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Abstract

We investigate elements in rings with involution which are EP or
partial isometries. Some well-known results are generalized.
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1 Introduction

In this paper we consider both Moore-Penrose invertible and group invertible
elements in rings with involution. Our aim is to study partial isometries and
EP elements in terms of equations involving their adjoints, Moore-Penorse
and group inverse. Some recent results from [1] and [11] follow as corollaries.
Notice that the Moore-Penrose inverse and the group inverse are useful in
solving overdetermined systems of linear equations.

Let R be an associative ring with the unit 1, and let a ∈ R. We say that
a is group invertible if there is a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a.

The element a# is called the group inverse and it is uniquely determined by
previous equations [2]. Denote byR# the set of all group invertible elements
of R. If a is invertible, then a# coincides with the ordinary inverse a−1 of
a.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.
∗The authors are supported by the Ministry of Science of Serbia, grant no. 174007.
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In the rest of the paper we assume that R is a ring with involution. An
element a ∈ R satisfying aa∗ = a∗a is called normal. An element a ∈ R
satisfying a = a∗ is called Hermitian (or symmetric).

An element a† is called the Moore–Penrose inverse (or MP-inverse) of
a, if [12]:

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

Recall that, if a† exists, then it is uniquely determined [5, 7, 12], and a is
called Moore–Penrose invertible. The set of all Moore–Penrose invertible
elements of R is denoted by R†. If a is invertible, then a† coincides with
the ordinary inverse of a.

By the analogy with linear bounded operators on a Hilbert space, an
element a ∈ R† satisfying a∗ = a† is called a partial isometry.

The following result is well-known and frequently used in the rest of the
paper.

Theorem 1.1. [4, 10] For any a ∈ R†, the following is satisfied:

(a) (a†)† = a;

(b) (a∗)† = (a†)∗;

(c) (a∗a)† = a†(a†)∗;

(d) (aa∗)† = (a†)∗a†;

(e) a∗ = a†aa∗ = a∗aa†;

(f) a† = (a∗a)†a∗ = a∗(aa∗)† = (a∗a)#a∗ = a∗(aa∗)#;

(g) (a∗)† = a(a∗a)† = (aa∗)†a.

Now we state the definition of EP elements [3], [8], [9], and also a basic
characterization of EP elements.

Definition 1.1. An element a of a ring R with involution is said to be EP
if a ∈ R# ∩R† and a# = a†.

Lemma 1.1. An element a ∈ R is EP if and only if a ∈ R† and aa† = a†a.

We observe that a ∈ R# ∩R† if and only if a∗ ∈ R# ∩R† (see [8]) and
a is EP if and only if a∗ is EP. In [8], the equality (a∗)# = (a#)∗ is proved.
The following theorem is very useful tool to investigate EP elements in ring
with involution.
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Theorem 1.2. [8] An element a ∈ R is EP if and only if a is group invertible
and a#a is symmetric.

In [1] it is demonstrated the usefulness of the representation of complex
matrices provided in [6] to explore various classes of matrices, such as partial
isometries and EP. In [11], characterizations of partial isometries and EP el-
ements in rings with involution are investigated, applying a purely algebraic
technique and extending some results in [1] to more general settings. In this
paper we present a number of new characterization of partial isometries and
EP elements in rings with involution. As a consequence, we obtain some
results from [1] and [11].

2 Characterizations of partial isometries and EP
elements

In this section, we use the setting of rings with involution to give new char-
acterizations of partial isometries and EP elements.

In the following theorem we assume that an element a of a ring R with
involution is both Moore–Penrose invertible and group invertible. We inves-
tigate some necessary and sufficient conditions for element a to be a partial
isometry. Theorem 2.1 generalizes (Theorem 1 in [1]) and (Theorem 2.1 and
Theorem 2.2 in [11]). If n = 1 in the following result, then we get mentioned
theorems in [11] as a corollaries.

We use N to denote the set of all positive integers.

Theorem 2.1. Suppose that a ∈ R† ∩ R#, and let n ∈ N. Then a is a
partial isometry, if and only if one of the following equivalent conditions
holds:

(i) ana∗ = ana†;

(ii) a∗an = a†an;

(iii) a∗(a#)n = a†(a#)n;

(iv) (a#)na∗ = (a#)na†;

(v) aa∗(a#)n = (a#)n;

(vi) (a#)na∗a = (a#)n.
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Proof. If a is a partial isometry, then a∗ = a†. It is not difficult to check
that conditions (i)-(vi) hold.

Conversely, to conclude that a is a partial isometry, we show that either
the condition a∗ = a† is satisfied, or one of the preceding already established
condition of this theorem holds.

(i) Using the hypothesis ana∗ = ana†, we obtain

a∗ = a†aa∗ = a†(a#)n−1(ana∗) = a†(a#)n−1ana† = a†aa† = a†.

So, the element a is a partial isometry.
(ii) Applying the involution to a∗an = a†an, using (a†)∗ = (a∗)†, we have

(a∗)n(a∗)∗ = (a∗)n(a∗)†,

i.e. the element a∗ satisfies the condition (i). Thus, a∗ is a partial isometry
and, applying involution to (a∗)∗ = (a∗)†, we deduce that a is a partial
isometry.

(iii) From the equality a∗(a#)n = a†(a#)n, we get

a∗ = a∗aa† = (a∗(a#)n)an+1a† = a†(a#)nan+1a† = a†aa† = a†.

(iv) Applying the involution to (a#)na∗ = (a#)na†, and using (a#)∗ =
(a∗)# [8], we observe that

(a∗)∗[(a∗)#]n = (a∗)†[(a∗)#]n.

Hence, the condition (iii) is satisfied for a∗ instead of a, and a∗ is a partial
isometry. Consequently, a is a partial isometry.

(v) Multiplying the assumption aa∗(a#)n = (a#)n by a† from the left
side, we obtain

a∗(a#)n = a†(a#)n.

So, the condition (iii) holds, and a is a partial isometry.
(vi) Applying the involution to (a#)na∗a = (a#)n, we get

a∗(a∗)∗[(a∗)#]n = [(a∗)#]n.

Thus, the condition (v) is satisfied for a∗, and a∗ is a partial isometry.

In the following result we present new equivalent conditions which ensure
that an element a of a ring with involution is both a partial isometry and
EP. These conditions involve elements a, a∗, a†, a#, and also powers of
these elements. If n = 1, then the following theorem gives as a consequence
(Theorem 2.3 in [11]).
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Theorem 2.2. Suppose that a ∈ R†∩R#, and let n ∈ N. Then a is a partial
isometry and EP, if and only if one of the following equivalent conditions
holds:

(i) a is partial isometry and a∗an = ana∗;

(ii) ana∗ = a†an;

(iii) a∗an = ana†;

(iv) ana∗ = ana#;

(v) a∗an = ana#;

(vi) a∗(a†)n = a†(a#)n;

(vii) (a†)na∗ = (a#)na†;

(viii) (a†)na∗ = a†(a#)n;

(ix) a∗(a†)n = (a#)na†;

(x) a∗(a#)n = (a#)na†;

(xi) a∗(a†)n = (a#)n+1;

(xii) a∗(a#)n = (a†)n+1;

(xiii) a∗(a#)n = (a#)n+1;

(xiv) aa∗(a†)n = (a#)n;

(xv) aa∗(a#)n = (a†)n;

(xvi) a∗an+1 = an;

(xvii) an+1a∗ = an;

(xviii) a(a†)na∗ = (a#)n;

(xix) a∗(a†)na = (a#)n.

Proof. If a is a partial isometry and EP, then a∗ = a† = a#. It is not
difficult to verify that conditions (i)-(xix) hold.

Conversely, we know that a ∈ R# ∩R† if and only if a∗ ∈ R# ∩R†, and
a is EP if and only if a∗ is EP. We prove that a is a partial isometry and EP,
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or we show that the element a or a∗ satisfies one of the preceding already
established conditions of this theorem.

(i) Since a is a partial isometry and a∗an = ana∗, then

aa# = an(a#)n = ana†a(a#)n = (ana∗)a(a#)n = a∗ana(a#)n = a†a.

Since a†a is symmetric, we get that aa# is symmetric also, and a is EP, by
Theorem 1.2.

(ii) By the condition ana∗ = a†an, we get

a∗ = a†aa∗ = a†(a#)n−1(ana∗)aa† = a†(a#)n−1a†anaa†

= a†(a#)naa†aana† = a†(a#)nan+1a† = a†aa† = a†,

i.e. a is a partial isometry, and ana∗ = a∗an, which implies that a satisfies
the condition (i).

(iii) Applying the involution to a∗an = ana†, we obtain

(a∗)n(a∗)∗ = (a†)∗(a∗)n = (a∗)†(a∗)n,

by Theorem 1.1. So, the condition (ii) holds for a∗.
(iv) Using the equality ana∗ = ana#, we get

(1) ana∗ = (ana∗)aa† = ana#aa† = ana†,

which gives, by Theorem 2.1 (i), that a is a partial isometry. The equalities
(iv) and (1) imply ana† = ana# and multiplying this expression by (a#)n−1

from the left side, we obtain aa† = aa#. Since aa† is symmetric, we conclude
that aa# is symmetric. From Theorem 1.2, we get that a is EP.

(v) Applying the involution to a∗an = ana#, we get

(a∗)n(a∗)∗ = (ana#)∗ = (a#an)∗ = (a∗)n(a∗)#.

Hence, a∗ satisfies the equality (iv), so a is EP and a partial isometry.
(vi) The assumption a∗(a†)n = a†(a#)n implies

aa# = an+1(a#)n+1 = anaa†a(a#)n+1 = an+1(a†(a#)n) = an+1a∗(a†)n

= an+1(a∗(a†)n)aa† = an+1a†(a#)naa† = anaa†a(a#)na†

= an+1(a#)na† = aa†.

Thus, the element aa# is symmetric and a is EP, by Theorem 1.2. By
a# = a† and (vi), we have a∗(a#)n = a†(a#)n, i.e. the condition (iii) of
Theorem 2.1 is satisfied. So, a is a partial isometry.
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(vii) Applying the involution to (a†)na∗ = (a#)na†, we obtain

(a∗)∗[(a∗)†]n = (a∗)†[(a∗)#]n.

Hence, a∗ satisfies the condition (vi).
(viii) The condition (a†)na∗ = a†(a#)n implies

aa# = anaa†a(a#)n+1 = an+1(a†(a#)n) = an+1(a†)na∗

= an+1((a†)na∗)aa† = an+1a†(a#)naa† = anaa†a(a#)na†

= an+1(a#)na† = aa†.

Therefore, aa# is symmetric, and by Theorem 1.2 a is EP. From a† = a#

and (viii) we obtain (a†)na∗ = (a#)na†, i.e. the equality (vii) holds.
(ix) Applying the involution to a∗(a†)n = (a#)na†, we have

[(a∗)†]n(a∗)∗ = (a∗)†[(a∗)#]n.

Thus, the element a∗ satisfies the condition (viii).
(x) From the assumption a∗(a#)n = (a#)na†, we get

a∗an = (a∗(a#)n)a2n = (a#)na†a2n

= (a#)n+1aa†aa2n−1 = (a#)n+1a2n = ana#.

So, the statement (v) holds.
(xi) Assume that a∗(a†)n = (a#)n+1. Now, we see

a∗(a†)n = (a∗(a†)n)aa† = (a#)n+1aa† = (a#)na†,

that is the equality (ix) is satisfied.
(xii) Using the condition a∗(a#)n = (a†)n+1, we observe that

(a#)n = aa†a(a#)n+1 = (a†)∗(a∗(a#)n)∗ = (a†)∗(a†)n+1,

which yields

aa# = an(a#)n = an(a†)∗(a†)n+1

= an((a†)∗(a†)n+1)aa† = an(a#)naa† = aa†.

Hence, aa# is symmetric, so a is EP by Theorem 1.2. Then, by a† = a#

and (xii), we deduce that a∗(a#)n = (a#)na†, which is the condition (x).
(xiii) Suppose that a∗(a#)n = (a#)n+1. Then, by

a∗an = (a∗(a#)n)a2n = (a#)n+1a2n = ana#,
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we see that the equality (v) holds.
(xiv) Multiplying aa∗(a†)n = (a#)n on the left-hand side by a†, we have

a∗(a†)n = a†(a#)n.

So, the condition (vi) is satisfied.
(xv) Multiplying aa∗(a#)n = (a†)n on the left-hand side by a†, we obtain

the condition (xii).
(xvi) Multiplying a∗an+1 = an on the right-hand side by a#, we get

a∗an = ana#.

Thus, the statement (v) holds.
(xvii) Applying the involution to an+1a∗ = an, we show that

(a∗)∗(a∗)n+1 = (a∗)n

which gives that a∗ satisfies the equality (xvi).
(xviii) Multiplying a(a†)na∗ = (a#)n on the left-hand side by a†, we have

(a†)na∗ = a†(a#).

Hence, a satisfies the condition (viii).
(xix) Applying the involution to a∗(a†)na = (a#)n, we obtain

a∗[(a∗)†]n(a∗)∗ = [(a∗)#]n.

Therefore, a∗ satisfies the condition (xviii).

In the rest of paper we study several equivalent conditions for an element
a in a ring with involution to satisfy (a∗)n = (a†)n. If n = 1, then we get
some conditions of Theorem 2.1, and for m = n = 1 we obtain (Theorem
2.1 and some equalities of Theorem 2.2 in [11]).

Theorem 2.3. Suppose that a ∈ R† ∩R#, and let m,n ∈ N. Then (a∗)n =
(a†)n if and only if one of the following equivalent conditions holds:

(i) am(a∗)n = am(a†)n;

(ii) (a∗)nam = (a†)nam;

(iii) (a∗)n(a#)m = (a†)n(a#)m;
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(iv) (a#)m(a∗)n = (a#)m(a†)n.

Proof. If (a∗)n = (a†)n, then it is obvious that conditions (i)-(iv) hold.
Conversely, we will show that either the condition (a∗)n = (a†)n holds,

or one of the preceding already established condition of this theorem is
satisfied.

(i) By the assumption am(a∗)n = am(a†)n, we observe

(a∗)n = a†a(a∗)n = a†(a#)m−1(am(a∗)n)
= a†(a#)m−1am(a†)n = a†a(a†)n = (a†)n.

(ii) Applying the involution to (a∗)nam = (a†)nam, we see that a∗ satis-
fies the equality (i). So, [(a∗)∗]n = [(a∗)†]n and, applying involution to this
equlaity, we obtain (a∗)n = (a†)n.

(iii) Assume that (a∗)n(a#)m = (a†)n(a#)m. Then

(a∗)n = (a∗)naa† = ((a∗)n(a#)m)am+1a†

= (a†)n(a#)mam+1a† = (a†)naa† = (a†)n.

(iv) Applying the involution to (a#)m(a∗)n = (a#)m(a†)n, we show that
the condition (iii) holds for a∗.

Next, some necessary and sufficient conditions for an element a in a ring
with involution to satisfy (a∗)n = (a†)n and to be EP are given. If n = 1,
then we obtain condition (iv) and (v) of Theorem 2.2. If m = n = 1, then
we obtain three statements of (Theorem 2.3 in [11]).

Theorem 2.4. Suppose that a ∈ R† ∩R#, and let m,n ∈ N. Then (a∗)n =
(a†)n and a is EP, if and only if one of the following equivalent conditions
holds:

(i) (a∗)n = (a#)n;

(ii) am(a∗)n = am(a#)n;

(iii) (a∗)nam = (a#)nam.

Proof. If (a∗)n = (a†)n and a is EP, then a† = a# and (a∗)n = (a#)n. So,
conditions (i)-(iii) hold.

(i) The equality (a∗)n = (a#)n implies

a#a = (a#)nan = (a∗)nan.
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Since (a∗)nan is symmetric, then a#a is symmetric too and, by Theorem
1.2, a is EP. Using a† = a# and (i), we get (a∗)n = (a†)n.

(ii) From the assumption am(a∗)n = am(a#)n, we obtain

(a∗)n = a†a(a∗)n = a†(a#)m−1(am(a∗)n) = a†(a#)m−1am(a#)n = a†a(a#)n

and then
an(a∗)n = ana†a(a#)n = an(a#)n = aa#,

which implies that aa# is symmetric, and a is EP by Theorem 1.2. Since
(a∗)n = a†a(a#)n and a† = a#, obviously, (a∗)n = (a†)n.

(iii) Applying the involution to (iii), we observe that a∗ satisfies (ii)
implying [(a∗)∗]n = [(a∗)†]n and a∗ is EP. Consequently, the element a is EP
and (a∗)n = (a†)n.

3 Conclusions

In this paper we studied equations involving an element in a ring with invo-
lution, its adjoint, Moore-Penorse and group inverse. We applied a purely
algebraic technique to prove a number of new equivalent characterizations
of partial isometries and EP elements. Some well-known results for complex
matrices and elements in rings with involution are obtained as consequences.

Acknowledgement. We are grateful to the referees for their helpful
comments concerning the paper.

References

[1] O.M. Baksalary, G.P.H. Styan, and G. Trenkler, On a matrix decompo-
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[6] R.E. Hartwig and K. Spindelböck, Matrices for which A∗ and A† com-
mute, Linear Multilinear Algebra, 14 (1984), 241–256.

[7] J.J. Koliha, The Drazin and Moore–Penrose inverse in C*-algebras,
Math. Proc. Royal Irish Acad., 99A (1999), 17–27.
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