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Idempotents related to
the weighted Moore–Penrose inverse

Dijana Mosić and Dragan S. Djordjević

Abstract

We investigate necessary and sufficient conditions for aa†e,f = bb†e,f to

hold in rings with involution. Here, a†e,f denotes the weighted Moore-Penrose
inverse of a, related to invertible and Hermitian elements e, f ∈ R. Thus, some
recent results from [7] are extended to the weighted Moore-Penrose inverse.

1 Introduction

Let R be an associative ring with the unit 1. An involution a 7→ a∗ in a ring R is
an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R is selfadjoint (or Hermitian) if a∗ = a. An element a ∈ R is
regular if there exists some inner inverse (or 1-inverse) a− ∈ R satisfying aa−a = a.
The set of all inner inverses (or 1-inverses) is denoted by a{1}. Hence, a is regular
if a{1} 6= ∅. A reflexive inverse a+ of a is a 1-inverse of a such that a+aa+ = a+.

Definition 1.1. Let R be a ring with involution, and let e, f be invertible Her-
mitian elements in R. The element a ∈ R has the weighted Moore-Penrose inverse
(weighted MP-inverse) with weights e, f if there exists b ∈ R such that

aba = a, bab = b, (eab)∗ = eab, (fba)∗ = fba.

The unique weighted MP-inverse with weights e, f , will be denoted by a†e,f if it
exists [4]. The set of all weighted MP-invertible elements of R with weights e, f ,
will be denoted by R†e,f . If e = f = 1, then the weighted MP-inverse reduces to the
ordinary MP-inverse of a, denoted by a†.

If a ∈ R†e,f , then aa†e,f and a†e,fa are idempotents related to a and a†e,f .
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Notice that if R is a C∗-algebra, if e, f are selfadjoint, invertible and positive
elements in a C∗-algebra R, and if a ∈ R is regular, then the following formula
holds:

a†e,f = f−1/2(e1/2af−1/2)†e1/2.

Hence, the existence of an inner inverse of a implies the existence of the MP-inverse
and the weighted MP-inverse of a.

However, ifR is a general ring with involution, then we do not have the existence
of a square root of a positive element. Hence, in this case we always have to assume
that the weighted MP-inverse of a exists.

Define the mapping (∗, e, f) : x 7→ x∗,e,f = e−1x∗, f , for all x ∈ R. Notice that
(∗, e, f) : R → R is not an involution, because in general (xy)∗,e,f 6= y∗,e,fx∗,e,f .
Now, we formulate the following result which can be proved directly by the definition
of the weighted MP-inverse.

Theorem 1.1. Let R be a ring with involution and let e, f be invertible Hermitian
elements in R. For any a ∈ R†e,f , the following is satisfied:

(a) (a†e,f )†f,e = a;

(b) (a∗,f,e)†f,e = (a†e,f )∗,e,f ;

(c) a∗,f,e = a†e,faa∗,f,e = a∗,f,eaa†e,f ;

(d) a∗,f,e(a†e,f )∗,e,f = a†e,fa;

(e) (a†e,f )∗,e,fa∗,f,e = aa†e,f ;

(f) (a∗,f,ea)†f,f = a†e,f (a†e,f )∗,e,f ;

(g) (aa∗,f,e)†e,e = (a†e,f )∗,e,fa†e,f ;

(h) a†e,f = (a∗,f,ea)†f,fa∗,f,e = a∗,f,e(aa∗,f,e)†e,e;

(i) (a∗,e,f )†f,e = a(a∗,f,ea)†f,f = (aa∗,f,e)†e,ea.

For a ∈ R consider two annihilators

a◦ = {x ∈ R : ax = 0}, ◦a = {x ∈ R : xa = 0}.
Notice that,

(a∗)◦ = a◦ ⇔ ◦(a∗) = ◦a, aR = a∗R ⇔ Ra = Ra∗.

Lemma 1.1. Let a ∈ A−, and let e, f be invertible positive elements in A. Then

a†e,f = (a∗,f,ea + 1− a†e,fa)−1a∗,f,e = a∗,f,e(aa∗,f,e + 1− aa†e,f )−1, (1)

a∗,f,eA−1 = a†e,fA−1 and A−1a∗,f,e = A−1a†e,f , (2)

(a∗,f,e)◦ = (a†e,f )◦ and ◦(a∗,f,e) = ◦(a†e,f ). (3)
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Proof. By Theorem 1.1, we can verify

a∗,f,e = (a∗,f,ea + 1− a†e,fa)a†e,f = a†e,f (aa∗,f,e + 1− aa†e,f ),

(a∗,f,ea + 1− a†e,fa)−1 = a†e,f (a†e,f )∗,e,f + 1− a†e,fa

and
(aa∗,f,e + 1− aa†e,f )−1 = (a†e,f )∗,e,fa†e,f + 1− aa†e,f .

Thus, the part (1) holds and it implies the equalities (2) and (3).

Now, we state an useful result from [7].

Lemma 1.2. [7, Lemma 2.1] Let a, b ∈ R be regular elements.
(1) There exist a− ∈ a{1}, b− ∈ b{1} for which (1− bb−)aa− = 0 if and only if

(1− bb−)aa− = 0 for all a− ∈ a{1}, b− ∈ b{1}.
(2) There exist a− ∈ a{1}, b− ∈ b{1} for which (1 − bb−)(1 − a−a) = 0 if and

only if (1− bb−)(1− a−a) = 0 for all a− ∈ a{1}, b− ∈ b{1}.
In [7], necessary and sufficient conditions for aa† = bb† in ring with involution

are investigated. In this paper we generalized this results to the weighted Moore-
Penrose in rings with involution.

2 Results

A semigroup is a regular, if every elements of that semigroup has an inner general-
ized inverse. The notion extends to rings also.

In a regular semigroup, the natural partial order is defined by ([2], [5], [6])

a ≤− b if aa− = ba− and a−a = a−b for some inner inverse a− of a.

See also [3] for intuitionistic fuzzy matrices. Notice that ≤− is a partial order
in regular rings.

A semigroup with involution x 7→ x∗ is proper, if the following implication holds:

a∗a = a∗b = b∗a = b∗b =⇒ a = b.

Notice that if the semigroup has the zero element 0, then a semigroup is a proper
with respect to the involution x 7→ x∗, if and only if a∗a = 0 =⇒ a = 0. The last
implication is called ∗-cancellability. For example, every element of a C∗-algebra is
∗-cancellable, so every C∗-algebra is proper (with respect to multiplication).

Drazin [1] presented a partial order on a proper ∗-semigroup in the following
way

a ≤∗ b if aa∗ = ba∗ and a∗a = a∗b.

If a ∈ R is MP invertible, then ”≤∗” implies ”≤−”. Indeed, aa∗ = ba∗ ⇒
aa† = aa∗(a†)∗a† = ba∗(a†)∗a† = ba† and similarly a∗a = a∗b ⇒ a†a = a†b.
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In this paper we introduce the ”≤∗,e,f“ as follows:

a ≤∗,e,f b if aa∗,e,f = ba∗,e,f and a∗,e,fa = a∗,e,fb.

Here e, f are Hermitian invertible elements in a ring R with involution x 7→ x∗.
We like to see that ≤∗,e,f is a partial ordering in R.

If a ∈ R†e,f , then ”≤∗,e,f” implies ”≤−”. Indeed, from aa∗,e,f = ba∗,e,f we get
aa†e,f = aa∗,e,f (a†e,f )∗,e,fa†e,f = ba∗,e,f (a†e,f )∗,e,fa†e,f = ba†e,f . Similarly, a∗,e,fa =
a∗,e,fb gives a†e,fa = a†e,f b.

In the rest of the paper we assume that e, f ∈ R are Hermitian end invertible.
The ring R is (∗, e, f)-proper if the following implication holds:

a∗,e,fa = a∗,e,fb = b∗,e,fa = b∗,e,f b =⇒ a = b.

If R is a C∗-algebra and e, f are positive Hermitian elements in R, then R is
(∗, e, f)-proper. Indeed, a∗,e,fa = a∗,e,fb = b∗,e,fa = b∗,e,fb gives (a−b)∗,e,f (a−b) =
0 which gives that [f1/2(a− b)]∗f1/2(a− b) = 0. Since every element in C∗-algebra
is ∗-cancellable, then f1/2(a− b) = 0, that is a = b.

Theorem 2.1. Let R be: (∗, e, f)-proper, (∗, e, e)-proper and (∗, f, f)-proper. Then
≤∗,e,f is a partial ordering in R.

Proof. Since a ≤∗,e,f a, then ”≤∗,e,f“ is reflexive.
From a ≤∗,e,f b and b ≤∗,e,f a, we get a∗,e,fa = a∗,e,fb and b∗,e,fa = b∗,e,fb.

Observe that
a∗,e,fa = (a∗,e,fa)∗,e,e = (a∗,e,f b)∗,e,e = b∗,e,fa (4)

So, we deduce a∗,e,fa = a∗,e,f b = b∗,e,fa = b∗,e,fb which gives a = b.
If a ≤∗,e,f b and b ≤∗,e,f c, we obtain (4) and, applying (4) for b and c instead

of a and b, we have b∗,e,fb = c∗,e,fb. Further,

c∗,e,f (aa∗,e,f )c = (c∗,e,fb)a∗,e,fc = b∗,e,f (ba∗,e,f )c = (b∗,e,fa)a∗,e,fc = a∗,e,faa∗,e,fc,

(a∗,e,fa)a∗,e,fa = b∗,e,f (aa∗,e,f )a = (b∗,e,fb)a∗,e,fa = c∗,e,f (ba∗,e,f )a = c∗,e,faa∗,e,fa

and

a∗,e,faa∗,e,fa = (a∗,e,faa∗,e,fa)∗,e,e = (c∗,e,faa∗,e,fa)∗,e,e = a∗,e,faa∗,e,fc.

Since (a∗,e,fa)∗,e,e = a∗,e,fa and (a∗,e,fc)∗,e,e = c∗,e,fa, by the previous tree equal-
ities, we conclude

(a∗,e,fa)∗,e,ea∗,e,fa = (a∗,e,fa)∗,e,ea∗,e,fc = (a∗,e,fc)∗,e,ea∗,e,fa = (a∗,e,fc)∗,e,ea∗,e,fc

which implies a∗,e,fa = a∗,e,fc, because ring R is ∗, e, e-proper. Similarly, by
∗, f, f -proper of R, we can verify that aa∗,e,f = (ca∗,e,f )∗,f,f which yields aa∗,e,f =
(aa∗,e,f )∗,f,f = ((ca∗,e,f )∗,f,f )∗,f,f = ca∗,e,f . Thus, a∗,e,fa = a∗,e,fc and aa∗,e,f =
ca∗,e,f give that a ≤∗,e,f c.
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In the following theorem, we present some equivalent conditions for aa†e,f =
bb†e,faa†e,f to hold.

Theorem 2.2. Let R be a ring with involution, and let e, f be invertible Hermitian
elements in R. If a, b ∈ R†e,f , then the following conditions are equivalent:

(1) aa†e,f = bb†e,faa†e,f ;

(2) aa†e,f = aa†e,fbb†e,f ;

(3) a = bb†e,fa;

(4) a†e,f = a†e,fbb†e,f ;

(5) aa∗,f,e = bb†e,faa∗,f,e;

(6) aa∗,f,e = aa∗,f,ebb†e,f ;

(7) a∗,f,e = a∗,f,ebb†e,f ;

(8) aa− = bb−aa− for all choices a− ∈ a{1}, b− ∈ b{1};

(9) aa− = bb−aa− for some a− ∈ a{1}, b− ∈ b{1};

(10) a = bb−a for all b− ∈ b{1};

(11) a = bb−a for some b− ∈ b{1};

(12) aa∗,f,e = bb−aa∗,f,e for all b− ∈ b{1};

(13) aa∗,f,e = bb−aa∗,f,e for some b− ∈ b{1};

(14) aa†e,f ≤ bb†e,f ;

(15) aa†e,f ≤∗,e,e bb†e,f ;

(16) a ≤ bb−a for all b− ∈ b{1};

(17) a ≤ bb−a for some b− ∈ b{1};

(18) aR ⊆ bb†e,faR;

(19) aR ⊆ bR;

(20) Ra†e,f ⊆ Ra†e,f bb†e,f ;

(21) Ra†e,f ⊆ Rb†e,f ;
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Proof. (1) ⇔ (2): Applying the involution, the equality aa†e,f = bb†e,faa†e,f is equiva-
lent to (e−1eaa†e,f )∗ = (e−1ebb†e,fe−1eaa†e,f )∗ which is eaa†e,fe−1 = eaa†e,fe−1ebb†e,fe−1,
i.e. aa†e,f = aa†e,f bb†e,f .

(1) ⇔ (3): Multiplying (1) by a from the right side we get (3), and multiplying
(3) by a†e,f from the right side we obtain (1).

(2) ⇔ (4): This part can be verified in the same way as (1) ⇔ (3).
(3) ⇔ (5): If we multiply (3) by a∗,f,e from the right side we obtain (5), and if

we multiply (5) by (a†e,f )∗,e,f from the right side, by Theorem 1.1(d), we have (3).
(2) ⇔ (6): By Theorem 1.1, multiplying (2) by aa∗,f,e from the left side, we

obtain (6). Conversely, multiplying (6) by (a†e,f )∗,e,fa†e,f from the left side, we get
(2).

(6) ⇔ (7): Multiplying (6) by a†e,f from the left side, we obtain (7) and multi-
plying (7) by a from the left side, we get (6).

(1) ⇔ (8): The assumption aa†e,f = bb†e,faa†e,f is equivalent to (1− bb†e,f )aa†e,f =
0. Applying Lemma 1.2, we obtain this equivalence.

(8) ⇔ (9): By Lemma 1.2.
(8) ⇔ (10), (9) ⇔ (11): Obviously.
(10) ⇔ (12): Multiplying (10) by a∗,f,e from the right side, we obtain (12). On

the other hand, multiplying (12) from the right side by (a†e,f )∗,e,f , we get (10).
(11) ⇔ (13): See the previous part.
(1) ⇔ (14): We can easy verify that (aa†e,f )†e,e = aa†e,f . Now, for (aa†e,f )+ =

(aa†e,f )†e,e, we have aa†e,f ≤ bb†e,f if and only if aa†e,f (aa†e,f )†e,e = bb†e,f (aa†e,f )†e,e

and (aa†e,f )†e,eaa†e,f = (aa†e,f )†e,ebb
†
e,f , which is equivalent to aa†e,f = bb†e,faa†e,f and

aa†e,f = aa†e,f bb†e,f .
(1) ⇔ (15): Since (aa†e,f )∗,e,e = e−1(e−1eaa†e,f )∗, e = aa†e,f , we show this equiv-

alence in the same way as (1) ⇔ (14).
(10) ⇒ (16): For a+ = a†e,f , we already proved this part.
(16) ⇒ (17): Obviously.
(17) ⇒ (11): Suppose that a ≤ bb−a for some b− ∈ b{1}. Then, for some a+,

we have aa+ = bb−aa+, so a = bb−a.
(3) ⇒ (18) ⇒ (19): Obviously.
(19) ⇒ (3): The hypothesis aR ⊆ bR gives a = bx, for some x ∈ R. Therefore,

a = bb†e,f (bx) = bb†e,fa.
(4) ⇒ (20) ⇒ (21) ⇒ (4): Similarly as (3) ⇒ (18) ⇒ (19) ⇒ (3).

Theorem 2.3. Let R be a ring with involution, and let e, f be invertible Hermitian
elements in R. If a, b ∈ R†e,f , then the following conditions are equivalent:

(1) aa†e,f = bb†e,f ;

(2) aa†e,f = aa†e,f bb†e,f and u = aa†e,f + 1− bb†e,f ∈ R−1;

(3) aa†e,f = aa†e,f bb†e,f and v = aa∗,f,e + 1− bb†e,f ∈ R−1;
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(4) aa†e,f = aa†e,fbb†e,f and ∀b− ∈ b{1} w = aa∗,f,e + 1− bb− ∈ R−1;

(5) aa†e,f = aa†e,fbb†e,f and ∃b− ∈ b{1} w = aa∗,f,e + 1− bb− ∈ R−1;

(6) aa†e,f bb†e,f = bb†e,faa†e,f , u = aa†e,f +1−bb†e,f ∈ R−1 and l = bb†e,f +1−aa†e,f ∈
R−1;

(7) aa†e,f bb†e,f = bb†e,faa†e,f , v = aa∗,f,e + 1 − bb†e,f ∈ R−1 and k = bb∗,f,e + 1 −
aa†e,f ∈ R−1;

Proof. (1) ⇒ (2): It is easy to check.
(2) ⇔ (3): Using Theorem 2.2, (aa†e,f +1− bb†e,f )(aa∗,f,e +1−aa†e,f ) = aa∗,f,e +

1− bb†e,f . By Lemma 1.1, aa∗,f,e + 1− aa†e,f ∈ R−1 and then u ∈ R−1 ⇔ v ∈ R−1.
(3) ⇒ (1): Observe that, by Theorem 2.2, vaa†e,f = aa∗,f,e = vbb†e,f . Since

v ∈ R−1, we have aa†e,f = bb†e,f .
(3) ⇒ (4): By Theorem 2.2, we have aa∗,f,e = bb†e,faa∗,f,e = bb†e,faa∗,f,ebb†e,f .

Now, by [8, Proposition 3], v = aa∗,f,e+1−bb†e,f = bb†e,faa∗,f,ebb†e,f +1−bb†e,f ∈ R−1

if and only if bb†e,faa∗,f,ebb− + 1− bb− ∈ R−1, ∀b− ∈ b{1}, i.e. 1− (−bb†e,faa∗,f,e +
1)bb− ∈ R−1 for all b− ∈ b{1}, which is equivalent to 1− bb−(−bb†e,faa∗,f,e + 1) =
w ∈ R−1, ∀b− ∈ b{1}.

(4) ⇒ (3) ∧ (5): Obviously.
(5) ⇒ (4): From w = aa∗,f,e +1−bb− = 1−bb−(−aa∗,f,e +1) ∈ R−1, we deduce

that 1−(−aa∗,f,e+1)bb− = bb−aa∗,f,ebb−+1−bb− ∈ R−1. Then, by [8, Proposition
3], bb−aa∗,f,ebb= + 1− bb= = 1− (−aa∗,f,e + 1)bb= ∈ R−1, for all b= ∈ {1}, which
gives 1− bb=(−aa∗,f,e + 1) = bb=aa∗,f,e + 1− bb= = aa∗,f,e + 1− bb= ∈ R−1.

(1) ⇒ (6): Obviously.
(6) ⇒ (1): Since, by aa†e,f bb†e,f = bb†e,faa†e,f , bb†e,fu = bb†e,faa†e,f = bb†e,faa†e,fu

and u ∈ R−1, then bb†e,f = bb†e,faa†e,f . Similarly, laa†e,f = bb†e,faa†e,f = lbb†e,faa†e,f

and l ∈ R−1 give aa†e,f = bb†e,faa†e,f . Thus, aa†e,f = bb†e,f .
(1) ⇒ (7): By Lemma 1.1.
(7) ⇒ (3): The equality aa†e,f bb†e,f = bb†e,faa†e,f implies aa†e,fk = aa†e,fbb∗,f,e =

bb†e,faa†e,fk. Because k ∈ R−1, then aa†e,f = bb†e,faa†e,f and the condition (3) holds.
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