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Abstract

We present some equivalent conditions of the reverse order law for
the Moore–Penrose inverse in rings with involution, extending some
well-known results to more general settings. Then we apply this result
to obtain a set of equivalent conditions to the reverse order rule for the
weighted Moore-Penrose inverse in C∗-algebras.
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1 Introduction

Let R be an associative ring with the unit 1. If a, b ∈ R are invertible, then
ab is invertible too and the inverse of the product ab satisfied the reverse
order law (ab)−1 = b−1a−1. This formula cannot trivially be extended to the
Moore–Penrose inverse of the product ab. In this paper we study necessary
and sufficient conditions for the reverse order law for the Moore–Penrose
inverse in the setting of rings with involution. The equivalent conditions for
the reverse order law for the weighted Moore–Penrose inverse in C∗-algebras
follows as a corollary.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R is self-adjoint (or Hermitian) if a∗ = a. An element a ∈ R
is regular if there exists some b ∈ R satisfying aba = a.

∗The authors are supported by the Ministry of Education and Science, Serbia, grant
#174007.
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The Moore–Penrose inverse (or MP-inverse) of a ∈ R is the element
b ∈ R, if the following equations hold [13]:

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4) (ba)∗ = ba.

There is at most one b such that above conditions hold and such b is denoted
by a†. The set of all Moore–Penrose invertible elements of R will be denoted
by R†. If a is invertible, then a† coincides with the ordinary inverse of a.

If a is a linear bounded operator between two Hilbert spaces, then a†

exists if and only if the range space of a is closed.
If δ ⊂ {1, 2, 3, 4} and b satisfies the equations (i) for all i ∈ δ, then b is

an δ–inverse of a. The set of all δ–inverse of a is denote by a{δ}. Notice
that a{1, 2, 3, 4} = {a†}.
Definition 1.1. Let R be a ring with involution and let e, f two invertible
Hermitian elements in R. We say that the element a ∈ R has the weighted
MP-inverse with weights e, f if there exists b ∈ R such that

(1) aba = a, (2) bab = b, (3′) (eba)∗ = eba, (4′) (fab)∗ = fab.

The unique weighted MP-inverse with weights e, f , will be denoted by
a†e,f if it exists [10]. The set of all weighted MP-invertible elements of R
with weights e, f will be denoted by R†e,f .

The reverse order law for the Moore-Penrose inverse is a useful compu-
tational tool in applications (solving linear equations in linear algebra or
numerical analysis), and it is also interesting from the theoretical point of
view.

Greville [6] proved that (ab)† = b†a† holds for complex matrices, if and
only if: a†a commutes with bb∗, and bb† commutes with a∗a. In the case of
linear bounded operators on Hilbert spaces, the analogous result was proved
by Bouldin [1], [2] and Izumino [9]. The corresponding result in rings with
involution (using an extra assumption: a∗a = 0 implies a = 0) was proved in
[10]. Detailed analysis of the reverse order law can be found in [16], and for
multiple products in [8]. More results related to linear bounded operators on
Hilbert spaces can be found in [3] and [4]. Recently, many results concerning
the reverse order law for complex matrices appeared in Tian’s papers [14]
and [15], and Tian used finite dimensional methods (mostly properties of
the rank of a complex matrices). In [10], [11] and [12] it is shown that the
existence of the involution as a powerful tool in rings.

In this paper we present new results for the reverse order law for the
Moore-Penrose inverse in rings with involution. Thus, we extend the results
from [15] to more general settings.
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The paper is organized as follows. We finish Section 1 by listing the
most important properties of the MP-inverse. These properties will be used
later, in proving our main results. Section 2 contains various equivalent con-
ditions such that the reverse order law holds for the Moore-Penrose inverse.
Although these results are known for complex rectangular matrices ([15]),
we present new methods, depending on algebraic properties of rings with
involution. As a corollary we obtain necessary and sufficient conditions to
the reverse order law for the weighted Moore–Penrose inverse.

Now, we state some auxiliary results on the MP-inverse.

Theorem 1.1. [5, 12] For any a ∈ R†, the following is satisfied:

(a) (a†)† = a;

(b) (a∗)† = (a†)∗;

(c) (a∗a)† = a†(a†)∗;

(d) (aa∗)† = (a†)∗a†;

(e) a∗ = a†aa∗ = a∗aa†;

(f) a† = (a∗a)†a∗ = a∗(aa∗)†;

(g) (a∗)† = a(a∗a)† = (aa∗)†a.

Notice that if a = a∗ ∈ R†, then aa† = a†a (meaning that a is an EP
element of R).

Lemma 1.1. [12] If a ∈ R†, then aa∗a ∈ R† and (aa∗a)† = a†(a∗)†a†.

The following result is a consequence of a direct computation.

Lemma 1.2. If a ∈ R†, then aa∗aa∗, a∗aa∗a ∈ R†, [(aa∗)2]† = [(aa∗)†]2 =
[(a∗)†a†]2 and [(a∗a)2]† = [(a∗a)†]2 = [a†(a∗)†]2.

Let A be a unital C∗–algebra. We state the following theorem.

Theorem 1.2. [7] In a unital C∗–algebra A, a ∈ A is MP-invertible if and
only if a is regular.

It is useful to express the weighted MP-inverse in terms of the ordinary
MP-inverse.

Theorem 1.3. [10] Let A be a unital C∗–algebra and let e, f be positive
invertible elements of A. If a ∈ A is regular, then the unique weighted
MP-inverse a†e,f exists and

a†e,f = e−1/2(f1/2ae−1/2)†f1/2.
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2 Reverse order law for the MP-inverse

In this section we present necessary and sufficient conditions such that the
reverse order law for the Moore–Penrose inverse holds.

Theorem 2.1. Let R be a ring with involution, and let a, b ∈ R†. Then the
following conditions are equivalent:

(a) ab ∈ R† and (ab)† = b†a†;

(b) ab, a†ab ∈ R†, (ab)† = (a†ab)†a† and (a†ab)† = b†a†a;

(c) ab, abb† ∈ R†, (ab)† = b†(abb†)† and (abb†)† = bb†a†;

(d) ab, a∗ab ∈ R†, (ab)† = (a∗ab)†a∗ and (a∗ab)† = b†(a∗a)†;

(e) ab, abb∗ ∈ R†, (ab)† = b∗(abb∗)† and (abb∗)† = (bb∗)†a†;

(f) ab, a∗abb∗ ∈ R†, (ab)† = b∗(a∗abb∗)†a∗ and (a∗abb∗)† = (bb∗)†(a∗a)†;

(g) ab, aa∗abb∗b ∈ R†, (ab)† = b∗b(aa∗abb∗b)†aa∗ and (aa∗abb∗b)† =
(bb∗b)†(aa∗a)†;

(h) ab, (a∗a)2(bb∗)2 ∈ R†, (ab)† = b∗bb∗[(a∗a)2(bb∗)2]†a∗aa∗ and
[(a∗a)2(bb∗)2]† = [(bb∗)2]†[(a∗a)2]†;

(i) (a†)∗b ∈ R† and [(a†)∗b]† = b†a∗;

(j) a(b†)∗ ∈ R† and [a(b†)∗]† = b∗a†.

Proof. (a) ⇒ (b): Since (ab)† = b†a†, it follows that

a†ab
(
b†a†a

)
a†ab = a†(abb†a†ab) = a†ab,

b†a†a
(
a†ab

)
b†a†a = (b†a†abb†a†)a = b†a†a,

(a†abb†a†a)∗ = a†abb†a†a,

(b†a†aa†ab)∗ = (b†a†ab)∗ = b†a†ab = b†a†aa†ab.

Hence, a†ab ∈ R† and (a†ab)† = b†a†a. Then we have (ab)† = b†a† =
(b†a†a)a† = (a†ab)†a†.

(b) ⇒ (c): From (ab)† = (a†ab)†a† and (a†ab)† = b†a†a, we get

(ab)† = (a†ab)†a† = b†a†aa† = b†a†.
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Further,
abb†

(
bb†a†

)
abb† = (abb†a†ab)b† = abb†,

bb†a†
(
abb†

)
bb†a† = b(b†a†abb†a†) = bb†a†,

(abb†bb†a†)∗ = (abb†a†)∗ = abb†a† = abb†bb†a†,

(bb†a†abb†)∗ = bb†a†abb†.

So, abb† ∈ R† and (abb†)† = bb†a†. Now (ab)† = b†a† = b†(bb†a†) = b†(abb†)†.
(c) ⇒ (d): If (ab)† = b†(abb†)† and (abb†)† = bb†a†, we deduce

(ab)† = b†(abb†)† = b†bb†a† = b†a†.

By Theorem 1.1, we obtain

a∗ab
(
b†a†(a†)∗

)
a∗ab = a∗abb†a†aa†ab = a∗(abb†a†ab) = a∗ab,

b†a†(a†)∗
(
a∗ab

)
b†a†(a†)∗ = (b†a†abb†a†)(a†)∗ = b†a†(a†)∗,

(a∗abb†a†(a†)∗)∗ = a†abb†a†a = (a†abb†a†a)∗ = a∗abb†a†(a†)∗,

(b†a†(a†)∗a∗ab)∗ = (b†a†ab)∗ = b†a†ab = b†a†(a†)∗a∗ab.

Thus, a∗ab ∈ R† and (a∗ab)† = b†a†(a†)∗ = b†(a∗a)†, by Theorem 1.1. Then
(ab)† = b†a† = b†a†aa† = (b†a†(a†)∗)a∗ = (a∗ab)†a∗.

(d) ⇒ (e): Suppose that (d) holds. By Theorem 1.1, we get

(ab)† = (a∗ab)†a∗ = b†(a∗a)†a∗ = b†a†

which implies

abb∗
(
(b†)∗b†a†

)
abb∗ = abb†bb†a†abb∗ = (abb†a†ab)b∗ = abb∗,

(b†)∗b†a†
(
abb∗

)
(b†)∗b†a† = (b†)∗(b†a†abb†a†) = (b†)∗b†a†,

(abb∗(b†)∗b†a†)∗ = (abb†a†)∗ = abb†a† = abb∗(b†)∗b†a†,

((b†)∗b†a†abb∗)∗ = bb†a†abb† = (bb†a†abb†)∗ = (b†)∗b†a†abb∗,

i.e. abb∗ ∈ R† and (abb∗)† = (b†)∗b†a† = (bb∗)†a†. Therefore, (ab)† = b†a† =
b†bb†a† = b∗((b†)∗b†a†) = b∗(abb∗)†.

(e) ⇒ (f): From the conditions in (e) and Theorem 1.1, we obtain

(ab)† = b∗(abb∗)† = b∗(bb∗)†a† = b†a†.
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Using this equality and Theorem 1.1, we get

a∗abb∗
(
(b†)∗b†a†(a†)∗

)
a∗abb∗ = a∗abb†bb†a†aa†abb∗

= a∗(abb†a†ab)b∗ = a∗abb∗,

(b†)∗b†a†(a†)∗
(
a∗abb∗

)
(b†)∗b†a†(a†)∗ = (b†)∗(b†a†abb†a†)(a†)∗

= (b†)∗b†a†(a†)∗,

i.e. (bb∗)†(a∗a)† = (b†)∗b†a†(a†)∗ ∈ (a∗abb∗){1, 2}. Since the elements
a†abb†a†a, bb†a†abb† are self-adjoint and

(a∗abb∗(b†)∗b†a†(a†)∗)∗ = (a∗abb†a†(a†)∗)∗ = a†abb†a†a,

((b†)∗b†a†(a†)∗a∗abb∗)∗ = ((b†)∗b†a†abb∗)∗ = bb†a†abb†,

we conclude that the elements a∗abb∗(b†)∗b†a†(a†)∗, (b†)∗b†a†(a†)∗a∗abb∗ are
self-adjoint, too. Hence, a∗abb∗ ∈ R† and (a∗abb∗)† = (b†)∗b†a†(a†)∗ =
(bb∗)†(a∗a)†. Now,

(ab)† = b†a† = b†bb†a†aa† = b∗((b†)∗b†a†(a†)∗)a∗ = b∗(a∗abb∗)†a∗.

(f) ⇒ (g): By the hypothesis (f) and Theorem 1.1, we have

(ab)† = b∗(a∗abb∗)†a∗ = b∗(bb∗)†(a∗a)†a∗ = b†a†.

Set x = aa∗abb∗b and y = b†(b†)∗b†a†(a†)∗a†.
We compute as follows:

xyx = aa∗abb∗b
(
b†(b†)∗b†a†(a†)∗a†

)
aa∗abb∗b

= aa∗(abb†a†ab)b∗b
= aa∗abb∗b = x,

and

yxy = b†(b†)∗b†a†(a†)∗a†
(
aa∗abb∗b

)
b†(b†)∗b†a†(a†)∗a†

= b†(b†)∗(b†a†abb†a†)(a†)∗a†

= b†(b†)∗b†a†(a†)∗a† = y.
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Hence, y ∈ x{1, 2}. From the equalities

(aa∗abb∗bb†(b†)∗b†a†(a†)∗a†)∗ = (aa∗abb†a†(a†)∗a†)∗ = (a†)∗a†abb†a†aa∗

= (a†)∗bb†a∗ = (abb†a†)∗ = abb†a†,

(b†(b†)∗b†a†(a†)∗a†aa∗abb∗b)∗ = (b†(b†)∗b†a†abb∗b)∗ = b∗bb†a†abb†(b†)∗

= b∗a†a(b†)∗ = (b†a†ab)∗ = b†a†ab,

we have y ∈ x{3, 4}. Hence, x ∈ R† and x† = y. By Lemma 1.1, it follows
(aa∗abb∗b)† = (bb∗b)†(aa∗a)†. Then,

(ab)† = b†a† = b†bb†a†aa† = b∗b(b†(b†)∗b†a†(a†)∗a†)aa∗ = b∗b(aa∗abb∗b)†aa∗.

(g) ⇒ (h): From the conditions in (g) and Lemma 1.1, we obtain

(ab)† = b∗b(bb∗b)†(aa∗a)†aa∗ = b∗bb†(b†)∗b†a†(a†)∗a†aa∗ = b†a†.

Let x = (a∗a)2(bb∗)2 and y = [(b∗)†b†]2[a†(a∗)†]2. Then:

xyx = a∗aa∗abb∗bb∗(b∗)†b†(b∗)†b†a†(a∗)†a†(a∗)†a∗aa∗abb∗bb∗

= a∗aa∗abb∗bb†(b∗)†b†a†(a∗)†a†aa∗abb∗bb∗

= a∗aa∗(abb†a†ab)b∗bb∗

= a∗aa∗abb∗bb∗ = x,

and

yxy = (b∗)†b†(b∗)†b†a†(a∗)†a†(a∗)†a∗aa∗abb∗bb∗(b∗)†b†(b∗)†b†a†(a∗)†a†(a∗)†

= (b∗)†b†(b∗)†b†a†(a∗)†a†aa∗abb∗bb†(b∗)†b†a†(a∗)†a†(a∗)†

= (b∗)†b†(b∗)†(b†a†abb†a†)(a∗)†a†(a∗)†

= (b∗)†b†(b∗)†b†a†(a∗)†a†(a∗)† = y.

Thus, y ∈ x{1, 2}. From the hypothesis the elements abb†a†, b†a†ab are
self-adjoint and then

(xy)∗ = (a∗aa∗abb∗bb∗(b∗)†b†(b∗)†b†a†(a∗)†a†(a∗)†)∗

= (a∗aa∗(abb†a†)(a∗)†a†(a∗)†)∗ = a†(a∗)†a†abb†a†aa∗a
= a†(a∗)†bb†a∗a = a†(abb†a†)∗a
= a†abb†a†a

7



and

(yx)∗ = ((b∗)†b†(b∗)†b†a†(a∗)†a†(a∗)†a∗aa∗abb∗bb∗)∗

= ((b∗)†b†(b∗)†(b†a†ab)b∗bb∗)∗ = bb∗bb†a†abb†(b∗)†b†

= bb∗a†a(b∗)†b† = b(b†a†ab)∗b†

= bb†a†abb†.

By these equalities, since the elements a†abb†a†a, bb†a†abb† are self-adjoint,
we conclude that y ∈ x{3, 4}. Thus, we have x ∈ R†, x† = y and, by Lemma
1.2, [(a∗a)2(bb∗)2]† = [(bb∗)2]†[(a∗a)2]†. Now,

(ab)† = b†a† = b∗bb∗((b†)∗b†(b†)∗b†a†(a†)∗a†(a†)∗)a∗aa∗

= b∗bb∗[(a∗a)2(bb∗)2]†a∗aa∗.

(h) ⇒ (i): By (h) and Lemma 1.2, we get

(ab)† = b∗bb∗[(bb∗)2]†[(a∗a)2]†a∗aa∗ = b∗bb∗[(bb∗)†]2[(a∗a)†]2a∗aa∗ = b†a†.

We obtain

(a†)∗bb†a∗(a†)∗b = (a†)∗a†(abb†a†ab) = (a†)∗a†ab = (a†)∗b,

b†a∗(a†)∗bb†a∗ = (b†a†abb†a†)aa∗ = b†a†aa∗ = b†a†,

((a†)∗bb†a∗)∗ = abb†a† is self − adjoint,

b†a∗(a†)∗b = b†a†ab is self − adjoint.

Hence, (a†)∗b ∈ R† and [(a†)∗b]† = b†a∗.
(i) ⇒ (a): Using (i), we get the following:

abb†a†ab = aa†abb†a∗(a†)∗b = aa∗((a†)∗bb†a∗(a†)∗b) = aa∗(a†)∗b = ab,

b†a†abb†a† = (b†a∗(a†)∗bb†a∗)(a†)∗a† = b†a∗(a†)∗a† = b†a†,

(abb†a†)∗ = (a†)∗bb†a∗ is self − adjoint,

b†a†ab = b†a∗(a†)∗b is self − adjoint.

Thus, ab ∈ R† and (ab)† = b†a†.
(h) ⇒ (j) ⇒ (a): This part can be proved in the same way as (h) ⇒ (i)

⇒ (a).
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Finally we formulate the following conjecture which is known to hold for
complex matrices [15].

Conjecture. Let R be a ring with involution, and let a, b, ab ∈ R†. Then
the following statements are equivalent:

(a) (ab)† = b†a†;

(b) (ab)† = b†a†abb†a†.

Applying Theorem 2.1 for a = b, necessary and sufficient conditions for
a to be bi-dagger, that is (a2)† = (a†)2, follow as a corollary.

Corollary 2.1. Let R be a ring with involution, and let a ∈ R†. Then the
following conditions are equivalent:

(a) a2 ∈ R† and (a2)† = (a†)2;

(b) a2, a†a2 ∈ R†, (a2)† = (a†a2)†a† and (a†a2)† = (a†)2a;

(c) a2, a2a† ∈ R†, (a2)† = a†(a2a†)† and (a2a†)† = a(a†)2;

(d) a2, a∗a2 ∈ R†, (a2)† = (a∗a2)†a∗ and (a∗a2)† = a†(a∗a)†;

(e) a2, a2a∗ ∈ R†, (a2)† = a∗(a2a∗)† and (a2a∗)† = (aa∗)†a†;

(f) a2, a∗a2a∗ ∈ R†, (a2)† = a∗(a∗a2a∗)†a∗ and (a∗a2a∗)† = (aa∗)†(a∗a)†;

(g) a2, (aa∗a)2 ∈ R†, (a2)† = a∗a[(aa∗a)2]†aa∗ and [(aa∗a)2]† = [(aa∗a)†]2;

(h) a2, (a∗a)2(aa∗)2 ∈ R†, (a2)† = a∗aa∗[(a∗a)2(aa∗)2]†a∗aa∗ and
[(a∗a)2(aa∗)2]† = [(aa∗)2]†[(a∗a)2]†;

(i) (a†)∗a ∈ R† and [(a†)∗a]† = a†a∗;

(j) a(a†)∗ ∈ R† and [a(a†)∗]† = a∗a†.

We can also consider the reverse order law for the weighted Moore-
Penrose inverse. Using the results from Theorem 2.1, we now can estab-
lish various equivalent conditions related to the weighted MP-inverse of a
product of elements in C∗–algebra.

Let e, f be positive invertible elements of a unital C∗–algebra A and
define x∗e,f = e−1x∗f .
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Corollary 2.2. Let A be a unital C∗–algebra and let e, f , h be positive in-
vertible elements of A. If a, b ∈ A are regular, then the following conditions
are equivalent:

(a) ab is regular and (ab)†e,h = b†e,fa†f,h;

(b) ab, a†f,hab are regular, (ab)†e,h = (a†f,hab)†e,fa†f,h and (a†f,hab)†e,f =

b†e,fa†f,ha;

(c) ab, abb†e,f are regular, (ab)†e,h = b†e,f (abb†e,f )†f,h and (abb†e,f )†f,h =

bb†e,fa†f,h;

(d) ab, a∗f,hab are regular, (ab)†e,h = (a∗f,hab)†e,fa∗f,h and (a∗f,hab)†e,f =

b†e,f (a∗f,ha)†f,f ;

(e) ab, abb∗e,f are regular, (ab)†e,h = b∗e,f (abb∗e,f )†f,h and (abb∗e,f )†f,h =

(bb∗e,f )†f,fa†f,h;

(f) ab, a∗f,habb∗e,f are regular, (ab)†e,h = b∗e,f (a∗f,habb∗e,f )†f,fa∗f,h and

(a∗f,habb∗e,f )† = (bb∗e,f )†f,f (a∗f,ha)†f,f ;

(g) ab, aa∗f,habb∗e,fb are regular, (ab)†e,h = b∗e,fb(aa∗f,habb∗e,fb)†e,haa∗f,h

and (aa∗f,habb∗e,fb)†e,h = (bb∗e,fb)†e,f (aa∗f,ha)†f,h;

(h) ab, (a∗f,ha)2(bb∗e,f )2 are regular, (ab)†e,h = b∗e,fbb∗e,f [(a∗f,ha)2(bb∗e,f )2]†f,f

× a∗f,haa∗f,h and [(a∗f,ha)2(bb∗e,f )2]†f,f = [(bb∗e,f )2]†f,f [(a∗f,ha)2]†f,f ;

(i) (a†f,h)∗h,fb is regular and [(a†f,h)∗h,fb]†e,h = b†e,fa∗f,h;

(j) a(b†e,f )∗f,e is regular and [a(b†e,f )∗f,e]†e,h = b∗e,fa†f,h.

Proof. (a) ⇔ (b): Suppose that a1 = h1/2af−1/2 and b1 = f1/2be−1/2. Then
a1b1 = h1/2abe−1/2 and a1, b1, a1b1 are regular if and only if a, b, ab are regu-
lar, respectively. From Theorem 1.3, we have a†f,h = f−1/2(h1/2af−1/2)†h1/2

= f−1/2a†1h
1/2, b†e,f = e−1/2(f1/2be−1/2)†f1/2 = e−1/2b†1f

1/2 and (ab)†e,h =
e−1/2(a1b1)†h1/2.

It is easy to verify that ab is regular and (ab)†e,h = b†e,fa†f,h if and only if

a1b1 is regular and (a1b1)† = b†1a
†
1. By Theorem 2.1, this is necessary and

sufficient condition for a1b1, a
†
1a1b1 are regular, (a1b1)† = (a†1a1b1)†a

†
1 and
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(a†1a1b1)† = b†1a
†
1a1 which is equivalent to ab, a†f,hab are regular, (ab)†e,h =

(a†f,hab)†e,fa†f,h and (a†f,hab)†e,f = b†e,fa†f,ha.
The rest of the proof follows analogously.

3 Conclusions

In this paper we consider some necessary and sufficient conditions for the
reverse order law for the Moore–Penrose inverse in rings with involution.
Applying this result we obtain the equivalent conditions for the reverse order
rule for the weighted Moore-Penrose inverse of elements in C∗-algebras. All
of these results are already known for complex matrices. In this case the
authors used finite dimensional methods and in particular the matrix rank
to prove equivalent conditions for the reverse order law. However, we applied
purely algebraic techniques in proving the results which then apply to much
more general setting of rings with involution. It would be interesting to
extend this work to the Moore–Penrose inverse and the weighted Moore-
Penrose inverse of a triple product.
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18000 Nǐs, Serbia

E-mail
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