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Abstract

We present new results related to the mixed-type reverse order law
for the Moore-Penrose inverse of various products of three operators on
Hilbert spaces. Some finite dimensional results are extended to infinite
dimensional settings.
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1 Introduction

Let X, Y, Z be Hilbert spaces, and let L(X,Y ) denote the set of all linear
bounded operators from X to Y . If A ∈ L(X, Y ), then we use R(A) and
N (A), respectively, to denote the range and the null-space of A.

The Moore-Penrose inverse of given A ∈ L(X, Y ) is the (unique when it
exists) operator A† ∈ L(Y, X) satisfying the following Penrose equations:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

The Moore-Penrose inverse of A exists if and only if R(A) is closed.
If A ∈ L(X, Y ) and B ∈ L(Y, Z) are invertible, then the well-known

rule (BA)−1 = A−1B−1 is the reverse order rule of the ordinary inverse.
However, if we suppose that operators A,B, BA have closed ranges, then
the analogous rule for the Moore-Penrose inverse (BA)† = A†B† does not
hold in general. There exists the well-known result giving equivalent condi-
tions such that the reverse order rule holds for the Moore-Penrose inverse,
and that is: AA∗ commutes with B†B, and AA† commutes with B∗B (see
the following references: [11] for matrices, [2], [3] and [14] for closed-range
linear bounded operators on Hilbert spaces, [15] for Moore-Penrose invert-
ible elements in rings with involution). There are also equivalent conditions
such that the rule of the form (ABC)† = C†B†A† holds ([13]). Besides these
facts, there are several papers investigating various forms of the reverse order
rule, mostly for complex matrices, but some of them dealing with operators

1The authors are supported by the Ministry of Education and Science, Serbia, grant
#174007.
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on Hilbert spaces, or elements in rings with involutions. This is implied by
at least two facts: first, the Moore-Penrose inverse is important in solving
various types of equations; and second, the reverse order rule is a very useful
computational tool.

This research is motivated by the results obtained in [17], where the
reverse order rule is investigated for a triple matrix product. Notice that
results in [17] are obtained using finite dimensional methods, mostly rank
of a complex matrix. In this paper we extend results from [17] to infinite
dimensional Hilbert spaces, using operator matrices.

For this purpose, we list some properties of the Moore-Penrose inverse.

Lemma 1.1. A ∈ L(X,Y ) has a closed range if and only if AA∗ has a
closed range. Moreover, A† = A∗(AA∗)†.

Lemma 1.2. Let A ∈ L(X, Y ) have a closed range. Then A has the matrix
decomposition with respect to the orthogonal decompositions of spaces X =
R(A∗)⊕N (A) and Y = R(A)⊕N (A∗):

A =
[

A1 0
0 0

]
:
[ R(A∗)
N (A)

]
→

[ R(A)
N (A∗)

]
,

where A1 is invertible. Moreover,

A† =
[

A−1
1 0
0 0

]
:
[ R(A)
N (A∗)

]
→

[ R(A∗)
N (A)

]
.

The proof is straightforward.

Lemma 1.3. ([8]) Let A ∈ L(X,Y ) have a closed range. Let X1 and X2 be
closed and mutually orthogonal subspaces of X, such that X = X1⊕X2. Let
Y1 and Y2 be closed and mutually orthogonal subspaces of Y , such that Y =
Y1 ⊕ Y2. Then the operator A has the following matrix representations with
respect to the orthogonal sums of subspaces X = X1⊕X2 = R(A∗)⊕N (A),
and Y = R(A)⊕N (A∗) = Y1 ⊕ Y2 :

(a)

A =
[

A1 A2

0 0

]
:
[

X1

X2

]
→

[ R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 maps R(A) into itself and D > 0 (meaning D ≥ 0

invertible). Also,

A† =
[

A∗1D
−1 0

A∗2D
−1 0

]
.
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(b)

A =
[

A1 0
A2 0

]
:
[ R(A∗)
N (A)

]
→

[
Y1

Y2

]
,

where D = A∗1A1+A∗2A2 maps R(A∗) into itself and D > 0 (meaning D ≥ 0
invertible). Also,

A† =
[

D−1A∗1 D−1A∗2
0 0

]
.

Here Ai denotes different operators in any of these two cases.

The following result is well-known, and it can be found in [4], p.127.

Lemma 1.4. Let A ∈ L(Y, Z) and B ∈ L(X,Y ) have closed ranges. Then
AB has a closed range if and only if A†ABB† has a closed range.

Notice the difference between the following notations. If A,B ∈ L(X),
then [A,B] = AB−BA denotes the commutator of A and B. On the other

hand, if U ∈ L(X, Z) and V ∈ L(Y, Z), then [U V ] :
[

X
Y

]
→ Z denote

the matrix form of the corresponding operator.
The following result is proved in [8], Lemma 2.1.

Lemma 1.5. Let X, Y be Hilbert spaces, let C ∈ L(X,Y ) have a closed
range, and let D ∈ L(Y ) be Hermitian and invertible. Then R(DC) = R(C)
if and only if [D, CC†] = 0.

We also use the following result from [5], which can easily be extended
from matrices to linear bounded Hilbert space operators.

Lemma 1.6. Let Hi, i = 1, 4 be Hilbert spaces, let C ∈ L(H1,H2), X ∈
L(H2,H3) and B ∈ L(H3,H4) be closed range operators. Then:

C(BXC)†B = X†

if and only if:

R(B∗BX) = R(X) and N (XCC∗) = N (X).

We shall frequently use the following fact: if T, S ∈ L(H) are selfadjoint,
then TS is selfadjoint if and only if TS = ST .
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2 Main results

In this section we prove the results concerning the reverse order law for the
Moore-Penrose inverse of various products of linear bounded Hilbert space
operators. Throughout this paper X1, X2, X3, X4 denote arbitrary Hilbert
spaces, and Ak ∈ L(Xk+1, Xk), k = 1, 2, 3, denote linear bounded operators.
Also, let M = A1A2A3.

Theorem 2.1. Let A1, A3, M, A†1MA†3 have closed ranges. Then the fol-
lowing statements are equivalent:

(a) M † = A†3(A
†
1MA†3)

†A†1;
(b) R(A1A

∗
1M) = R(M) and R(A∗3A3M

∗) = R(M∗).

Proof. Using Lemma 1.2, we conclude that the operator A1 has the following
matrix form:

A1 =
[

A11 0
0 0

]
:
[ R(A∗1)
N (A1)

]
→

[ R(A1)
N (A∗1)

]
,

where A11 is invertible. Then

A†1 =
[

A−1
11 0
0 0

]
:
[ R(A1)
N (A∗1)

]
→

[ R(A∗1)
N (A1)

]
.

From Lemma 1.3 it also follows that operators Ak, k = 2, 3, have the follow-
ing matrix forms:

Ak =
[

Ak1 0
Ak2 0

]
:
[ R(A∗k)
N (Ak)

]
→

[ R(A∗k−1)
N (Ak−1)

]
,

where Dk = A∗k1Ak1 + A∗k2Ak2 is invertible and positive in L(R(A∗k)). Then

A†k =
[

D−1
k A∗k1 D−1

k A∗k2

0 0

]
.

We use the notation M1 = A11A21A31, so the matrix form of M is the
following:

M =
(

M1 0
0 0

)
.

First we find an equivalent form for the statement (a). We have

W = A†1MA†3 =
(

A−1
11 M1D

−1
3 A∗31 A−1

11 M1D
−1
3 A∗32

0 0

)
,
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and consequently

W † = W ∗(WW ∗)† =

(
A31D

−1/2
3 (A−1

11 M1D
−1/2
3 )† 0

A32D
−1/2
3 (A−1

11 M1D
−1/2
3 )† 0

)
.

It follows that

A†3W
†A†1 =

(
D
−1/2
3 (A−1

11 M1D
−1/2
3 )†A−1

11 0
0 0

)
.

Therefore,
M † = A†3(A

†
1MA†3)

†A†1
is equivalent to:

M †
1 = D

−1/2
3 (A−1

11 M1D
−1/2
3 )†A−1

11 ,

or, in other words:

(A−1
11 M1D

−1/2
3 )† = D

1/2
3 M †

1A11.

By checking the Penrose equations, the last formula holds if and only if

[A11A
∗
11,M1M

†
1 ] = 0 and [D3,M

†
1M1] = 0. (1)

Hence, the statement (a) is equivalent to (1).
Now, we find the equivalent statement to (b). The conditions

R(A1A
∗
1M) = R(M) and R(A∗3A3M

∗) = R(M∗)

are equivalent to

R(A11A
∗
11M1) = R(M1) and R(D3M

∗
1 ) = R(M∗

1 ).

By Lemma 1.5, the last statement is equivalent to (1).
Hence, (b) is equivalent to (a).

Theorem 2.2. Let A1, A3,M,A∗1MA∗3 have closed ranges. Then the follow-
ing statements are equivalent:

(a) M † = A∗3(A
∗
1MA∗3)

†A∗1;
(b) R(A1A

∗
1M) = R(M) and R(A∗3A3M

∗) = R(M∗).
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Proof. The statement (b) is equivalent to (1) (see a previous theorem).
In order to prove that (a) is also equivalent to (1), we use the notations

from a previous theorem. Let V = A∗1MA∗3. We see that

V † = V ∗(V V ∗)† =

[
A31D

−1/2
3 (A∗11M1D

1/2
3 )† 0

A32D
−1/2
3 (A∗11M1D

1/2
3 )† 0

]
.

Now,
M † = A∗3(A

∗
1MA∗3)

†A∗1

if and only if
M †

1 = D
1/2
3 (A∗11M1D

1/2
3 )†A∗11,

or, equivalently:

(A∗11MD
1/2
3 )† = D

−1/2
3 M †

1(A∗11)
−1.

By checking the Penrose equations we obtain that the last statement is
equivalent to (1).

Thus, (a) is equivalent to (b).

Theorem 2.3. Let A1, A3, M, (A1A
∗
1)
†M(A∗3A3)† have closed ranges. Then

the following statements are equivalent:
(a) M † = (A∗3A3)†[(A1A

∗
1)
†M(A∗3A3)†]†(A1A

∗
1)
†;

(b) R((A1A
∗
1)

2M) = R(M) and R((A∗3A3)2M∗) = R(M∗).

Proof. Using the notation and the method described in Theorem 2.1, we
conclude that the statement (a) is equivalent to the following:

M †
1 = D−1

3 ((A11A
∗
11)

−1M1D
−1
3 )†(A11A

∗
11)

−1,

or, equivalently ((A11A
∗
11)

−1M1D
−1
3 )† = D3M

†
1A11A

∗
11. Using the Penrose

equations, it follows that the last equality holds if and only if

[M1M
†
1 , (A11A

∗
11)

2] = 0 and [D2
3,M

†
1M1] = 0.

Using Lemma 1.5 it follows that the last conditions hold if and only if

R((A11A
∗
11)

2M1) = R(M1) and R(D2
3M

∗
1 ) = R(M∗

1 ).

Now it is easy to see that (a) is equivalent to (b).
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Remark 2.1. The equality

M † = (A∗3A3)†[(A1A
∗
1)
†M(A∗3A3)†]†(A1A

∗
1)
†

is often written in the equivalent form:

M † = (A∗3A3)†[(A
†
3A

∗
2A

†
1)
†]∗(A1A

∗
1)
†.

Previous forms are equal, since

(A1A
∗
1)
†M(A∗3A3)† = (A1A

∗
1)
†A1A2A3(A∗3A3)†

= (A∗1)
†A2(A∗3)

† = (A†3A
∗
2A

†
1)
∗.

In the rest of the paper we shall use the following fact. If S ∈ L(H) is
selfadjoint, then R(S) is closed if and only if 0 is not a point of accumulation
of the spectrum of S. From the spectral mapping theorem it follows that
R(Sn) is closed for every non-negative integer n.

Now, we have a generalization of a previous theorem.

Proposition 2.1. Under the assumptions of the Theorem 2.3, the following
statements are equivalent (k and l are non-negative integers):

(a) M † = ((A∗3A3)†)l[((A1A
∗
1)
†)kM((A∗3A3)†)l]†((A1A

∗
1)
†)k;

(b) R((A1A
∗
1)

2kM) = R(M) and R((A∗3A3)2lM∗) = R(M∗).

Proof. Using the method described in Theorem 2.1, we conclude that the
statement of this theorem is equivalent to the following:

M †
1 = D−l

3 ((A11A
∗
11)

−kM1D
−l
3 )†(A11A

∗
11)

−k

⇔ R((A11A
∗
11)

2kM1) = R(M1) and R(D2l
3 M∗

1 ) = R(M∗
1 ).

It is not difficult to see that both members from previous equivalence are
actually equivalent to:

[(A11A
∗
11)

2k,M1M
†
1 ] = 0 and [D2l

3 ,M †
1M1] = 0,

so we have the proof completed.

Theorem 2.4. Let A1, A3, M, A1A
∗
1MA∗3A3 have closed ranges. Then the

following statements are equivalent:
(a) M † = A∗3A3(A1A

∗
1MA∗3A3)†A1A

∗
1;

(b) R((A1A
∗
1)

2M) = R(M) and R((A∗3A3)2M∗) = R(M∗).
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Proof. We conclude that the statement (a) is equivalent to the following:

M †
1 = D3(A11A

∗
11M1D3)†A11A

∗
11,

which is equivalent to (A11A
∗
11M1D3)† = D−1

3 M †
1(A11A

∗
11)

−1. Using the
Penrose equations, we conclude that the last statement is equivalent to

[(A11A
∗
11)

2,M1M
†
1 ] = 0 and [D2

3,M
†
1M1] = 0.

From Lemma 1.5 we conclude that the last statement is equivalent to

R((A11A
∗
11)

2M) = R(M) and R(D2
3M

∗) = R(M∗).

We conclude that (b) is equivalent to (a).

Previous theorem can be generalized in the following way.

Proposition 2.2. Under the assumptions of the Theorem 2.4, the following
statements are equivalent (k and l are non-negative integers):

(a) M † = (A∗3A3)l[(A1A
∗
1)

kM(A∗3A3)l]†(A1A
∗
1)

k,
(b) R((A1A

∗
1)

2kM) = R(M) and R((A∗3A3)2lM∗) = R(M∗).

Proof. The statement of this theorem is equivalent to the following:

M †
1 = Dl

3((A11A
∗
11)

kMDl
3)
†(A11A

∗
11)

k

⇔ R((A11A
∗
11)

2kM1) = R(M1) and R(D2l
3 M∗

1 ) = R(M∗
1 ).

It is not difiicult to see that both members from previous equivalence are
actually equivalent to:

[(A11A
∗
11)

2k,M1M
†
1 ] = 0 and [D2l

3 ,M †
1M1] = 0,

so we have the proof completed.

Theorem 2.5. Let A1, A3, M, (A1A
∗
1A1)†M(A3A

∗
3A3)† have closed ranges.

Then the following statements are equivalent.
(a) M † = (A3A

∗
3A3)†((A1A

∗
1A1)†M(A3A

∗
3A3)†)†(A1A

∗
1A1)†;

(b) R((A1A
∗
1)

3M) = R(M) and R((A∗3A3)3M∗) = R(M∗).

Proof. We denote:

T = (A1A
∗
1A1)†M(A3A

∗
3A3)†

=
(

(A11A
∗
11A11)−1M1D

−2
3 A∗31 (A11A

∗
11A11)−1M1D

−2
3 A∗32

0 0

)
,
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and consequently:

T † = T ∗(TT ∗)† =

(
A31D

−1/2
3 ((A11A

∗
11A11)−1M1D

−3/2
3 )† 0

A32D
−1/2
3 ((A11A

∗
11A11)−1M1D

−3/2
3 )† 0

)
.

Further, we compute

S = A3A
∗
3A3 =

(
A31D3 0
A32D3 0

)
,

and

S† = (S∗S)†S∗ =
(

D−2
3 A∗31 D−2

3 A∗32

0 0

)
.

The statement (a) is equivalent to the following

M † = (A3A
∗
3A3)†((A1A

∗
1A1)†M(A3A

∗
3A3)†)†(A1A

∗
1A1)†,

which is the same as:

M †
1 = D

−3/2
3 ((A11A

∗
11A11)−1M1D

−3/2
3 )†(A11A

∗
11A11)−1,

or, in other words:

((A11A
∗
11A11)−1M1D

−3/2
3 )† = D

3/2
3 M †

1A11A
∗
11A11.

From the Penrose equations, it follows that the last statement holds if and
only if:

[(A11A
∗
11A11)2,M1M

†
1 ] = 0 and [D3

3,M
†
1M1] = 0.

By Lemma 1.5, this is equivalent to

R((A1A
∗
1A1)2M) = R(M) and R(D3

3M
∗
1 ) = R(M∗

1 ),

which is equivalent to (b).

Remark 2.2. The equation

M † = (A3A
∗
3A3)†((A1A

∗
1A1)†M(A3A

∗
3A3)†)†(A1A

∗
1A1)†

is often written in the equivalent form:

M † = (A3A
∗
3A3)†((A∗1A1)†A2(A3A

∗
3)
†)†(A1A

∗
1A1)†.

The equivalentness follows from:

(A1A
∗
1A1)†A1 = A†1(A

∗
1)
†A†1A1 = A†1(A

∗
1)
† = (A∗1A1)†,

A3(A3A
∗
3A3)† = A3A

†
3(A

∗
3)
†A†3 = (A3A

∗
3)
†.
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Previous theorem can be generalized in the following way.

Proposition 2.3. Under the assumptions of Theorem 2.5, the following
statements are equivalent (k is a non-negative integer):

(a) M † = (A3A
∗
3A3)†[((A1A

∗
1A1)†)kM(A3A

∗
3A3)†]†((A1A

∗
1A1)†)k,

(a) R((A1A
∗
1)

3kM) = R(M) and R((A∗3A3)3M∗) = R(M∗).

Proof. We use the method described in Theorem 2.1, with some necessary
changes. We start with the following:

S = A3A
∗
3A3 =

(
A31D3 0
A32D3 0

)
,

which means that:

S† = (S∗S)†S∗ =
(

D−2
3 A∗31 D−2

3 A∗32

0 0

)
.

Now we denote:

W = ((A1A
∗
1A1)†)kM(A3A

∗
3A3)†

=
(

(A11A
∗
11A11)−kM1D

−2
3 A∗31 (A11A

∗
11A11)−kM1D

−2
3 A∗32

0 0

)
,

and find that:

W † = W ∗(WW ∗)† =

(
A31D

−2
3 ((A11A

∗
11A11)−kM1D

−3/2
3 )† 0

A32D
−2
3 ((A11A

∗
11A11)−kM1D

−3/2
3 )† 0

)
.

Therefore,
M † = A3A

∗
3A3W

†(A1A
∗
1A1)k

is equivalent to:

M †
1 = D

−3/2
3 ((A11A

∗
11A11)−kM1D

−3/2
3 )†(A11A

∗
11A11)−k,

or further:

((A11A
∗
11A11)−kM1D

−3/2
3 )† = D

3/2
3 M †

1(A11A
∗
11A11)k.

By the Penrose equations, the last formula holds if and only if the following
is satisfied:

[(A11A
∗
11)

3k,M1M
†
1 ] = 0 and [D3

3,M
†
1M1] = 0.

On the other side, by Lemma 1.5, the last conditions are equivalent to

R((A1A
∗
1)

3kM) = R(M) and R((A∗3A3)3M∗) = R(M∗).

Thus, the proof is completed.
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Previous proposition can be proved in a slightly different form:

Proposition 2.4. Under the conditions of Theorem 2.5, the following state-
ments are equivalent (l is a non-negative integer):

(a) M † = ((A3A
∗
3A3)†)l[(A1A

∗
1A1)†M((A3A

∗
3A3)†)l]†(A1A

∗
1A1)†,

(b) R((A1A
∗
1)

3M) = R(M) and R((A∗3A3)3lM∗) = R(M∗).

Proof. This proof is very similar to the previous one. Important differences
are the following decompositions of spaces and operator matrix forms ac-
cording to those decompositions:

A3 =
[

A31 0
0 0

]
:
[ R(A∗3)
N (A3)

]
→

[ R(A3)
N (A∗3)

]
,

where A31 is invertible, and

Ak =
[

Ak1 Ak2

0 0

]
:
[ R(Ak+1)
N (A∗k+1)

]
→

[ R(Ak)
N (A∗k)

]
, k = 1, 2,

where Dk = Ak1A
∗
k1 + Ak2A

∗
k2 is invertible and positive on L(R(A∗k+1)).

Analogously, to the previous proof, we have:

M † = ((A3A
∗
3A3)†)l((A1A

∗
1A1)†M((A3A

∗
3A3)†)l)†(A1A

∗
1A1)†,

which is equivalent to:

M †
1 = (A31A

∗
31A31)−l(D

3
2
1 M1(A31A

∗
31A31)−l)†D

3
2
1 .

The rest of the proof is clear.

Theorem 2.6. Let A1, A3, M, (A1A
∗
1A1)∗M(A3A

∗
3A3)∗ have closed ranges.

Then the following statements are equivalent:
(a) M † = (A3A

∗
3A3)∗((A1A

∗
1A1)∗M(A3A

∗
3A3)∗)†(A1A

∗
1A1)∗;

(b) R((A∗1A1A
∗
1)

2M) = R(M) and R((A∗3A3)3M∗) = R(M∗).

Proof. An immediate computation, analogous to the one from Theorem 2.1,
yields:

M †
1 = D

3/2
3 (A∗11A11A

∗
11M1D

3/2
3 )†(A∗11A11A

∗
11),

or, equivalently,

(A∗11A11A
∗
11M1D

3/2
3 )† = D

−3/2
3 M †

1(A∗11A11A
∗
11)

−1,

which, by Lemma 1.5, holds if and only if:

[(A∗11A11A
∗
11)

2,M1M
†
1 ] = 0 and [D3

3,M
†
1M1] = 0.

This shows that (a) is equivalent to (b).

11



Previous theorem can be generalized in the following way.

Proposition 2.5. Under the assumptions of Theorem 2.6, the following
statements are equivalent (k is a non-negative integer):

(a) M † = (A3A
∗
3A3)∗[((A1A

∗
1A1)∗)kM(A3A

∗
3A3)∗]†((A1A

∗
1A1)∗)k,

(a) R((A1A
∗
1)

3kM) = R(M) and R((A∗3A3)3M∗) = R(M∗).

Proof. We start with the following:

S = A3A
∗
3A3 =

(
A31D3 0
A32D3 0

)
,

which means that

S∗ =
(

D3A
∗
31 D3A

∗
32

0 0

)
,

and also

S† = (S∗S)†S∗ =
(

(D3)−2A∗31 D−2
3 A∗32

0 0

)
.

Now we denote:

W = ((A1A
∗
1A1)∗)kM(A3A

∗
3A3)∗

=
(

((A11A
∗
11A11)∗)kM1D3A

∗
31 ((A11A

∗
11A11)∗)kM1D3A

∗
32

0 0

)
,

and find W † by using W † = W ∗(WW ∗)† that:

W † = W ∗(WW ∗)† =

(
A31D

−1/2
3 (((A11A

∗
11A11)∗)kM1D

3/2
3 )† 0

A32D
−1/2
3 (((A11A

∗
11A11)∗)kM1D

3/2
3 )† 0

)
.

Therefore,
M † = ((A3A

∗
3A3)∗)lW †((A1A

∗
1A1)∗)k

is equivalent to:

M †
1 = D

3/2
3 (((A11A

∗
11A11)∗)kM1D

3/2
3 )†((A11A

∗
11A11)∗)k,

or in other words:

(((A11A
∗
11A11)∗)kM1D

3/2
3 )† = D

−3/2
3 M †

1((A11A
∗
11A11)∗)−k.

By the Penrose equations the last condition holds if and only if the following
is satisfied:

[(A11A
∗
11)

3k,M1M
†
1 ] = 0 and [D3

3,M
†
1M1] = 0.

12



On the other hand, by Lemma 1.5, the last conditions are equivalent to

R((A1A
∗
1)

3kM) = R(M) and R((A∗3A3)3M∗) = R(M∗).

This completes the proof.

Previous proposition is valid also in a slightly different form:

Proposition 2.6. Under the conditions of Theorem 2.6, the following state-
ments are equivalent (l is a non-negative integer):

(a) M † = ((A3A
∗
3A3)∗)l[(A1A

∗
1A1)∗M((A3A

∗
3A3)∗)l]†(A1A

∗
1A1)∗,

(b) R((A1A
∗
1)

3M) = R(M) and R((A∗3A3)3lM∗) = R(M∗).

Proof. We use the approach similar to the one used in previous proposition,
but space decompositions are different here:

A3 =
[

A31 0
0 0

]
:
[ R(A∗3)
N (A3)

]
→

[ R(A3)
N (A∗3)

]
,

where A31 is invertible, and

Ak =
[

Ak1 Ak2

0 0

]
:
[ R(Ak+1)
N (A∗k+1)

]
→

[ R(Ak)
N (A∗k)

]
, k = 1, 2,

where Dk = Ak1A
∗
k1+Ak2A

∗
k2 is invertible and positive in L(R(A∗k+1)). Now

we obtain:
M † = ((A3A

∗
3A3)∗)lW †(A1A

∗
1A1)∗,

which is equivalent to:

M †
1 = ((A31A

∗
31A31)∗)l(D

3
2
1 M1(((A31A

∗
31A31)∗)l))†D

3
2
1 .

The remains of the proof is clear.

Theorem 2.7. Let A1, A3, M, ((A1A
∗
1)

2)†M((A∗3A3)2)† have closed ranges.
Then the following statements are equivalent:

(a) M † = ((A∗3A3)†)2[((A1A
∗
1)

2)†M(A∗3A3)2)†]†((A1A
∗
1)
†)2;

(b) R((A1A
∗
1)

4M) = R(M) and R((D3)4M∗) = R(M∗).

Proof. An immediate computation, analogous to the one from Theorem 2.1,
yields that (a) is equivalent to:

M †
1 = D−2

3 ((A11A
∗
11)

2M1D
−2
3 )†(A11A

∗
11)

−2,

13



or
((A11A

∗
11)

−2M1D
−2
3 )† = D2

3M
†
1(A11A

∗
11)

2

which, by Penrose equations, holds if and only if:

[(A11A
∗
11)

4,M1M
†
1 ] = 0 and [D4

3,M
†
1M1] = 0.

By Lemma 1.5, the last statement is equivalent to (b).

Remark 2.3. In the same way as in previous remarks, the equation

M † = ((A∗3A3)†)2[((A1A
∗
1)

2)†M(A∗3A3)2)†]†((A1A
∗
1)
†)2

is often replaced by its equivalent:

M † = ((A∗3A3)†)2((A∗1A1A
∗
1)
†A2(A∗3A3A

∗
3)
†)†((A1A

∗
1)
†)2.

Previous theorem can be generalized in the following way.

Proposition 2.7. Under the assumptions of Theorem 2.7, the following
statements are equivalent (k and l are non-negative integers):

(a) M † = ((A∗3A3)†)2l[((A1A
∗
1)

2k)†M(A∗3A3)2l)†]†((A1A
∗
1)
†)2k,

(b) R((A1A
∗
1)

4kM) = R(M) and R((A∗3A3)4lM∗) = R(M∗).

Proof. An immediate computation, analogous to the one from Theorem 2.1,
yields:

M †
1 = D−2l

3 ((A∗11A11A
∗
11)

−2kA−1
11 M1D

−2l
3 )†(A11A

∗
11)

−2k,

or
((A11A

∗
11)

−2kM1D
−2l
3 )† = D2l

3 M †
1(A11A

∗
11)

2k

which, by Lemma 1.5, holds if and only if:

[(A11A
∗
11)

4k,M1M
†
1 ] = 0 and [D4l

3 ,M †
1M1] = 0.

Theorem 2.8. Let A1, A3, M, (A1A
∗
1)

2M(A∗3A3)2 have closed ranges. Then
the following statements are equivalent:

(a) M † = (A∗3A3)2((A1A
∗
1)

2M(A∗3A3)2)†(A1A
∗
1)

2;
(b) R((A1A

∗
1)

4M) = R(M) and R((A∗3A3)4M∗) = R(M∗).

14



Proof. An immediate computation, analogous to the one from Theorem 2.1,
shows that (a) is equivalent to the following:

M †
1 = D2

3((A11A
∗
11)

2M1D
2
3)
†(A11A

∗
11)

2,

or, equivalently,

((A11A
∗
11)

2M1D
2
3)
† = D−2

3 M †
1(A11A

∗
11)

−2,

which, by Penrose equations, is equivalent to

[(A11A
∗
11)

4,M1M
†
1 ] = 0 and [D4

3,M
†
1M1] = 0.

By Lemma 1.5, the last statements is equivalent to (b).

Previous theorem can be generalized in the following way.

Proposition 2.8. Under the assumptions of the Theorem 2.8, the following
statements are equivalent (k and l are non-negative integers):

(a) M † = ((A∗3A3)∗)2l(((A1A
∗
1)
∗)2kM((A∗3A3)∗)2l)†((A1A

∗
1)
∗)2k,

(b) R((A1A
∗
1)

4kM) = R(M) and R((A∗3A3)4lM∗) = R(M∗).

Proof. An immediate computation, analogous to the one from Theorem 2.1,
yields:

M †
1 = D2l

3 ((A11A
∗
11)

2kM1D
2l
3 )†(A11A

∗
11)

2k,

or, equivalently,

((A11A
∗
11)

2kM1D
2l
3 )† = D−2l

3 M †
1(A11A

∗
11)

−2k,

which, by Lemma 1.5, holds if and only if:

[(A11A
∗
11)

4k,M1M
†
1 ] = 0 and [D4l

3 ,M †
1M1] = 0.

3 Some equivalencies

The results presented in previous section are connected as follows.

Theorem 3.1. The following statements are equivalent (provided that we
apply the Moore-Penrose inverse to closed range operators):

(a) M † = A†3(A
†
1MA†3)

†A†1;
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(b) M † = A∗3(A
∗
1MA∗3)

†A∗1;

(c) A†3(A
†
1MA†3)

†A†1 = (A∗3A3)†((A1A
∗
1)
†M(A∗3A3)†)†(A1A

∗
1)
†;

(d) A∗3(A
†
1MA†3)

†A∗1 = A∗3A3M
†A1A

∗
1;

(e) A∗3(A
∗
1MA∗3)

†A∗1 = A∗3A3(A1A
∗
1MA∗3A3)†A1A

∗
1;

(f) R(A1A
∗
1M) = R(M) and R(A∗3A3M

∗) = R(M∗).

Proof. From Theorem 2.1 and Theorem 2.2 it follows that (a) ⇔ (b) ⇔ (f).
Using the method described in those two theorems, we easily conclude that:

(c) ⇔ D
−1/2
3 (A−1

11 M1D
−1/2
3 )†A−1

11 = D−1
3 ((A11A

∗
11)

−1M1D
−1
3 )†(A11A

∗
11)

−1;

while:

(e) ⇔ D
1/2
3 (A∗11M1D

1/2
3 )†A∗11 = D3(A11A

∗
11M1D3)†A11A

∗
11.

Let us now prove (e) ⇔ (f). We have the following:

(e) ⇔ (A∗11M1D
1/2
3 )† = D

1/2
3 (A11A

∗
11M1D

1/2
3 )†A11.

Let us now denote X = A∗11M1D
1/2
3 , B = A11 and C = D

1/2
3 . By Lemma

1.6, we have the following chain of the equivalencies:

R(A∗11A11A
∗
11M1D

1/2
3 ) = R(A∗11M1D

1/2
3 ) and N (A∗11M1D

3/2
3 ) = N (A∗11M1D

1/2
3 )

⇔ R(A∗11A11A
∗
11M1D

1/2
3 ) = R(A∗11M1D

1/2
3 ) and R(D3/2

3 M∗
1 A11) = R(D1/2

3 M∗
1 A11)

⇔ R(A11A
∗
11M1D

1/2
3 ) = R(M1D

1/2
3 ) and R(D3M

∗
1 A11) = R(M∗

1 A11)
⇔ R(A11A

∗
11M1) = R(M1) and R(D3M

∗
1 ) = R(M∗

1 ).

The last expression is, by Lemma 1.5, equivalent to (f), so we have just
proved (e) ⇔ (f). (During the proof, an obvious fact: R(PQ) = R(SQ) ⇒
R(P ) = R(Q) if Q is invertible, is used.)

Analogously, (c) ⇔ (f) can be proved.
On the other hand,

(d) ⇔ (A−1
11 M1D

−1/2
3 )† = D

1/2
3 M †

1A11,

which is obviously equivalent to the (f).
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Theorem 3.2. The following statements are equivalent (provided that we
apply the Moore-Penrose inverse to closed range operators):

(a) M † = (A∗3A3)†((A1A
∗
1)
†M(A∗3A3)†)†(A1A

∗
1)
†;

(b) M † = A∗3A3(A1A
∗
1MA∗3A3)†A1A

∗
1;

(c) A†3(A
†
1MA†3)

†A†1 = A∗3(A
∗
1MA∗3)

†A∗1;

(d) R((A1A
∗
1)

2M) = R(M) and R((A∗3A3)2M∗) = R(M∗).

Proof. From Theorem 2.3 and Theorem 2.4 it follows that (a) ⇔ (b) ⇔ (d).
Using the method described in those two theorems, we easily conclude that:

(c) ⇔ D
−1/2
3 (A−1

11 M1D
−1/2
3 )†A−1

11 = D
1/2
3 (A∗11M1D

1/2
3 )†A∗11.

Using the method described in the proof of Theorem 3.1 (phase (e) ⇔
(f)), it is easy to conclude (c) ⇔ (e).

Theorem 3.3. The following statements are equivalent (provided that we
apply the Moore-Penrose inverse to closed range operators):

(a) M † = (A3A
∗
3A3)†((A1A

∗
1A1)†M(A3A

∗
3A3)†)†(A1A

∗
1A1)†;

(b) M † = (A3A
∗
3A3)∗((A1A

∗
1A1)∗M(A3A

∗
3A3)∗)†(A1A

∗
1A1)∗;

(c) A†3(A
†
1MA†3)

†A†1 = A∗3A3(A1A
∗
1MA∗3A3)†A1A

∗
1;

(d) (A†1MA†3)
† = A3A

∗
3A3(A1A

∗
1MA∗3A3)†A1A

∗
1A1;

(e) R((A1A
∗
1)

3M) = R(M) and R((A∗3A3)3M∗) = R(M∗).

Proof. From Theorem 2.5 and Theorem 2.6 it follows that (a) ⇔ (b) ⇔ (e).
Using the method described in those two theorems, we easily conclude that:

(c) ⇔ D
−1/2
3 (A−1

11 M1D
−1/2
3 )†A−1

11 = D3(A11A
∗
11M1D3)†A11A

∗
11;

also

(d) ⇔ A3iD3(A11A
∗
11M1D3)†A11A

∗
11A11 = A3iD

−1/2
3 (A−1

11 M1D
−1/2
3 )†, i = 1, 2.

Using the method described in the proof of Theorem 3.1(phase (e) ⇔
(f)), it is easy to conclude (c) ⇔ (e) and (d) ⇔ (e).

Theorem 3.4. The following statements are equivalent (provided that we
apply the Moore-Penrose inverse to closed range operators):

17



(a) M † = ((A∗3A3)†)2(((A1A
∗
1)

2)†M((A∗3A3)2)†)†((A1A
∗
1)
†)2;

(b) M † = (A∗3A3)2((A1A
∗
1)

2M(A∗3A3)2)†(A1A
∗
1)

2;

(c) R((A1A
∗
1)

4M) = R(M) and R((A∗3A3)4M∗) = R(M∗).

Proof. From Theorem 2.7 and Theorem 2.8 it follows that (a) ⇔ (b) ⇔
(c).

Acknowledgement. We are grateful to the referee for helpful com-
ments concerning the paper.
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