Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Functional Analysis, Approximation and Computation 3:1 (2011), 45–52

Idempotents related to the weighted Moore–Penrose inverse

Dijana Mosić and Dragan S. Djordjević

Abstract

We investigate necessary and sufficient conditions for $aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}$ to hold in rings with involution. Here, $a_{e,f}^{\dagger}$ denotes the weighted Moore-Penrose inverse of *a*, related to invertible and Hermitian elements $e, f \in \mathcal{R}$. Thus, some recent results from [7] are extended to the weighted Moore-Penrose inverse.

1 Introduction

Let \mathcal{R} be an associative ring with the unit 1. An involution $a \mapsto a^*$ in a ring \mathcal{R} is an anti-isomorphism of degree 2, that is,

$$(a^*)^* = a, \quad (a+b)^* = a^* + b^*, \quad (ab)^* = b^*a^*.$$

An element $a \in \mathcal{R}$ is selfadjoint (or Hermitian) if $a^* = a$. An element $a \in \mathcal{R}$ is regular if there exists some inner inverse (or 1-inverse) $a^- \in \mathcal{R}$ satisfying $aa^-a = a$. The set of all inner inverses (or 1-inverses) is denoted by $a\{1\}$. Hence, a is regular if $a\{1\} \neq \emptyset$. A reflexive inverse a^+ of a is a 1-inverse of a such that $a^+aa^+ = a^+$.

Definition 1.1. Let \mathcal{R} be a ring with involution, and let e, f be invertible Hermitian elements in \mathcal{R} . The element $a \in \mathcal{R}$ has the weighted Moore-Penrose inverse (weighted MP-inverse) with weights e, f if there exists $b \in \mathcal{R}$ such that

aba = a, bab = b, $(eab)^* = eab$, $(fba)^* = fba$.

The unique weighted MP-inverse with weights e, f, will be denoted by $a_{e,f}^{\dagger}$ if it exists [4]. The set of all weighted MP-invertible elements of \mathcal{R} with weights e, f, will be denoted by $\mathcal{R}_{e,f}^{\dagger}$. If e = f = 1, then the weighted MP-inverse reduces to the ordinary MP-inverse of a, denoted by a^{\dagger} .

If $a \in \mathcal{R}_{e,f}^{\dagger}$, then $aa_{e,f}^{\dagger}$ and $a_{e,f}^{\dagger}a$ are idempotents related to a and $a_{e,f}^{\dagger}$.

²⁰¹⁰ Mathematics Subject Classifications. 16W10, 15A09, 46L05.

Key words and Phrases. Weighted Moore–Penrose inverse; ring with involution.

Received: June 5, 2011

Communicated by Dragana Cvetković Ilić

The authors are supported by the Ministry of Education and Science, Serbia, grant no. 174007.

Notice that if \mathcal{R} is a C^* -algebra, if e, f are selfadjoint, invertible and *positive* elements in a C^* -algebra \mathcal{R} , and if $a \in \mathcal{R}$ is regular, then the following formula holds:

$$a_{e,f}^{\dagger} = f^{-1/2} (e^{1/2} a f^{-1/2})^{\dagger} e^{1/2}.$$

Hence, the existence of an inner inverse of a implies the existence of the MP-inverse and the weighted MP-inverse of a.

However, if \mathcal{R} is a general ring with involution, then we do not have the existence of a square root of a positive element. Hence, in this case we always have to assume that the weighted MP-inverse of a exists.

Define the mapping $(*, e, f) : x \mapsto x^{*, e, f} = e^{-1}x^*$, f, for all $x \in \mathcal{R}$. Notice that $(*, e, f) : \mathcal{R} \to \mathcal{R}$ is not an involution, because in general $(xy)^{*, e, f} \neq y^{*, e, f}x^{*, e, f}$. Now, we formulate the following result which can be proved directly by the definition of the weighted MP-inverse.

Theorem 1.1. Let \mathcal{R} be a ring with involution and let e, f be invertible Hermitian elements in \mathcal{R} . For any $a \in \mathcal{R}_{e,f}^{\dagger}$, the following is satisfied:

- (a) $(a_{e,f}^{\dagger})_{f,e}^{\dagger} = a;$
- (b) $(a^{*,f,e})_{f,e}^{\dagger} = (a_{e,f}^{\dagger})^{*,e,f};$
- (c) $a^{*,f,e} = a^{\dagger}_{e,f}aa^{*,f,e} = a^{*,f,e}aa^{\dagger}_{e,f};$
- (d) $a^{*,f,e}(a_{e,f}^{\dagger})^{*,e,f} = a_{e,f}^{\dagger}a;$
- (e) $(a_{e,f}^{\dagger})^{*,e,f}a^{*,f,e} = aa_{e,f}^{\dagger};$

(f)
$$(a^{*,f,e}a)_{f,f}^{\dagger} = a_{e,f}^{\dagger}(a_{e,f}^{\dagger})^{*,e,f};$$

- (g) $(aa^{*,f,e})_{e,e}^{\dagger} = (a_{e,f}^{\dagger})^{*,e,f}a_{e,f}^{\dagger};$
- (h) $a_{e,f}^{\dagger} = (a^{*,f,e}a)_{f,f}^{\dagger}a^{*,f,e} = a^{*,f,e}(aa^{*,f,e})_{e,e}^{\dagger};$
- (i) $(a^{*,e,f})_{f,e}^{\dagger} = a(a^{*,f,e}a)_{f,f}^{\dagger} = (aa^{*,f,e})_{e,e}^{\dagger}a.$

For $a \in \mathcal{R}$ consider two annihilators

$$a^{\circ} = \{ x \in \mathcal{R} : ax = 0 \}, \qquad {}^{\circ}a = \{ x \in \mathcal{R} : xa = 0 \}.$$

Notice that,

$$(a^*)^\circ = a^\circ \Leftrightarrow \ ^\circ(a^*) = \ ^\circ a, \qquad \qquad a\mathcal{R} = a^*\mathcal{R} \Leftrightarrow \mathcal{R}a = \mathcal{R}a^*.$$

Lemma 1.1. Let $a \in \mathcal{A}^-$, and let e, f be invertible positive elements in \mathcal{A} . Then

$$a_{e,f}^{\dagger} = (a^{*,f,e}a + 1 - a_{e,f}^{\dagger}a)^{-1}a^{*,f,e} = a^{*,f,e}(aa^{*,f,e} + 1 - aa_{e,f}^{\dagger})^{-1}, \qquad (1)$$

$$a^{*,f,e}\mathcal{A}^{-1} = a^{\dagger}_{e,f}\mathcal{A}^{-1} \text{ and } \mathcal{A}^{-1}a^{*,f,e} = \mathcal{A}^{-1}a^{\dagger}_{e,f},$$
 (2)

$$(a^{*,f,e})^{\circ} = (a^{\dagger}_{e,f})^{\circ} and \ ^{\circ}(a^{*,f,e}) = \ ^{\circ}(a^{\dagger}_{e,f}).$$
(3)

Proof. By Theorem 1.1, we can verify

$$a^{*,f,e} = (a^{*,f,e}a + 1 - a^{\dagger}_{e,f}a)a^{\dagger}_{e,f} = a^{\dagger}_{e,f}(aa^{*,f,e} + 1 - aa^{\dagger}_{e,f}),$$
$$(a^{*,f,e}a + 1 - a^{\dagger}_{e,f}a)^{-1} = a^{\dagger}_{e,f}(a^{\dagger}_{e,f})^{*,e,f} + 1 - a^{\dagger}_{e,f}a$$

and

$$(aa^{*,f,e} + 1 - aa_{e,f}^{\dagger})^{-1} = (a_{e,f}^{\dagger})^{*,e,f}a_{e,f}^{\dagger} + 1 - aa_{e,f}^{\dagger}.$$

Thus, the part (1) holds and it implies the equalities (2) and (3).

Now, we state an useful result from [7].

Lemma 1.2. [7, Lemma 2.1] Let $a, b \in \mathcal{R}$ be regular elements.

(1) There exist $a^- \in a\{1\}$, $b^- \in b\{1\}$ for which $(1 - bb^-)aa^- = 0$ if and only if $(1 - bb^-)aa^- = 0$ for all $a^- \in a\{1\}$, $b^- \in b\{1\}$.

(2) There exist $a^- \in a\{1\}$, $b^- \in b\{1\}$ for which $(1 - bb^-)(1 - a^-a) = 0$ if and only if $(1 - bb^-)(1 - a^-a) = 0$ for all $a^- \in a\{1\}$, $b^- \in b\{1\}$.

In [7], necessary and sufficient conditions for $aa^{\dagger} = bb^{\dagger}$ in ring with involution are investigated. In this paper we generalized this results to the weighted Moore-Penrose in rings with involution.

2 Results

A semigroup is a regular, if every elements of that semigroup has an inner generalized inverse. The notion extends to rings also.

In a regular semigroup, the natural partial order is defined by ([2], [5], [6])

 $a \leq b$ if $aa^- = ba^-$ and $a^-a = a^-b$ for some inner inverse a^- of a.

See also [3] for intuitionistic fuzzy matrices. Notice that \leq_{-} is a partial order in regular rings.

A semigroup with involution $x \mapsto x^*$ is proper, if the following implication holds:

$$a^*a = a^*b = b^*a = b^*b \implies a = b.$$

Notice that if the semigroup has the zero element 0, then a semigroup is a proper with respect to the involution $x \mapsto x^*$, if and only if $a^*a = 0 \implies a = 0$. The last implication is called *-cancellability. For example, every element of a C^* -algebra is *-cancellable, so every C^* -algebra is proper (with respect to multiplication).

Drazin [1] presented a partial order on a proper *-semigroup in the following way

$$a \leq_* b$$
 if $aa^* = ba^*$ and $a^*a = a^*b$.

If $a \in \mathcal{R}$ is MP invertible, then " \leq_* " implies " \leq_- ". Indeed, $aa^* = ba^* \Rightarrow aa^{\dagger} = aa^*(a^{\dagger})^*a^{\dagger} = ba^*(a^{\dagger})^*a^{\dagger} = ba^{\dagger}$ and similarly $a^*a = a^*b \Rightarrow a^{\dagger}a = a^{\dagger}b$.

In this paper we introduce the " $\leq_{*,e,f}$ " as follows:

$$a \leq_{*,e,f} b$$
 if $aa^{*,e,f} = ba^{*,e,f}$ and $a^{*,e,f}a = a^{*,e,f}b$

Here e, f are Hermitian invertible elements in a ring \mathcal{R} with involution $x \mapsto x^*$. We like to see that $\leq_{*,e,f}$ is a partial ordering in \mathcal{R} .

If $a \in \mathcal{R}_{e,f}^{\dagger}$, then " $\leq_{*,e,f}$ " implies " \leq_{-} ". Indeed, from $aa^{*,e,f} = ba^{*,e,f}$ we get $aa_{e,f}^{\dagger} = aa^{*,e,f}(a_{e,f}^{\dagger})^{*,e,f}a_{e,f}^{\dagger} = ba^{*,e,f}(a_{e,f}^{\dagger})^{*,e,f}a_{e,f}^{\dagger} = ba_{e,f}^{\dagger}$. Similarly, $a^{*,e,f}a = a^{*,e,f}b$ gives $a_{e,f}^{\dagger}a = a_{e,f}^{\dagger}b$.

In the rest of the paper we assume that $e, f \in \mathcal{R}$ are Hermitian end invertible. The ring \mathcal{R} is (*, e, f)-proper if the following implication holds:

$$a^{*,e,f}a = a^{*,e,f}b = b^{*,e,f}a = b^{*,e,f}b \implies a = b.$$

If \mathcal{R} is a C^* -algebra and e, f are positive Hermitian elements in \mathcal{R} , then \mathcal{R} is (*, e, f)-proper. Indeed, $a^{*,e,f}a = a^{*,e,f}b = b^{*,e,f}a = b^{*,e,f}b$ gives $(a-b)^{*,e,f}(a-b) = 0$ which gives that $[f^{1/2}(a-b)]^*f^{1/2}(a-b) = 0$. Since every element in C^* -algebra is *-cancellable, then $f^{1/2}(a-b) = 0$, that is a = b.

Theorem 2.1. Let \mathcal{R} be: (*, e, f)-proper, (*, e, e)-proper and (*, f, f)-proper. Then $\leq_{*,e,f}$ is a partial ordering in \mathcal{R} .

Proof. Since $a \leq_{*,e,f} a$, then " $\leq_{*,e,f}$ " is reflexive.

From $a \leq_{*,e,f} b$ and $b \leq_{*,e,f} a$, we get $a^{*,e,f}a = a^{*,e,f}b$ and $b^{*,e,f}a = b^{*,e,f}b$. Observe that

$$a^{*,e,f}a = (a^{*,e,f}a)^{*,e,e} = (a^{*,e,f}b)^{*,e,e} = b^{*,e,f}a$$
(4)

So, we deduce $a^{*,e,f}a = a^{*,e,f}b = b^{*,e,f}a = b^{*,e,f}b$ which gives a = b.

If $a \leq_{*,e,f} b$ and $b \leq_{*,e,f} c$, we obtain (4) and, applying (4) for b and c instead of a and b, we have $b^{*,e,f}b = c^{*,e,f}b$. Further,

$$\begin{aligned} c^{*,e,f}(aa^{*,e,f})c &= (c^{*,e,f}b)a^{*,e,f}c = b^{*,e,f}(ba^{*,e,f})c = (b^{*,e,f}a)a^{*,e,f}c = a^{*,e,f}aa^{*,e,f}c, \\ (a^{*,e,f}a)a^{*,e,f}a &= b^{*,e,f}(aa^{*,e,f})a = (b^{*,e,f}b)a^{*,e,f}a = c^{*,e,f}(ba^{*,e,f})a = c^{*,e,f}aa^{*,e$$

and

$$a^{*,e,f}aa^{*,e,f}a = (a^{*,e,f}aa^{*,e,f}a)^{*,e,e} = (c^{*,e,f}aa^{*,e,f}a)^{*,e,e} = a^{*,e,f}aa^{*,e,f}c.$$

Since $(a^{*,e,f}a)^{*,e,e} = a^{*,e,f}a$ and $(a^{*,e,f}c)^{*,e,e} = c^{*,e,f}a$, by the previous tree equalities, we conclude

$$(a^{*,e,f}a)^{*,e,e}a^{*,e,f}a = (a^{*,e,f}a)^{*,e,e}a^{*,e,f}c = (a^{*,e,f}c)^{*,e,e}a^{*,e,f}a = (a^{*,e,f}c)^{*,e,e}a^{*,e,f}c$$

which implies $a^{*,e,f}a = a^{*,e,f}c$, because ring \mathcal{R} is *, e, e-proper. Similarly, by *, f, f-proper of \mathcal{R} , we can verify that $aa^{*,e,f} = (ca^{*,e,f})^{*,f,f}$ which yields $aa^{*,e,f} = (aa^{*,e,f})^{*,f,f} = ((ca^{*,e,f})^{*,f,f})^{*,f,f} = ca^{*,e,f}$. Thus, $a^{*,e,f}a = a^{*,e,f}c$ and $aa^{*,e,f} = ca^{*,e,f}$ give that $a \leq_{*,e,f} c$.

Idempotents related to the weighted Moore–Penrose inverse

In the following theorem, we present some equivalent conditions for $aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}$ to hold.

Theorem 2.2. Let \mathcal{R} be a ring with involution, and let e, f be invertible Hermitian elements in \mathcal{R} . If $a, b \in \mathcal{R}_{e,f}^{\dagger}$, then the following conditions are equivalent:

- (1) $aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger};$
- (2) $aa_{e,f}^{\dagger} = aa_{e,f}^{\dagger}bb_{e,f}^{\dagger};$
- (3) $a = bb_{e,f}^{\dagger}a;$
- (4) $a_{e,f}^{\dagger} = a_{e,f}^{\dagger} b b_{e,f}^{\dagger};$
- (5) $aa^{*,f,e} = bb_{e,f}^{\dagger}aa^{*,f,e};$
- (6) $aa^{*,f,e} = aa^{*,f,e}bb^{\dagger}_{e}{}_{f};$

(7)
$$a^{*,f,e} = a^{*,f,e}bb^{\dagger}_{e,f};$$

- (8) $aa^- = bb^-aa^-$ for all choices $a^- \in a\{1\}, b^- \in b\{1\};$
- (9) $aa^- = bb^-aa^-$ for some $a^- \in a\{1\}, b^- \in b\{1\};$
- (10) $a = bb^{-}a \text{ for all } b^{-} \in b\{1\};$
- (11) $a = bb^{-}a \text{ for some } b^{-} \in b\{1\};$
- (12) $aa^{*,f,e} = bb^{-}aa^{*,f,e}$ for all $b^{-} \in b\{1\}$;
- (13) $aa^{*,f,e} = bb^{-}aa^{*,f,e}$ for some $b^{-} \in b\{1\}$;
- (14) $aa_{e,f}^{\dagger} \leq bb_{e,f}^{\dagger};$
- (15) $aa_{e,f}^{\dagger} \leq_{*,e,e} bb_{e,f}^{\dagger};$
- (16) $a \le bb^{-}a \text{ for all } b^{-} \in b\{1\};$
- (17) $a \le bb^{-}a \text{ for some } b^{-} \in b\{1\};$
- (18) $a\mathcal{R} \subseteq bb_{e,f}^{\dagger}a\mathcal{R};$
- (19) $a\mathcal{R} \subseteq b\mathcal{R};$
- (20) $\mathcal{R}a_{e,f}^{\dagger} \subseteq \mathcal{R}a_{e,f}^{\dagger}bb_{e,f}^{\dagger};$
- (21) $\mathcal{R}a_{e,f}^{\dagger} \subseteq \mathcal{R}b_{e,f}^{\dagger};$

Proof. (1) \Leftrightarrow (2): Applying the involution, the equality $aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}$ is equivalent to $(e^{-1}eaa_{e,f}^{\dagger})^* = (e^{-1}ebb_{e,f}^{\dagger}e^{-1}eaa_{e,f}^{\dagger})^*$ which is $eaa_{e,f}^{\dagger}e^{-1} = eaa_{e,f}^{\dagger}e^{-1}ebb_{e,f}^{\dagger}e^{-1}$ i.e. $aa_{e,f}^{\dagger} = aa_{e,f}^{\dagger}bb_{e,f}^{\dagger}$.

(1) \Leftrightarrow (3): Multiplying (1) by *a* from the right side we get (3), and multiplying (3) by $a_{e,f}^{\dagger}$ from the right side we obtain (1).

(2) \Leftrightarrow (4): This part can be verified in the same way as (1) \Leftrightarrow (3).

(3) \Leftrightarrow (5): If we multiply (3) by $a^{*,f,e}$ from the right side we obtain (5), and if we multiply (5) by $(a_{e,f}^{\dagger})^{*,e,f}$ from the right side, by Theorem 1.1(d), we have (3).

(2) \Leftrightarrow (6): By Theorem 1.1, multiplying (2) by $aa^{*,f,e}$ from the left side, we obtain (6). Conversely, multiplying (6) by $(a_{e,f}^{\dagger})^{*,e,f}a_{e,f}^{\dagger}$ from the left side, we get (2).

(6) \Leftrightarrow (7): Multiplying (6) by $a_{e,f}^{\dagger}$ from the left side, we obtain (7) and multiplying (7) by a from the left side, we get (6).

(1) \Leftrightarrow (8): The assumption $aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}$ is equivalent to $(1 - bb_{e,f}^{\dagger})aa_{e,f}^{\dagger} =$ 0. Applying Lemma 1.2, we obtain this equivalence.

(8) \Leftrightarrow (9): By Lemma 1.2.

 $(8) \Leftrightarrow (10), (9) \Leftrightarrow (11)$: Obviously.

(10) \Leftrightarrow (12): Multiplying (10) by $a^{*,f,e}$ from the right side, we obtain (12). On the other hand, multiplying (12) from the right side by $(a_{e,f}^{\dagger})^{*,e,f}$, we get (10).

(11) \Leftrightarrow (13): See the previous part.

(1) \Leftrightarrow (14): We can easy verify that $(aa_{e,f}^{\dagger})_{e,e}^{\dagger} = aa_{e,f}^{\dagger}$. Now, for $(aa_{e,f}^{\dagger})^{+} =$ $(aa_{e,f}^{\dagger})_{e,e}^{\dagger}$, we have $aa_{e,f}^{\dagger} \leq bb_{e,f}^{\dagger}$ if and only if $aa_{e,f}^{\dagger}(aa_{e,f}^{\dagger})_{e,e}^{\dagger} = bb_{e,f}^{\dagger}(aa_{e,f}^{\dagger})_{e,e}^{\dagger}$ and $(aa_{e,f}^{\dagger})_{e,e}^{\dagger}aa_{e,f}^{\dagger} = (aa_{e,f}^{\dagger})_{e,e}^{\dagger}bb_{e,f}^{\dagger}$, which is equivalent to $aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}$ and $aa_{e,f}^{\dagger} = aa_{e,f}^{\dagger}bb_{e,f}^{\dagger}.$

(1) \Leftrightarrow (15): Since $(aa_{e,f}^{\dagger})^{*,e,e} = e^{-1}(e^{-1}eaa_{e,f}^{\dagger})^{*}, e = aa_{e,f}^{\dagger}$, we show this equivalence in the same way as $(1) \Leftrightarrow (14)$.

(10) \Rightarrow (16): For $a^+ = a^{\dagger}_{e,f}$, we already proved this part.

 $(16) \Rightarrow (17)$: Obviously.

 $(17) \Rightarrow (11)$: Suppose that $a \leq bb^{-}a$ for some $b^{-} \in b\{1\}$. Then, for some a^{+} , we have $aa^+ = bb^-aa^+$, so $a = bb^-a$.

 $(3) \Rightarrow (18) \Rightarrow (19)$: Obviously.

(19) \Rightarrow (3): The hypothesis $a\mathcal{R} \subseteq b\mathcal{R}$ gives a = bx, for some $x \in \mathcal{R}$. Therefore, $\begin{aligned} a &= bb_{e,f}^{\dagger}(bx) = bb_{e,f}^{\dagger}a. \\ (4) &\Rightarrow (20) \Rightarrow (21) \Rightarrow (4): \text{ Similarly as } (3) \Rightarrow (18) \Rightarrow (19) \Rightarrow (3). \end{aligned}$

Theorem 2.3. Let \mathcal{R} be a ring with involution, and let e, f be invertible Hermitian elements in \mathcal{R} . If $a, b \in \mathcal{R}_{e,f}^{\dagger}$, then the following conditions are equivalent:

(1) $aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger};$

(2)
$$aa_{e,f}^{\dagger} = aa_{e,f}^{\dagger}bb_{e,f}^{\dagger}$$
 and $u = aa_{e,f}^{\dagger} + 1 - bb_{e,f}^{\dagger} \in \mathcal{R}^{-1}$;

(3)
$$aa_{e,f}^{\dagger} = aa_{e,f}^{\dagger}bb_{e,f}^{\dagger}$$
 and $v = aa^{*,f,e} + 1 - bb_{e,f}^{\dagger} \in \mathcal{R}^{-1}$;

Idempotents related to the weighted Moore–Penrose inverse

(4) $aa_{e,f}^{\dagger} = aa_{e,f}^{\dagger}bb_{e,f}^{\dagger}$ and $\forall b^{-} \in b\{1\}$ $w = aa^{*,f,e} + 1 - bb^{-} \in \mathcal{R}^{-1};$

(5)
$$aa_{e,f}^{\dagger} = aa_{e,f}^{\dagger}bb_{e,f}^{\dagger}$$
 and $\exists b^{-} \in b\{1\}$ $w = aa^{*,f,e} + 1 - bb^{-} \in \mathcal{R}^{-1};$

- $\begin{array}{ll} (6) & aa_{e,f}^{\dagger}bb_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}, \ u = aa_{e,f}^{\dagger} + 1 bb_{e,f}^{\dagger} \in \mathcal{R}^{-1} \ and \ l = bb_{e,f}^{\dagger} + 1 aa_{e,f}^{\dagger} \in \mathcal{R}^{-1}; \end{array}$
- (7) $aa_{e,f}^{\dagger}bb_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}, v = aa^{*,f,e} + 1 bb_{e,f}^{\dagger} \in \mathcal{R}^{-1} and k = bb^{*,f,e} + 1 aa_{e,f}^{\dagger} \in \mathcal{R}^{-1};$

Proof. $(1) \Rightarrow (2)$: It is easy to check.

 $\begin{array}{l} (2) \Leftrightarrow (3): \text{ Using Theorem 2.2, } (aa_{e,f}^{\dagger}+1-bb_{e,f}^{\dagger})(aa^{*,f,e}+1-aa_{e,f}^{\dagger}) = aa^{*,f,e}+1 \\ 1-bb_{e,f}^{\dagger}. \text{ By Lemma 1.1, } aa^{*,f,e}+1-aa_{e,f}^{\dagger} \in \mathcal{R}^{-1} \text{ and then } u \in \mathcal{R}^{-1} \Leftrightarrow v \in \mathcal{R}^{-1}. \\ (3) \Rightarrow (1): \text{ Observe that, by Theorem 2.2, } vaa_{e,f}^{\dagger} = aa^{*,f,e} = vbb_{e,f}^{\dagger}. \end{array}$

(3) \Rightarrow (4): By Theorem 2.2, we have $aa^{*,f,e} = bb_{e,f}^{\dagger}aa^{*,f,e} = bb_{e,f}^{\dagger}aa^{*,f,e}bb_{e,f}^{\dagger}$. Now, by [8, Proposition 3], $v = aa^{*,f,e} + 1 - bb_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa^{*,f,e}bb_{e,f}^{\dagger} + 1 - bb_{e,f}^{\dagger} \in \mathcal{R}^{-1}$ if and only if $bb_{e,f}^{\dagger}aa^{*,f,e}bb^{-} + 1 - bb^{-} \in \mathcal{R}^{-1}$, $\forall b^{-} \in b\{1\}$, i.e. $1 - (-bb_{e,f}^{\dagger}aa^{*,f,e} + 1)bb^{-} \in \mathcal{R}^{-1}$ for all $b^{-} \in b\{1\}$, which is equivalent to $1 - bb^{-}(-bb_{e,f}^{\dagger}aa^{*,f,e} + 1) = w \in \mathcal{R}^{-1}$, $\forall b^{-} \in b\{1\}$.

 $(4) \Rightarrow (3) \land (5)$: Obviously.

(5) \Rightarrow (4): From $w = aa^{*,f,e} + 1 - bb^{-} = 1 - bb^{-}(-aa^{*,f,e} + 1) \in \mathcal{R}^{-1}$, we deduce that $1 - (-aa^{*,f,e} + 1)bb^{-} = bb^{-}aa^{*,f,e}bb^{-} + 1 - bb^{-} \in \mathcal{R}^{-1}$. Then, by [8, Proposition 3], $bb^{-}aa^{*,f,e}bb^{=} + 1 - bb^{=} = 1 - (-aa^{*,f,e} + 1)bb^{=} \in \mathcal{R}^{-1}$, for all $b^{=} \in \{1\}$, which gives $1 - bb^{=}(-aa^{*,f,e} + 1) = bb^{=}aa^{*,f,e} + 1 - bb^{=} = aa^{*,f,e} + 1 - bb^{=} \in \mathcal{R}^{-1}$. (1) \Rightarrow (6): Obviously.

 $\begin{array}{l} (6) \Rightarrow (1): \text{ Since, by } aa_{e,f}^{\dagger}bb_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}, \ bb_{e,f}^{\dagger}u = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}u \\ \text{and } u \in \mathcal{R}^{-1}, \text{ then } bb_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}. \text{ Similarly, } laa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger} = lbb_{e,f}^{\dagger}aa_{e,f}^{\dagger} \\ \text{and } l \in \mathcal{R}^{-1} \text{ give } aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}. \text{ Thus, } aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}. \\ (1) \Rightarrow (7): \text{ By Lemma 1.1.} \end{array}$

(7) \Rightarrow (3): The equality $aa_{e,f}^{\dagger}bb_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}$ implies $aa_{e,f}^{\dagger}k = aa_{e,f}^{\dagger}bb^{*,f,e} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}k$. Because $k \in \mathcal{R}^{-1}$, then $aa_{e,f}^{\dagger} = bb_{e,f}^{\dagger}aa_{e,f}^{\dagger}$ and the condition (3) holds.

References

- M.P. Drazin, Natural structures on semigroups with involution, Bulletin of the American Mathematical Society 84 (1978) 139-141.
- [2] R.E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980) 1-13.

- [3] S.K. Khan, A. Pal, The generalised inverse of intuitionistic fuzzy matrices, Journal of Physical Sciences 11 (2007) 62–67.
- [4] J.J. Koliha, D.S. Djordjević, D. Cvetković, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426 (2007) 371–381.
- [5] S.K. Mitra, Matrix partial orders through generalized inverses: unified theory, Linear Algebra Appl. 148 (1991), 237-263.
- [6] S.K. Mitra, P. Bhimasankaran and S.B. Malik, Matrix partial orders, shorted operators and applications, World Scientific, New-Jersey-London-Singapore-Beijing-Shanghai-Hong Kong-Taipei- Chennai, 2010.
- [7] P. Patrício, C. Mendes Araújo, *Moore-Penrose invertibility in involutory rings:* the case $aa^{\dagger} = bb^{\dagger}$, Linear and Multilinear Algebra 58(4) (2010) 445–452.
- [8] P. Patrício, R. Puystjens, Generalized invertibility in two semigroups of a ring, Linear Algebra Appl. 377 (2004) 125139.

Address:

Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, P.O. Box 224, 18000 Niš, Serbia

E-mail: Dijana Mosić: dijana@pmf.ni.ac.rs Dragan S. Djordjević: dragan@pmf.ni.ac.rs