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Abstract

In this paper we present new results related to various equiva-
lencies of the mixed-type reverse order law for the Moore-Penrose
inverse for operators on Hilbert spaces. Recent finite dimensional
results of Tian are extend to Hilbert space operators.

1 Introduction

The reverse order law of the form (AB)† = B†A† does not hold in gen-

eral for the Moore-Penrose inverse. The classical equivalent condition (A∗A
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commutes with BB†, and BB∗ commutes with AA†) is proved in [G] for

complex matrices, in [B1], [B2] and [I] for closed-range linear bounded op-

erators on Hilbert spaces, and in [KDjC] in rings with involutions. However,

various weaker conditions than the reverse order law are also investigated.

A significant number of results is already published in this direction (see

[Dj1], [Dj2], [DjD], [DjR], [T1], [T2], [T3], [T4], [T5], [WG], [W1], [W2]). It

is also important that the reverse order law of the form (ABC)† = C†B†A†

is investigated in [Hw].

In this paper we present a set of equivalencies of the mixed type reverse-

order law (AB)† = B†(A†ABB†)†A† for the ordinary and weighted Moore-

Penrose inverse of linear bounded operators on Hilbert spaces. Some finite

dimensional results from [T4] are extended to infinite dimensional settings.

We use operator matrices, which naturally appear in the theory of closed-

range linear bounded operators on Hilbert spaces. Hence, our method of

proving results is essentially different than the method used in [T4].

Let X,Y, Z be Hilbert spaces, and let L(X,Y ) be the set of all linear

bounded operators from X to Y . For A ∈ L(X, Y ) we use, respectively,

N (A), R(A), A∗: the null space, the range space and the adjoint of A.

The Moore-Penrose inverse of A ∈ L(X, Y ) (if it exists) is the unique

operator A† ∈ L(Y, X) satisfying the following:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

It is well-known that A† exists for given A if and only if R(A) is closed.

Let M ∈ L(Y ) and N ∈ L(X) be positive and invertible operators. The

weighted Moore-Penrose inverse of A ∈ L(X,Y ) with respect to the weights

M and N (if it exists) is the unique operator A†
M,N ∈ L(Y,X) satisfying

the following:

AA†
M,NA = A, A†

M,NAA†
M,N = A†

M,N ,

(MAA†
M,N)∗ = MAA†

M,N , (NA†
M,NA)∗ = NA†

M,NA.

Also, A†
M,N exists for given A if and only if R(A) is closed. If M = IY and

N = IX , then A†
IY ,IX

is the standard Moore-Penrose inverse A† of A.

We assume that the reader is familiar with the generalized invertibility

and the Moore-Penrose inverse (see, for example, [BIG], [C], [H]).

We continue with several auxiliary results.

Lemma 1.1. Let A ∈ L(X, Y ) have a closed range. Then A has the matrix

decomposition with respect to the orthogonal decompositions of spaces X =
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R(A∗)⊕N (A) and Y = R(A)⊕N (A∗):

A =

[
A1 0
0 0

]
:

[ R(A∗)
N (A)

]
→

[ R(A)
N (A∗)

]
,

where A1 is invertible. Moreover,

A† =

[
A−1

1 0
0 0

]
:

[ R(A)
N (A∗)

]
→

[ R(A∗)
N (A)

]
.

The proof is straightforward.

Lemma 1.2. [DjD] Let A ∈ L(X, Y ) have a closed range. Let X1 and X2 be

closed and mutually orthogonal subspaces of X, such that X = X1⊕X2. Let

Y1 and Y2 be closed and mutually orthogonal subspaces of Y , such that Y =

Y1 ⊕ Y2. Then the operator A has the following matrix representations with

respect to the orthogonal sums of subspaces X = X1⊕X2 = R(A∗)⊕N (A),

and Y = R(A)⊕N (A∗) = Y1 ⊕ Y2 :

(a)

A =

[
A1 A2

0 0

]
:

[
X1

X2

]
→

[ R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 maps R(A) into itself and D > 0 (meaning D ≥ 0

invertible). Also,

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
.

(b)

A =

[
A1 0
A2 0

]
:

[ R(A∗)
N (A)

]
→

[
Y1

Y2

]
,

where D = A∗
1A1+A∗

2A2 maps R(A∗) into itself and D > 0 (meaning D ≥ 0

invertible). Also,

A† =

[
D−1A∗

1 D−1A∗
2

0 0

]
.

Here Ai denotes different operators in any of these two cases.

The reader should notice the difference between the following notations.

If A,B ∈ L(X), then [A,B] = AB − BA denotes the commutator of

A and B. On the other hand, if U ∈ L(X,Z) and V ∈ L(Y, Z), then

[U V ] :

[
X
Y

]
→ Z denote the matrix form of the corresponding operator.

In the following lemma, a lot of well-known and important facts and prop-

erties concerning the Moore-Penrose inverse are collected, especially those

which we use in the proof of the main theorem.
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Lemma 1.3. [BIG], [DjR] Let A ∈ L(X, Y ) be a closed range operator, and

let M ∈ L(Y ) and N ∈ L(X) be positive definite and invertible operators.

Then:

(1) A∗ = A†AA∗ = A∗AA†;

(2) A† = A∗(AA∗)† = (A∗A)†A∗;

(3) R(A) = R(AA†) = R(AA∗);

(4) R(A†) = R(A∗) = R(A†A) = R(A∗A);

(5) R(I − A†A) = N (A†A) = N (A) = R(A∗)⊥;

(6) R(I − AA†) = N (AA†) = N (A†) = N (A∗) = R(A)⊥;

(7) R(A†
M,N) = N−1R(A∗), N (A†

M,N) = M−1N (A∗);

(8) A†
M,N = N−1/2(M1/2AN−1/2)†M1/2.

The following result is well-known, and it can be found in [C] p.127, and

also [I].

Lemma 1.4. Let A ∈ L(Y, Z) and B ∈ L(X, Y ) have closed ranges. Then

AB has a closed range if and only if A†ABB† has a closed range.

The following result is proved in [DjD], Lemma 2.1.

Lemma 1.5. Let X,Y be Hilbert spaces, let C ∈ L(X, Y ) has a closed range,

and let D ∈ L(Y ) be Hermitian and invertible. Then R(DC) = R(C) if and

only if [D, CC†] = 0.

We shall also use the following result from [DW], which can easily be

extended from complex matrices case to the linear bounded Hilbert space

operators.

Lemma 1.6. Let Hi, (i = 1, 4) be Hilbert spaces, let C ∈ L(H1, H2), X ∈
L(H2, H3) and B ∈ L(H3, H4) be closed range operators. Then:

C(BXC)†B = X†

if and only if:

R(B∗BX) = R(X) and N (XCC∗) = N (X).
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Let A be an unital C∗–algebra with the unit 1. Denote the set of all

projections by P(A) = {p ∈ A : p2 = p = p∗}. In [L, Theorem 10.a] the

following results are proved.

Lemma 1.7. [L] Let p, q ∈ P(A). Then the following statements are equiv-

alent:

(a) pq is Moore-Penrose invertible;

(b) qp is Moore-Penrose invertible;

(c) (1− p)(1− q) is Moore-Penrose invertible;

(d) (1− q)(1− p) is Moore-Penrose invertible.

Lemma 1.8. [L] Let p, q ∈ P(A). If pq is Moore-Penrose invertible, then:

(qp)† = pq − p[(1− p)(1− q)]†q.

We shall use these results in the case of A = L(X).

2 Main results

Many necessary and sufficient condition for (AB)† = B†A† to hold were

given in the literature. In the paper of Tian [T3], one can found the follow-

ing important relation: (AB)† = B†A† iff (AB)† = B†(A†ABB†)†A† and

(A†ABB†)† = BB†A†A. Therefore, it is necessary to seek various equiva-

lent conditions for (AB)† = B†(A†ABB†)†A† to satisfy. The next theorem

is our main results, and it represents the generalization of results from [T4]

to infinite dimensional settings.

Theorem 2.1. Let X, Y , Z be Hilbert spaces, and let A ∈ L(Y, Z) and

B ∈ L(X, Y ) be operators such that A, B and AB have closed ranges. The

following statements are equivalent:

(a1) (AB)† = B†(A†ABB†)†A†;

(a2) (AB)† = B∗(A∗ABB∗)†A∗;

(a3) (AB)† = B†A† −B†((I −BB†)(I − A†A))†A†;

(b1) ((A†)∗B)† = B†(A†ABB†)†A∗;

(b2) ((A†)∗B)† = B∗((A∗A)†BB∗)†A†;
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(b3) ((A†)∗B)† = B†A∗ −B†((I −BB†)(I − A†A))†A∗;

(c1) (A(B†)∗)† = B∗(A†ABB†)†A†;

(c2) (A(B†)∗)† = B†(A∗A(BB∗)†)†A∗;

(c3) (A(B†)∗)† = B∗A† −B∗((I −BB†)(I − A†A))†A†;

(d1) (B†A†)† = A(BB†A†A)†B;

(d2) (B†A†)† = (A†)∗((BB∗)†(A∗A)†)†(B†)∗;

(d3) (B†A†)† = AB − A((I − A†A)(I −BB†))†B;

(e1) (A†AB)†A† = B†(ABB†)†;

(e2) (A†AB)†A∗ = B†((A†)∗BB†)†;

(e3) (A†A(B†)∗)†A† = B∗(ABB†)†;

(e4) (BB†A†)†B = A(B†A†A)†;

(e5) (A∗AB)†A∗ = B∗(ABB∗)†;

(e6) ((A∗A)†B)†A† = B∗((A†)∗BB∗)†;

(e7) (A∗A(B†)∗)†A∗ = B†(A(BB∗)†)†;

(e8) B†((A∗)†(BB∗)†)† = ((A∗A)†(B∗)†)†A†;

(e9) (AA∗ABB∗B)† = B†(A∗ABB∗)†A†;

(f1) (A†AB)† = B†(A†ABB†)† and (ABB†)† = (A†ABB†)†A†;

(f2) (A†AB)† = B∗(A†ABB∗)† and (ABB†)† = (A∗ABB†)†A∗;

(f3) (A†AB)† = B†A†A − B†((I − BB†)(I − A†A))†A†A and (ABB†)† =

BB†A† −BB†((I −BB†)(I − A†A))†A†;

(g1) R((AB)†) = R(B†(A†ABB†)A†) and R(((AB)†)∗) =

R((B†(A†ABB†)A†)∗);

(g2) R((AB)†) = R(B†A†) and R((B∗A∗)†) = R((A∗)†(B∗)†);

(g3) R(AA∗AB) = R(AB) and R(B∗B(AB)∗) = R((AB)∗).
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Proof. The existence of various terms appearing in the statements of the

theorem follows mainly from the Lemma 1.4, and from some properties of

the kernel and range of operators (see Lemma 1.3). The existence of the

Moore-Penrose inverse of the products like (I−BB†)(I−A†A) follows from

Lemma 1.7.

Using Lemma 1.1, we conclude that the operator B has the following

matrix form:

B =

[
B1 0
0 0

]
:

[ R(B∗)
N (B)

]
→

[ R(B)
N (B∗)

]
,

where B1 is invertible. Then

B† =

[
B−1

1 0
0 0

]
:

[ R(B)
N (B∗)

]
→

[ R(B∗)
N (B)

]
.

From Lemma 1.2 also follows that the operator A has the following matrix

form:

A =

[
A1 A2

0 0

]
:

[ R(B)
N (B∗)

]
→

[ R(A)
N (A∗)

]
,

where D = A1A
∗
1 + A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
:

[ R(A)
N (A∗)

]
→

[ R(B)
N (B∗)

]
.

First we find an equivalent form for the statement (a1). We have

S = A†ABB† =

(
A∗

1D
−1A1 0

A∗
2D

−1A1 0

)
,

and consequently

S† = (S∗S)†S∗ =

(
(A∗

1D
−1A1)

†A∗
1D

−1A1 (A∗
1D

−1A1)
†A∗

1D
−1A2

0 0

)
.

It follows that

B†S†A† =

(
B−1

1 (A∗
1D

−1A1)
†A∗

1D
−1 0

0 0

)
.

Therefore,

(AB)† = B†(A†ABB†)†B†

is equivalent to:

(A1B1)
† = B−1

1 (A∗
1D

−1A1)
†A∗

1D
−1 = B−1

1 (D−1/2A1)
†D−1/2.
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By checking the Penrose equations, the last formula holds if and only if

(2.1)

[B1B
∗
1 , (D

−1/2A1)
†D−1/2A1] = 0 and [D, D−1/2A1(D

−1/2A1)
†] = 0.

Hence, the statement (a1) is equivalent to (2.1).

Let us now find some more equivalent statements to the condition (a1).

Using Lemma 1.5, we get that (2.1) is equivalent to:

R(DA1) = R(A1) and R(B1B
∗
1A

∗
1) = R(A∗

1).

or

R(DA1) = R(A1) and N (A1B1B
∗
1) = N (A1),

If we apply Lemma 1.6, for X = A1B1, C = B−1
1 , B = D−1/2, the equality:

(A1B1)
† = B−1

1 (D−1/2A1)
†D−1/2

is equivalent to:

R(D−1A1B1) = R(A1B1) and N (A1B1(B
∗
1B1)

−1) = N (A1B1),

or

R(D−1A1B1) = R(A1B1) and R((B∗
1B1)

−1(A1B1)
∗) = R((A1B1)

∗).

Now, we find an equivalent statement to (g3). Conditions

R(AA∗AB) = R(AB) and R(B∗B(AB)∗) = R((AB)∗)

are equivalent to

R(DA1B1) = R(A1B1) and R(B∗
1B1(A1B1)

∗) = R((A1B1)
∗)

which is equivalent to (2.1). Hence, (g3) is equivalent to (a1).

Analogously, the equivalencies: (b1) ⇔ (g3), (c1) ⇔ (g3) and (d1) ⇔
(g3) can be proved.

Let us now prove, for example, (c2) ⇔ (g3). Using above notations, and

T = A∗A(BB∗)† =

(
A∗

1A1(B1B
∗
1)
−1 0

A∗
2A1(B1B

∗
1)
−1 0

)
,
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it is easy to see that

T † = (T ∗T )†T ∗

=

(
(D1/2A1(B1B

∗
1)
−1)†D−1/2A1 (D1/2A1(B1B

∗
1)
−1)†D−1/2A2

0 0

)
.

Now,

(A(B†)∗)† = B†(A∗A(BB∗)†)†A∗

if and only if

(A1(B
∗
1)
−1)† = B−1

1 (D1/2A1(B1B
∗
1)
−1)†D1/2.

Applying Lemma 1.6, for X = A1(B
∗
1)
−1, C = B−1

1 , B = D1/2, the last

equality is equivalent to

R(DA1(B
∗
1)
−1) = R(A1(B

∗
1)
−1) and N (A1(B

∗
1)
−1B−1

1 (B∗
1)
−1) = N (A1(B

∗
1)
−1),

i.e.

R(DA1B1) = R(A1B1) and R(B−1
1 A∗

1) = R((A1B1)
∗),

so we have just proved that (c2) is equivalent to (g3).

Analogously, we prove the equivalencies (a2) ⇔ (g3), (b2) ⇔ (g3) and

(d2) ⇔ (g3).

In proving equivalencies including e−statements, there are no other tech-

niques beside those we have already shown in the previous part of the proof.

The table of proper statements is given bellow as some kind od summary

overview, and also for the sake of completeness:

(a1) (A1B1)
† = B−1

1 (D−1/2A1)
†D−1/2;

(a2) (A1B1)
† = B∗

1(D
1/2A1B1B

∗
1)
†D1/2;

(b1) (D−1A1B1)
† = B−1

1 (D−1/2A1)
†D1/2;

(b2) (D−1A1B1)
† = B∗

1(D
−3/2A1B1B

∗
1)
†D−1/2;

(c1) (A1(B
∗
1)
−1)† = B∗

1(D
−1/2A1)

†D−1/2;

(c2) (A1(B
∗
1)
−1)† = B−1

1 (D1/2A1(B1B
∗
1)
−1)†D1/2;

(d1) (B−1
1 A∗

1D
−1)† = D1/2(A∗

1D
−1/2)†B1;

(d2) (B−1
1 A∗

1D
−1)† = D−1/2((B1B

∗
1)
−1A∗

1D
−3/2)†(B∗

1)
−1;

(e1) (D−1/2A1B1)
†D−1/2 = B−1

1 A†
1;
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(e2) (D−1/2A1B1)
†D−1/2 = B−1

1 (D−1A1)
†D−1;

(e3) (D−1/2A1(B
∗
1)
−1)† = B∗

1A
†
1D

1/2;

(e4) (B−1
1 A∗

1D
−1/2)† = D−1/2(A∗

1D
−1)†B1;

(e5) (D1/2A1B1)
† = B∗

1(A1B1B
∗
1)
†D−1/2;

(e6) (D−1A1B1B
∗
1)
† = (B∗

1)
−1(D−3/2A1B1)

†D−1/2;

(e7) (D1/2A1(B
∗
1)
−1)† = B−1

1 (A1(B1B
∗
1)
−1)†D−1/2;

(e8) (D−1A1(B1B
∗
1)
−1)† = B1(D

−3/2A1(B
∗
1)
−1)†D−1/2;

(e9) (DA1B1B
∗
1B1)

† = B−1
1 (D1/2A1B1B

∗
1)
†D−1/2.

Each of those statements is equivalent to:

R(DαA1B1) = R(A1B1) and N (A1B1(B
∗
1B1)

β) = N (A1B1),

for some α, β ∈ {−1, 1}. More precisely, we have:

α β statement
1 1 a2, d1, e3, e6
1 -1 b1, c2, e1, e8

-1 1 b2, c1, e4, e5
-1 -1 a1, d2, e2, e7, e9

Using Lemma 1.5, we have:

R(DαA1B1) = R(A1B1) ⇔ [Dα, A1B1(A1B1)
†] = 0

⇔ [D, A1B1(A1B1)
†] = 0,

and:

N (A1B1(B
∗
1B1)

β) = N (A1B1) ⇔ R((B∗
1B1)

β(A1B1)
∗) = R((A1B1)

∗) ⇔
⇔ [(B∗

1B1)
β, (A1B1)

∗((A1B1)
∗)†] = 0 ⇔

⇔ [(B∗
1B1)

β, (A1B1)
†A1B1] = 0 ⇔

⇔ [B∗
1B1, (A1B1)

†A1B1] = 0,

which means that each statement mentioned in the table above is equiv-

alent to (g3). Now, we prove the equivalencies (x3) ⇔ (x1), where x ∈
{a, b, c, d, f}.
First, we prove (a3) ⇔ (a1) :

(a3) ⇔ (AB)† = B†A† −B†[(I −BB†)(I − A†A)]†A†.
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Using Lemma 1.8, for P = BB† and Q = A†A, we have:

(A†ABB†)† = BB†A†A−BB†[(I −BB†)(I − A†A)]†A†A.(2.2)

If we premultiply this expression by B† and postmultiply it by A†, we obtain:

B†(A†ABB†)†A† = B†A† −B†[(I −BB†)(I − A†A)]†A† = (AB)†,

and we have the proof.

Analogously, way we can prove that (b3) ⇔ (b1) and (c3) ⇔ (c1); the part

(d3) ⇔ (d1) is very similar - the difference is in taking Q = BB† and

P = A†A.

Let us now prove (f3) ⇔ (f1) :

(f3.1) ⇔ (A†AB)† = B†A†A−B†((I −BB†)(I − A†A))†A†A.

If we premultiply (2.2) by B†, we have:

B†(A†ABB†)† = B†A†A−B†((I −BB†)(I − A†A))†A†A = (A†AB)†,

i.e. part (f1.1). Also,

(f3.2) ⇔ (ABB†)† = BB†A† −BB†((I −BB†)(I − A†A))†A†.

If we postmultiply (2.2) by A†, we have:

(A†ABB†)†A† = BB†A† −BB†((I −BB†)(I − A†A))†A† = (ABB†)†,

i.e. part (f1.2). We have finished this part of the proof.

Let us now see what are the equivalent of statements (f1) and (f2).

A simple computation shows that (f1) is equivalent to the following two

statements:

(D−1/2A1B1)
†D−1/2Ai = B−1

1 (D−1/2A1)
†D−1/2Ai, i = 1, 2;(2.3)

A†
1 = (D−1/2A1)

†D−1/2.(2.4)

Suppose that (f1) holds; if we substitute (2.4) in (2.3), then postmultiply

each of modified equations (2.3) by A∗
i , and add them, we get:

(D−1/2A1B1)
† = B−1

1 A†
1D

1/2,

which holds if and only if:

[D, A1A
†
1] = 0 and [B1B

∗
1 , A

†
1A1] = 0,
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which is, by Lemma 1.5, equivalent to

R(DA1) = R(A1) and R(B1B
∗
1A

∗
1) = R(A∗

1),

i.e. we get the statement (a1). It is not difficult to see that the reverse

implication also holds.

An easy computation shows that (f2) is equivalent to the following two

statements:

(D−1/2A1B1)
†D−1/2Ai = B∗

1(D
−1/2A1B1B

∗
1)
†D−1/2Ai, i = 1, 2;(2.5)

A†
1 = (D−1/2A1)

†D−1/2.(2.6)

Suppose that (f2) holds; if we postmultiply each equations of (2.5) by

A∗
i , and add them, we obtain:

(D−1/2A1B1)
† = B∗

1(D
−1/2A1B1B

∗
1)
†,

which holds, by Lemma 1.6, if and only if N (A1B1B
∗
1B1) = N (A1B1). As

in the previous part of the proof, (2.6) is equivalent to R(DA1) = R(A1).

So, we have the part (f2) ⇒ (a1). The reverse implication can easily be

obtained.

Let us now see what are the equivalent statements of (g1) and (g2).

First, (g1):

R(B†(A†ABB†)A†) = R((AB)†) = R((AB)∗) ⇔
R(B∗

1A
∗
1) = R(B−1

1 (D−1/2A1)
†D−1/2) = R(B−1

1 (D−1/2A1)
†) ⇔

B1R(B∗
1A

∗
1) = R(B1B

∗
1A

∗
1) = R((D−1/2A1)

†) = R((D−1/2A1)
∗) = R(A∗

1),

so we actually have:

R(B1B
∗
1A

∗
1) = R(A∗

1).

The second condition: R(((AB)†)∗) = R((B†(A†ABB†)A†)∗) becomes:

N (B†(A†ABB†)†A†) = N ((AB)†) = N ((AB)∗) ⇔
N (A∗

1) = N (B∗
1A

∗
1) = N (B−1

1 (D−1/2A1)
†D−1/2) = N ((D−1/2A1)

†D−1/2) ⇔
R(A1) = R(D−1/2(A∗

1D
−1/2)†) ⇔

D1/2R(A1) = R(D1/2A1) = R((A∗
1D

−1/2)†) = R((A∗
1D

−1/2)∗) = R(D−1/2A1),

so we have:

R(DA1) = R(A1).
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Those two things are equivalent to the (a1), so we have just proved (g1) ⇔
(a1).

Now, (g2):

R(B†A†) = R((AB)†) = R((AB)∗) ⇔
R(B∗

1A
∗
1) = R(B∗

1A
∗
1D

−1) = R(B−1
1 A∗

1) ⇔
B1R(B∗

1A
∗
1) = R(B1B

∗
1A

∗
1) = R(A∗

1)

and

R((B∗A∗)†) = R((A∗)†(B∗)†) ⇔
N ((AB)†) = N (B†A†) = N ((AB)∗) ⇔

N (B∗
1A

∗
1) = N (B−1

1 A∗
1D

−1) ⇔
N (A∗

1) = N (A∗
1D

−1) ⇔
R(A1) = R(D−1A1),

which together are equivalent to (a1), so we have just proved (g2) ⇔ (a1).

Now we formulate analogous result for the weighted Moore-Penrose in-

verse.

Theorem 2.2. Let X, Y , Z be Hilbert spaces, and let A ∈ L(Y, Z) and

B ∈ L(X,Y ) be operators such that A, B and AB have closed ranges.

Suppose M ∈ L(Z) and N ∈ L(X) are positive definite invertible operators.

The following statements are equivalent:

(a1) (AB)†M,N = B†
I,N(A†

M,IABB†
I,N)†A†

M,I ;

(a2) (AB)†M,N = N−1B∗(A∗MABN−1B∗)†A∗M ;

(a3) (AB)†M,N = B†
I,NA†

M,I −B†
I,N((I −BB†

I,N)(I − A†
M,IA))†A†

M,I ;

(b1) ((A∗)†I,M−1B)†M−1,N = B†
I,N(A†

M,IABB†
I,N)†A∗;

(b2) ((A∗)†I,M−1B)†M−1,N = N−1B∗((A∗MA)†(BN−1B∗))†A†
M,IM

−1;

(b3) ((A∗)†I,M−1B)†M−1,N = B†
I,NA∗ −B†

I,N((I −BB†
I,N)(I − A†

M,IA))†A∗;

(c1) (A(B∗)†N−1,I)
†
M,N−1 = B∗(A†

M,IABB†
I,N)†A†

M,I ;

(c2) (A(B∗)†N−1,I)
†
M,N−1 = NB†

I,N((A∗MA)(BN−1B∗)†)†A∗M ;

(c3) (A(B∗)†N−1,I)
†
M,N−1 = B∗A†

M,I −B∗((I −BB†
I,N)(I − A†

M,IA))†A†
M,I ;
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(d1) (B†
I,NA†

M,I)
†
N,M = A(BB†

I,NA†
M,IA)†B;

(d2) (B†
I,NA†

M,I)
†
N,M = M−1(A∗)†I,M−1((BN−1B∗)†(A∗MA)†)†(B∗)†N−1,IN ;

(d3) (B†
I,NA†

M,I)
†
N,M = AB − A((I − A†

M,IA)(I −BB†
I,N))†B;

(e1) (A†
M,IAB)†I,NA†

M,I = B†
I,N(ABB†

I,N)†M,I ;

(e2) (A†
M,IAB)†I,NA∗ = B†

I,N((A∗)†I,M−1BB†
I,N)†M−1,I ;

(e3) (A†
M,IA(B∗)†N−1,I)

†
I,N−1A

†
M,I = B∗(ABB†

I,N)†M,I ;

(e4) (BB†
I,NA†

M,I)
†
I,MB = A(B†

I,NA†
M,IA)†N,I ;

(e5) N(A∗MAB)†I,NA∗M = B∗(ABN−1B∗)†M,I ;

(e6) N((A∗MA)†B)†I,NA†
M,I = B∗((A∗)†I,M−1BN−1B∗)†M−1,IM ;

(e7) (A∗MA(B∗)†N−1,I)
†
I,N−1A

∗M = NB†
I,N(A(BN−1B∗)†)†M,I ;

(e8) NB†
I,N((A∗)†I,M−1(BN−1B∗)†)†M−1,IM = ((A∗MA)†(B∗)†N−1,I)

†
I,N−1A

†
M,I ;

(e9) (AA∗MABN−1B∗B)†M,N = B†
I,N(A∗MABN−1B∗)†A†

M,I ;

(f1) (A†
M,IAB)†I,N = B†

I,N(A†
M,IABB†

I,N)† and

(ABB†
I,N)†M,I = (A†

M,IABB†
I,N)†A†

M,I ;

(f2) (A†
M,IAB)†I,N = N−1B∗(A†

M,IABN−1B∗)† and

(ABB†
I,N)†M,I = (A∗MABB†

I,N)†A∗M ;

(f3) (A†
M,IAB)†I,N = B†

I,NA†
M,IA − B†

I,N((I − BB†
I,N)(I − A†

M,IA))†A†
M,IA

and

(ABB†
I,N)†M,I = BB†

I,NA†
M,I −BB†

I,N((I −BB†
I,N)(I −A†

M,IA))†A†
M,I ;

(g1) R((AB)†M,N) = R(B†
I,N(A†

M,IABB†
I,N)†A†

M,I) and

R(((AB)†M,N)∗) = R((B†
I,N(A†

M,IABB†
I,N)†A†

M,I)
∗);

(g2) R((AB)†M,N) = R(B†
I,NA†

M,I) and

R((B∗A∗)†N−1,M−1) = R((A∗)†I,M−1(B
∗)†N−1,I);

(g3) R(AA∗MAB) = R(AB) and R((ABN−1B∗B)∗) = R((AB)∗).

Proof. Using the basic relation between ordinary and weighted Moore-Penrose

inverse:

A†
M,N = N−1/2(M1/2AN−1/2)†M1/2,
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and substitutions:

Ã = M1/2A, B̃ = BN−1/2,

all statements from this theorem reduces to the statements of the already-

proven Theorem 2.1. For example, let we prove (e6) ⇔ (g2).

(e6) ⇔ N((A∗MA)†B)†I,NA†
M,I = B∗((A∗)†I,M−1BN−1B∗)†M−1,IM

⇔ N1/2((A∗MA)†BN−1/2)†(M1/2A)†M1/2 = B∗((A∗M−1/2)†BN−1B∗)†M1/2

⇔ ((Ã∗Ã)†B̃)†Ã† = B̃∗((Ã∗)†B̃B̃∗)†,

which is actually (e6) from Theorem 2.1.

On the other side, (g2) becomes:

(g2.1) ⇔ R((AB)†M,N) = R(B†
I,NA†

M,I)

⇔ R(N−1/2(M1/2ABN−1/2)†M1/2) = R(N−1/2(BN−1/2)†(M1/2A)†M1/2)

⇔ R(N−1/2(ÃB̃)†M1/2) = R(N−1/2B̃†Ã†M1/2)

⇔ R(N−1/2(ÃB̃)†) = R(N−1/2B̃†Ã†)

⇔ R((ÃB̃)†) = R(B̃†Ã†),

and

(g2.2) ⇔ R((B∗A∗)†N−1,M−1) = R((A∗)†I,M−1(B
∗)†N−1,I)

⇔ R(M1/2(N−1/2B∗A∗M1/2)†N−1/2) = R(M1/2(A∗M1/2)†(N−1/2B∗)†N−1/2)

⇔ R(M1/2(B̃∗Ã∗)†N−1/2) = R(M1/2(Ã∗)†(B̃∗)†N−1/2)

⇔ R(M1/2(B̃∗Ã∗)†) = R(M1/2(Ã∗)†(B̃∗)†)

⇔ R((B̃∗Ã∗)†) = R((Ã∗)†(B̃∗)†),

which means we have (g2) from Theorem 2.1. Since we have Theorem 2.1

already proven, the proof of this theorem follows immediately.

3 Conclusions

In this paper we consider a number of necessary and sufficient conditions

for the reverse order law (AB)† = B†(A†ABB†)A† to hold for operators

on Hilbert spaces. Applying this result we obtain the equivalent conditions

for the reverse order rule for the weighted Moore-Penrose inverse of oper-

ators. Although these results are already known for complex matrices, we

demonstrated the new technique in proving the results. In the theory of com-

plex matrices various authors used the matrix rank to prove the equivalent
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conditions related to this reverse order law. In the case of linear bounded

operators on Hilbert spaces, we applied the method of operator matrices.

It is interesting to extend this work to the Moore–Penrose inverse and the

weighted Moore-Penrose inverse of a triple product.
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