cited there):

_ Azl
~v(T) _mf{dist(x,_/\/'(T)) x ¢N(T)}
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It is well-known that «(7") > 0 if and only if R(T) is closed. An operator
T € B(X) is called a Riesz operator, provided that T'— A € ®(X) for all
A € C\{0}. All quasinilpotent operators are Riesz operators. Finally, we
use a(T") to denote the ascent of T' € B(X) and 95 to denote the boundary
of the set S C C. Recall the definitions of ascent and descent in [6] and

references cited there.

2. RESULTS

We begin with one generalization of Oberai’s result [4].

THEOREM 2.1. Let T € B(X) and f € Hol(T). Then
oa(f(T)\ao (f(T)) C f(oa(T)\Ta0(T))-

Proof. Tt is well-known that f(o,((T)) = 0.(f(T)) [3]. Suppose that
A€ oo (f(T)\7ao(f(T)) C f(0a(T)). We consider three cases.

Case I. Suppose that A is not an isolated point of f(o,(7")). Then there
is a convergent sequence (i) in o,(7") such that f(u,) — A and p, — po.
Now, A = f(uo) € f(0a(T)\Tao(T)).

Case II. Now, let A be an isolated point of f(o,(T)) and A is not an

eigenvalue of f(7'). We can write

(1) FT) = A= (T —=pa)-- (T — pn)g(T),

such that 1 € o4(T), po,...,pn € o(T) and g(T') is invertible. Also,
operators on the right side of (1) mutually commute. Since A is not an

eigenvalue of f(T'), non of 1, ..., 1, can be an eigenvalue of T'. Therefore

A= f(m) € f(oa(T)\7ao(T))-

Case III. Let A be an eigenvalue of f(T") of infinite geometric multiplicity.

We also have
)= A= (T —p1) (T = pn)g(T).
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Since A is an eigenvalue of f(7') of infinite multiplicity, we get that there
is some p;, such that p; is an eigenvalue of T' of infinite multiplicity. Then
Wi € 0o (T)\mao(T) and X € f(oo(T)\mao(T)). O

Definition. We say that T € B(X) is a-isolated provided that all iso-

lated points of o,(T") are eigenvalues of 7.

It is well-known that do(T') C o,(T), so all isolated points of o(T') are
also isolated points of 0,(7"). Recall that T' € B(X) is isolated, provided
that all isolated points of o(T') are eigenvalues of T' [4]. Now it is obvious

that if T is a-isolated, then it is also isolated.

THEOREM 2.2. Let T € B(X) be a-isolated and f € Hol(T'). Then

f(oa(T)\ao(T)) = 0a(f(T))\mao(f(T))-

Proof. According to Theorem 2.1 it is enough to prove the inclusion C.
Let A € f(04(T)\7ao(T)) C 0o(f(T)). Suppose that A € mao(f(T)). Then
A is isolated in o, (f(7T")) and

f(T) = A= (T~ 1) (T — pn)g(T),

for some pq,...,pu, € o(T), and g(T) is invertible. If some p; belongs to
04(T'), then p; is isolated in 0, (7") and it must be an eigenvalue of T". Since
A is an eigenvalue of finite multiplicity, then all u; € 0,(T") are eigenvalues
of T of finite multiplicities. We get that all u; € 0,(T) are in 7 (7).
Therefore we get the contradiction, since A € f(oq(T)\ma0(T)). O

Let T' € B(X) and let f be an analytic function defined in a neighbour-
hood of ¢(T). It is well-known that the next inclusion holds [6]:

(2) Uea(f(T)) - f(aea(T))'

It is also known that this inclusion may be proper [5]. The next theorem

gives some sufficient conditions such that the equality holds in (2).
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THEOREM 2.3. Let T € B(X) be a-isolated, T obeys a-Weyl’s theorem
and let f € Hol(T). Then f(T) obeys a-Weyl’s theorem if and only if

f(0ea(T)) = oea(f(T)).
Proof. By Theorem 2.2 we have

f(0ea(T)) = [(0a(T)\mao(T)) = 0a(f(T)\mao (f(T))-
The right side is equal to o, (f(T)) if and only if f(0ea(T)) = 0ea(f(T)). O
If A is an isolated point of ¢(7") and E(A,T') denotes the corresponding
spectral projection, then A € mo(7T') if and only if E(A,T) is a finite-rank
operator. We say that 7o(T") consists of isolated eigenvalues of T' of finite

algebraic multiplicity. Notice that mo(7) C meo(T"). We shall use the

follwing Erovenko’s result [2, Teopema 1]:

PROPOSITION 2.4. Let T € B(X) and f is defined and analytic on
some neighbourhood of o(T). If Ao € o(T) and f(Xo) = p € wo(f(T)),
then Ao € mo(T).

The next results are also related to Theorems 2.2 and 2.3.
PROPOSITION 2.5. Let T € B(X), f € Hol(T) and mao(f(T)) =
mo(f(T)). Then

f(oa(T)\7ao(T)) = 0a(f(T)\Tao(f(T))-
Proof. By Theorem 2.1, it is enough to prove the inclusion C. Let

A€ floa(T)\mao(T)) C 0a(f(T)).

Suppose that A € m,0(f(T)) = 7o(f(T)). If p € o(T) and f(u) = A, by
Proposition 2.4 it follows that u € mo(T") C mao(T). So for all p € o(T),
if f(u) = X then p € mao(T) C 04(T). We get the contradiction, since
A€ floa(T)\mao(T)). O



COROLLARY 2.6. Let T € B(X), f € Hol(T), mao(f(T)) = mo(f(T))
and a-Weyl’s theorem holds for T'. Then a-Weyl’s theorem holds for f(T)
if and only if

F(0a(T)) = 0eal £(T)).

Proof. This proof is the same as the proof of Theorem 2.3. O
Now, note that we can easily modify a result from [5, Theorem 5.6].

THEOREM 2.7. The operator T € B(X) obeys a-Weyl’s theorem if and
only if the next two conditions hold:
(1) if X € mao(T), then R(T — N) is closed and
(i) if T —Xe ®(X), then X is an isolated point of o,(T).

The main difference is that in [5] the second condition is: if T — X\ €
. (X), then X is not an interior point of o,(T’).

To verify the equivalence of our Theorem 2.7 and the statement from [5,
Theorem 5.6, suppose that 7'—\ € (X)) and ) is not an interior point of
04(T'). There is some € > 0, such that if 0 < [u—A| < e then T'—p € ¢ (X))
and dimN (T — u) is a constant not greater then dimAN (7T — \). Some of
those p belongs to the set C\o,(T'), so dimN (T —p) = 0if 0 < [p—A| < e.
We get that A is an isolated point of o, (7).

The next results are connected with the Browder essential approximate

point spectrum.

PROPOSITION 2.8. IfT € B(X) obeys a-Weyl’s theorem, then c.q(T) =
oab(T).

Proof. Notice that 0., (T") C 04p(T). If T' obeys a-Weyl’s theorem, then
conditions (i) and (ii) of Theorem 2.7 are valid. Suppose that A € g4,(T")\
0ea(T). Then T — X € &, (X) and by Theorem 2.7, we get that A is an
isolated point of o, (7). Also, it is well-known that o, (1) = 0ea(T) U{A €
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04(T) : A is not an isolated point of o,(7")} [6, Corollary 2.4.]. It follows
that A must not be an isolated point of o,(T) and we get the contradic-

tion. O

COROLLARY 2.9. Suppose that T € B(X) obeys a-Weyl’s theorem. If
T —Xe @ (X), then the ascent of T — X is finite.

Proof. Follows by Proposition 2.8 and [6, Theorem 2.1]. [

THEOREM 2.10. Let T € B(X). Then T obeys a-Weyl’s theorem if and
only if the next conditions hold:
(i) if XA € 04(T)\0ea(T), then a(T — \) < oo, and
(11) Zf)\ € ’/Tao(T), then A\ ¢ Uab<T).

Proof. Suppose that (i) and (ii) hold. If A € mao(T'), then A ¢ 0.4(T).
Suppose that A € 0,(T)\me0(T) and A\ ¢ 0..(T). By (i) we get that
a(T'— X) < oo and by [6] A & 04,(T"). Since A € 04(T)\oaw(T), we have
that A is an isolated point of o, (7) and dimN (T'— ) < 00, s0 X € a0 (T).
This is in contradiction with A € 0, (T)\7ao(T). The opposite implication
follows by Proposition 2.8 and [6, Theorem 2.1]. O

THEOREM 2.11. Let T € B(X) and let f be an arbitrary analytic func-
tion, defined on a neighbourhood of o(T). If the next three conditions hold
for f and T':

(i) if A € 04(T) \ 0ea(T), then a(T — \) < o0,

(ii) if A € mao(t), then f(N) & oea(f(1)),
(iii) f(T) obeys a-Weyl’s theorem,

then T obeys a-Weyl’s theorem.
Proof. By Theorem 2.10, it is enough to prove that if A € 7,o(T), then

A & 04(T). Suppose that A\ € moo(T) Noep(T). Then f(N) € f(oa(T)) =
oab(f(T)) [6]. Since f(T') obeys a-Weyl’s theorem, by Proposition 2.8
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we get 0qp(f(T)) = 0eal(f(T)), or f(A) € 0ea(f(T)). By (ii), we get the
contradiction. [

THEOREM 2.12. Let T' € B(X) be such that 0¢o(T) = 04 (T). Then T
obeys a-Weyl’s theorem if and only if one of the following three conditions

holds:
(1) if X € mao(T), then R(T — N) is closed.

(ii) if X € mao(T), then v is discontinuous at T — .

(iiy) if A € moo(T'), then the descent of T — X is finite, and
(i) if A € mao(T)\moo(T'), then R(T — A) is closed.

Proof. (i) Follows by Theorem 2.7 and [6, Corollary 2.4].

(ii) If the condition (ii) holds, by [7, Theorem 2.4.] it follows that T’
obeys a-Weyl’s theorem. Now suppose that the condition (i) holds, i.e.
a-Weyl’s theorem holds for 7. Let A € A3 (T) = {p: T —p e &, (X),0 <
dimN (T — p)}. Then X ¢ 00 (T) = 045(T), A is an isolated point of o4 (T)
and A € m0(7). The rest of the proof follows again from [7, Theorem 2.4].

(iii) If the condition (iii) holds, by [7, Theorem 2.9] it follows that T’
obeys a-Weyl’s theorem. We now prove the opposite implication. We
use the next sets: A§(T) = {A € C: A—- X € &(X),i(4A -\ = 0},
AS(T) = {\ € AS(T) : dimN(T — \) < codimR(T — \) < oo} and
A (T)={X € A3(T) : codimR(T—\) = oo}, introduced in [7]. Suppose
that A € A(T)UA® (T). Then A\—T € &7 (X) and A ¢ 04(T) = 046(T).
Now by [6], it follows that the ascent of T'— A is finite. Suppose that
Ae A2 (T). Then T — X € . (X), 50 A ¢ 0eo(T) = 04(T). By [6]
we get that A is an isolated point of o,(T"). There exists a neighbourhood
B()) of A, such that for all p € B(X)\{\} it is satisfied dimA(T) = 0. We
get that \ satisfies the condition (A) of [7]. By [7, Theorem 2.9] it follows
that T obeys a-Weyl’s theorem. [



We now prove some perturbation theorems.

THEOREM 2.13. Let T € B(X) and let N be a quasinilpotent operator
commuting with T. Then c¢q(T) = 0ea(T + N).

Proof. We shall use the following well-known fact [8, 30. Theorem]: if
T € &, (X), K is a Riesz operator and KT = TK, then T+ A\K € ¢, (X)
for all A € C. It is enough to prove the implication: if 0 ¢ o.,(T),
then 0 ¢ o0oo(T + N). Suppose that 0 ¢ 0co(T). Then T' € @7 (X)
and T+ AN € ®,.(X) for all A € C. Now it is obvious that 7" and
T + N are in the same component of ®(X), so i(T+ N) =4(T) <0 and
T+ N € ®,(X). We get that 0 ¢ 0co(T + N). O

One can easily verify the next well-known fact:

if T)K € B(X), K is nilpotent and TK = KT,
(3)

then 0, (T) = 0,(T + K).
THEOREM 2.14. Let T € B(X) and let N be a nilpotent operator com-
muting with T. If a-Weyl’s theorem holds for T then it also holds for
T+ N.

Proof. Firstly we prove that m,0(T+ N) = mao(T). It is enough to prove
that if 0 € 7o(T), then 0 € m0(T + N). Suppose that 0 € 7,0(T), so
0 < dimN(T) < oo.

We prove that dimN(T' + N) < oo. If (T + N)z = 0 for some = # 0,
then Tx = —Nz. Since N commutes with T, it follows that for every
positive integer m: T™x = (—1)"N"z. Let n be the smallest positive
integer such that N™ = 0. We get that there is some positive integer r,
r < n, such that 7"z = 0. Thus N(T + N) C N(T") and N(T + N) is

finite dimensional.
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We prove that dimN (T+N) > 0. There is some x # 0 such that Tz = 0.
Then (T+ N)"x = 0,0 € 0,(T+ N) C 0,(T+ N) and dimN (T'+ N) > 0.
By (3) we know that 0,(T") = 0,(T+N), so it follows that 0 € w,0(T'+N).

Thus, using Theorem 2.13 we get

Oea(T + N) = 0¢a(T) = 00(T)\ma0(T) = 04(T + N)\7ao(T + N).

Thus a-Weyl’s theorem holds for T4+ N. 0O

Now we give one simple connection with the work of Buoni [1]. Let H
be a complex, infinite dimensional Hilbert space, T € B(H) and « € p(T).
For arbitrary p € C\{0}, there is some A € C such that (A —a)u = 1. Let
A= (T —a)~ ! Tt is well-known that A\ € o(T) if and only if u € o(A) [1].

We prove some analogous results concerning the sets 0, (7") and oo (7).

LEMMA 2.15. Let T, A, a, A and u be as above.

(a) XA € 0o(T) if and only if p € o,(A).
(b) X € 0ea(T) if and only if p € cea(A).
(¢) A€ mao(T) if and only if u € mao(A).

Proof. (a) If A ¢ 0,(T), then T'— \ is one~to—one and R (T — ) is closed.
Now, by [1, Lema 2.2. and Lema 2.3.], A—p is 1-1 and R(A— u) is closed,
so ¢ 04(A). The opposite implication is analogous.

(b) If A & 0eo(T), then T — X € &7 (X). By [1], A — pu € &, (X) and
i(A—p) =T —X) <0, s0 p ¢ 0ea(A). The opposite implication is
analogous.

(c) Suppose that A € 0,(T) and A is not isolated in 0,(7T"). Then there
is a sequence \; of o,(7T), such that \; — X\ and \; # a. We may take

= 1/(\ — a) € g,(A) (by (a)) and it is obvious that pu; — pu, so
u € 04(A) and p is not isolated in o, (A).We get that A is an isolated point
of 0,(T) if and only if p is an isolated point of o,(A). Now, if A € 7o (T),
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since dimA (A — p) = dimN (T — \), we get that pu € m40(A). The opposite

implication is obvious. [
Using Lemma 2.15, we get the next

COROLLARY 2.16. If 0 ¢ 0,(T), then a-Weyl’s theorem holds for T if
and only if it holds for A.
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