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Abstract

We present a number of new characterizations of EP elements in
rings with involution in purely algebraic terms. Then, we study equiv-
alent conditions for an element a in a ring with involution to satisfy
ana∗ = a∗an or an = (a∗)n for arbitrary n ∈ N . For n = 1, we present
some new characterizations of normal and Hermitian elements in rings
with involution.
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1 Introduction

Complex matrices and Hilbert spaces operators with closed ranges A with
the property that the ranges of A and A∗ coincide, are known as EP or
range-Hermitian (EP for equal projections onto R(A) and R(A∗)). Hermi-
tian, normal and nonsingular matrices (operators) are special cases of EP
matrices (operators). EP, normal and Hermitian matrices, as well as EP,
normal and Hermitian linear operators on Banach or Hilbert spaces have
been investigated by many authors (see, for example, [1, 2, 3, 4, 5, 7, 8,
9, 10, 11, 13, 14, 15, 17, 18, 20, 21, 24, 29]). In rings with involution EP
elements are elements for which the Drazin and the Moore–Penrose inverse
exist and coincide. In this paper we use the setting of rings with involution
to investigate EP elements, and give new characterizations. We introduce
and investigate generalized normal and generalized Hermitian elements in

∗The authors are supported by the Ministry of Science, Republic of Serbia, grant no.
174007.
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rings. As a consequence, we give several new characterizations for elements
in rings with involution to be normal and Hermitian elements.

Let R be an associative ring, and let a ∈ R. Then a is group invertible
if there exists a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a;

a# is uniquely determined by these equations. The group inverse a# doubly
commutes with a, that is, ax = xa implies a#x = xa# [2]. We use R# to
denote the set of all group invertible elements of R.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R satisfying aa∗ = a∗a is called normal. An element a ∈ R
satisfying a = a∗ is called Hermitian (or symmetric).

We say that b = a† is the Moore–Penrose inverse (or MP-inverse) of a,
if the following hold [28]:

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4) (ba)∗ = ba.

There is at most one b such that above conditions hold (see [6, 12, 16, 19]).
The set of all Moore–Penrose invertible elements of R will be denoted by
R†.

If δ ⊂ {1, 2, 3, 4} and b satisfies the equations (i) for all i ∈ δ, then b is
an δ–inverse of a. The set of all δ–inverse of a is denoted by a{δ}. Notice
that a{1, 2, 3, 4} = {a†}.
Theorem 1.1. [11, 25] For any a ∈ R†, the following are satisfied:

(a) (a†)† = a;

(b) (a∗)† = (a†)∗;

(c) (a∗a)† = a†(a†)∗;

(d) (aa∗)† = (a†)∗a†;

(e) a∗ = a†aa∗ = a∗aa†;

(f) a† = (a∗a)†a∗ = a∗(aa∗)† = (a∗a)#a∗ = a∗(aa∗)#;

(g) (a∗)† = a(a∗a)† = (aa∗)†a.

Now, we state the following useful result.
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Lemma 1.1. [25] If a ∈ R†, then aa∗a ∈ R† and (aa∗a)† = a†(a∗)†a†.

In this paper we will use the following definition of EP elements [22].

Definition 1.1. An element a of a ring R with involution is said to be EP
if a ∈ R# ∩R† and a# = a†.

The following result is well known for matrices, Hilbert space operators
and elements of C∗-algebras, and it is equally true in rings with involution:

Lemma 1.2. An element a ∈ R is EP if and only if a ∈ R† and aa† = a†a.

We observe that a ∈ R# ∩R† if and only if a∗ ∈ R# ∩R† (see [22]) and
a is EP if and only if a∗ is EP. If a ∈ R#, then aπ = 1− aa# is the spectral
idempotent of a [22]. The following result is proved in [22].

Theorem 1.2. An element a ∈ R is EP if and only if a is group invertible
and one of the following equivalent conditions holds:

(a) a#a is symmetric;

(b) (a#)∗ = aa#(a#)∗;

(c) (a#)∗ = (a#)∗a#a;

(d) a#(aπ)∗ = aπ(a#)∗.

The next results are proved in [25].

Lemma 1.3. [25] Let a ∈ R† and b ∈ R. If ab = ba and a∗b = ba∗, then
a†b = ba†.

Lemma 1.4. [25] Let a ∈ R†. Then a is normal if and only if aa† = a†a
and a∗a† = a†a∗.

Notice that the condition aa† = a†a generalizes the notion of EP ma-
trices, and the condition a∗a† = a†a∗ generalizes the notion of star-dagger
matrices [17].

Lemma 1.5. If a ∈ R† is normal, then a is EP.

Various characterizations of EP, normal and Hermitian complex matrices
are proved in [5] or in [1], using mostly the rank of a matrix, or other
finite dimensional methods. These results are generalized in [8] and [9] for
linear operators on Hilbert spaces, using operator matrices. In [25] and
[26], applying a purely algebraic technique, it is showed that neither the
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rank of a matrix, nor the properties of operator matrices are necessary for
the characterization of EP, normal and Hermitian elements in rings with
involution. Thus, the results from [1, 5, 8, 9] are extended to more general
settings.

An element a ∈ R satisfying ana∗ = a∗an for arbitrary n ∈ N will be
called generalized normal element. An element a ∈ R satisfying an = (a∗)n

for arbitrary n ∈ N will be called generalized Hermitian element. In this
paper we generalize the results from [25] and [26].

2 EP elements

In this section EP elements in rings with involution are characterized by
conditions involving powers of their group and Moore–Penrose inverse.

In the following theorem we present 30 necessary and sufficient conditions
for an element a of a ring with involution to be EP.

Theorem 2.1. Let m, n ∈ N . An element a ∈ R is EP if and only if
a ∈ R# ∩R† and one of the following equivalent conditions holds:

(i) (a#)n+m−1 = (a†)m(a#)n−1 (or (a#)n+m−1 = (a#)n−1(a†)m);

(ii) (a∗)naa# = (a∗)n;

(iii) aa#(a∗)n = (a∗)naa#;

(iv) a(a#)n(a†)m = a†a(a#)n+m−1;

(v) (a†)2(a#)n = a†(a#)na† (or a†(a#)na† = (a#)n(a†)2);

(vi) a†(a#)n = (a#)na†;

(vii) a(a†)n+1 = (a#)n;

(viii) a∗(a†)n = a∗(a#)n (or (a†)na∗ = (a#)na∗);

(ix) (a†)n+1 = (a#)na† (or (a†)n+1 = a†(a#)n);

(x) (a†)n = (a#)n;

(xi) aa†(a∗)n = (a∗)naa†(or (a∗)na†a = a†a(a∗)n);

(xii) aa†(a∗)nam = (a∗)namaa†(or a†aam(a∗)n = am(a∗)na†a);

(xiii) aa†(am(a∗)n− (a∗)nam) = (am(a∗)n− (a∗)nam)aa† (or a†a(am(a∗)n−
(a∗)nam) = (am(a∗)n − (a∗)nam)a†a);
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(xiv) (a∗)na#a + aa#(a∗)n = 2(a∗)n;

(xv) a†(a#)na + aa#(a†)n = 2(a†)n;

(xvi) anaa† + a†aan = 2an;

(xvii) anaa† + (anaa†)∗ = an + (a∗)n (or a†aan + (a†aan)∗ = an + (a∗)n);

(xviii) an = anaa†(or an = a†aan);

(xix) ana† = a†an;

(xx) [(a#)∗]n = aa#[(a#)∗]n (or [(a#)∗]n = [(a#)∗]na#a).

Proof. If a is EP, then it commutes with its Moore–Penrose inverse and
a# = a†. It is not difficult to verify that conditions (i)-(xx) hold.

Conversely, we assume that a ∈ R# ∩ R†. To conclude that a is EP,
we show that one of the conditions of Theorem 1.2 is satisfied, or that the
element a is subject to one of the preceding already established conditions
of this theorem.

(i) The hypothesis (a#)n+m−1 = (a†)m(a#)n−1 implies

a#a = (a#)n+m−1an+m−1 = (a†)m(a#)n−1an+m−1

= a†a((a†)m(a#)n−1)an+m−1 = a†a(a#)n+m−1an+m−1 = a†a.

Since a†a is symmetric, we get that a#a is also symmetric.
(ii) The assumption (a∗)naa# = (a∗)n gives

(aa#)∗ = [an(a#)n]∗ = [(a#)n]∗(a∗)n = [(a#)n]∗(a∗)naa# = (aa#)∗aa#.

Since the element (aa#)∗aa# is symmetric, we get that aa# is symmetric.
(iii) If aa#(a∗)n = (a∗)naa#, then the condition (ii) holds:

(a∗)n = a†aa∗(a∗)n−1 = a†a(aa#(a∗)n) = a†a(a∗)naa# = (a∗)naa#.

(iv) The equality a(a#)n(a†)m = a†a(a#)n+m−1 implies

(a#)n−1(a†)m = a#a(a(a#)n(a†)m) = a#aa†a(a#)n+m−1 = (a#)n+m−1.

So, the condition (i) is satisfied.
(v) When we use (a†)2(a#)n = a†(a#)na†, we have

a†(a#)na† = (a†)2(a#)n = ((a†)2(a#)n)aa# = a†(a#)na†aa#

= a†(a#)n+1aa†aa# = a†(a#)n+1.(1)
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From (1), it follows

aa† = an+1aa†a(a#)n+1a† = an+2(a†(a#)na†) = an+2a†(a#)n+1 = aa#.

So, the element aa# is symmetric.
(vi) Using the assumption a†(a#)n = (a#)na†, we have

a#a = (a#)n+1aa†aan = ((a#)na†)an+1 = a†(a#)nan+1 = a†a.

Therefore, a#a is symmetric.
(vii) Assume that a(a†)n+1 = (a#)n. Now

aa# = an(a#)n = ana(a†)n+1 = an(a(a†)n+1)aa† = an(a#)naa† = aa†.

Hence, aa# is symmetric.
(viii) The condition a∗(a†)n = a∗(a#)n implies

a(a†)n+1 = (aa†)∗(a†)n = (a†)∗(a∗(a†)n) = (a†)∗(a∗(a#)n)
= (aa†)∗(a#)n = aa†(a#)n = aa†a(a#)n+1 = (a#)n,

i.e. the equality (vii) holds.
(ix) Using the equality (a†)n+1 = (a#)na†, we get that (viii) is satisfied:

(a†)na∗ = ((a†)na†)aa∗ = (a#)na†aa∗ = (a#)na∗.

(x) If we assume that (a†)n = (a#)n, then (vii) holds:

a(a†)n+1 = aa†(a†)n = aa†(a#)n = aa†a(a#)n+1 = (a#)n.

(xi) The equality aa†(a∗)n = (a∗)naa† is equivalent to aa†(a∗)n = (a∗)n.
Applying involution to the last expression, we have anaa† = an. If we
multiply the previous equality by (a#)n from the left side, we get aa† = a#a
and a#a is symmetric.

(xii) Applying the assumption aa†(a∗)nam = (a∗)namaa†, we get

aa†(a∗)n = (aa†(a∗)nam)(a#)m−1a† = (a∗)namaa†(a#)m−1a†

= (a∗)namaa†a(a#)ma† = (a∗)naa†.

Therefore, the condition (xi) holds.
(xiii) The assumption (xiii) is equivalent to am(a∗)n − aa†(a∗)nam =

am(a∗)n− (a∗)namaa†. So, aa†(a∗)nam = (a∗)namaa†, that is, the condition
(xii) is satisfied.
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(xiv) By the condition (a∗)na#a + aa#(a∗)n = 2(a∗)n, we obtain

2(a∗)n = 2a†aa∗(a∗)n−1 = a†a2(a∗)n = a†a((a∗)na#a + aa#(a∗)n)
= (a∗)na#a + a†a(a∗)n = (a∗)na#a + (a∗)n.

Now, we have (a∗)n = (a∗)na#a = (a∗)naa#, which is the equality (ii).
(xv) Multiplying a†(a#)na+aa#(a†)n = 2(a†)n by a†a from the left side,

we get a†(a#)na + a†a(a†)n = 2a†a(a†)n, which yields a†a(a#)n = (a†)n.
Now, we have

aa# = an(a†a(a#)n) = an(a†)n = an(a†)naa† = ana†a(a#)naa† = aa†.

Thus, aa# is symmetric.
(xvi) Multiplying anaa† + a†aan = 2an by (a#)n from the right side, we

get

2aa# = anaa†(a#)n + a†a = anaa†a(a#)n+1 + a†a = aa# + a†a,

i.e. aa# = a†a. Therefore, aa# is symmetric.
(xvii) Multiplying anaa† + (anaa†)∗ = an + (a∗)n by aa† from the right

side, we obtain that anaa† + aa†(a∗)naa† = anaa† + (a∗)naa†, which gives
aa†(a∗)n = (a∗)naa†. So, the condition (xi) holds.

(xviii) Using the assumption an = anaa†, we have a#a = (a#)nan =
(a#)nanaa† = aa†. Thus, a#a is symmetric.

(xix) By the hypothesis ana† = a†an, we conclude that condition (xviii)
is satisfied: an = (ana†)a = a†ana = a†aan.

(xx) Applying involution to [(a#)∗]n = aa#[(a#)∗]n we get (a#)n =
(a#)n(aa#)∗ which yields aa# = an(a#)n = an(a#)n(aa#)∗ = aa#(aa#)∗.
The element aa#(aa#)∗ is symmetric and so is aa#.

If m = n = 1, then the above conditions are known in rings with involu-
tion ([26]) and in special cases such as matrices ([1], [5]) and operators on
Hilbert spaces ([8],[9]).

In the following result we present some equivalent conditions for an ele-
ment in a unital C∗–algebra to be EP. If m = n = k = 1, then the conditions
(i)-(iv) were established in [4].

Theorem 2.2. Let A be a unital C∗–algebra, let m,n ∈ N and let k ∈
C \ {0}. An element a ∈ A is EP if and only if a ∈ A# ∩A† and one of the
following equivalent conditions holds:

(i) aa†(an + k(a†)m) = (an + k(a†)m)aa†;
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(ii) a†a(an + k(a†)m) = (an + k(a†)m)a†a;

(iii) aa†(an + k(a∗)m) = (an + k(a∗)m)aa†;

(iv) a†a(an + k(a∗)m) = (an + k(a∗)m)a†a;

(iv) am(ana† + ka†an) = (ana† + ka†an)am.

Proof. If a is EP, it is easy to check that conditions (i)-(v) hold.
Conversely, we assume that a ∈ A# ∩ A†.
(i) The condition aa†(an + k(a†)m) = (an + k(a†)m)aa† is equivalent to

(2) an + ka(a†)m+1 = anaa† + k(a†)m.

Multiplying (2) from the left side first by a† and then by a, we obtain

an + ka(a†)m+1 = anaa† + ka(a†)m+1,

which implies an = anaa†. Thus, the condition (xviii) of Theorem 2.1 holds.
(ii)-(iv) These parts of proof follow similarly as (i).
(v) The equality am(ana† + ka†an) = (ana† + ka†an)am gives

(3) am+na† + kam+n−1 = am+n−1 + ka†am+n.

Multiplying (3) from the left side by (a#)m+n−1, we see that aa† = a#a.
Hence, a#a is symmetric.

The following theorem gives a characterization of EP elements in rings
with involution. The assumption an ∈ R† is required.

Theorem 2.3. Let n ∈ N and a ∈ R# ∩R†. If an ∈ R†, then element a is
EP if and only if a(an)† = (an)†a.

Proof. First, we can verify that a(an)† ∈ (ana†){1, 2, 3}.
Suppose that a(an)† = (an)†a. Then an−1(an)† = (an)†an−1 and

(a(an)†ana†)∗ = (a(an)†an−1aa†)∗ = (an(an)†aa†)∗ = aa†an(an)† = an(an)†,

i.e. a(an)† ∈ (ana†){4}. Thus, we conclude that ana† ∈ R† and (ana†)† =
a(an)†. Similarly, we can verify that a†an ∈ R† and (a†an)† = (an)†a. Since
a(an)† = (an)†a, we deduce that ana† = a†an and, by Theorem 2.1, a is EP.

If a is EP, then

a(an)†ana† = (a#)n−1(an(an)†an)a† = (a#)n−1ana† = aa†.

So, we obtain again that a(an)† ∈ (ana†){4}. Therefore, ana† ∈ R† and
(ana†)† = a(an)†, and similarly, a†an ∈ R† and (a†an)† = (an)†a. From
Theorem 2.1 we obtain ana† = a†an, and then a(an)† = (an)†a.
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3 Generalized normal elements

In this section a number of necessary and sufficient conditions for both
MP-invertible and group invertible elements in rings with involution to be
generalized normal elements are presented.

First, we formulate the next results which generalize Lemma 1.4 and
Lemma 1.5.

Lemma 3.1. Let a ∈ R† ∩ R# and n ∈ N . Then ana∗ = a∗an if and only
if a†an = ana† and (a∗)na† = a†(a∗)n.

Proof. ⇒: From the assumption ana∗ = a∗an and the equality ana = aan

(an(a∗)∗ = (a∗)∗an), by Lemma 1.3, we deduce that an commutes with a†

and (a∗)†, i.e. a†an = ana† and an(a†)∗ = (a†)∗an. Applying involution to
an(a†)∗ = (a†)∗an, we obtain (a∗)na† = a†(a∗)n.

⇐: Using the condition a†an = ana†, we get

(4) aa# = an(a#)n = (ana†)a(a#)n = a†ana(a#)n = a†a.

Since a†a is symmetric, aa# is symmetric too and a is EP, by Theorem
1.2. Multiplying the hypothesis (a∗)na† = a†(a∗)n by a from the left and
from the right sides, we have a(a∗)na†a = aa†(a∗)na. Then, by aa† = a†a,
a(a∗)n = (a∗)na and, applying the involution to this, ana∗ = a∗an.

From the proof of Lemma 3.1, we get the following result.

Lemma 3.2. Let a ∈ R† ∩ R# and n ∈ N . Then ana∗ = a∗an if and only
if a is EP and (a∗)na† = a†(a∗)n.

In the following theorem we study 21 conditions involving a†, a#, a∗

and their powers to ensure that element a is generalized normal. When
m = n = 1, the following result is known for characterizations of normal
elements in rings with involution ([25]) and in special cases such as matrices
([1, 5]) and operators on Hilbert spaces ([8, 9]).

Theorem 3.1. Let a ∈ R† ∩ R# and m,n ∈ N . Then ana∗ = a∗an if and
only if one of the following equivalent conditions holds:

(i) an(aa∗a)† = (aa∗a)†an;

(ii) a†(an + (a∗)n) = (an + (a∗)n)a†;

(iii) ama∗(a#)n = (a#)nama∗ (or a∗am(a#)n = (a#)na∗am);
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(iv) amana∗ = ama∗an (or ana∗am = a∗anam);

(v) a∗(a#)n = (a#)na∗;

(vi) a∗(a†)n = (a#)na∗ (or a∗(a#)n = (a†)na∗);

(vii) a(a∗)na† = (a∗)n (or a†(a∗)na = (a∗)n);

(viii) a(a∗)na# = (a∗)n (or a#(a∗)na = (a∗)n);

(ix) a∗(a∗)na# = a∗a#(a∗)n (or (a∗)na#a∗ = a#(a∗)na∗);

(x) a∗a∗(a#)n = a∗(a#)na∗ (or a∗(a#)na∗ = (a#)na∗a∗);

(xi) (a∗)na†a# = a#(a∗)na† (or a†(a∗)na# = a#a†(a∗)n);

(xii) a†a#(a∗)n = a#(a∗)na† (or (a∗)na#a† = a†(a∗)na#).

Proof. Suppose that ana∗ = a∗an. By Lemma 3.2, an commutes with (a∗)†,
a commutes with a† and a# = a†. The group inverse (an)# = (a#)n doubly
commutes with an, so (a#)n commutes with a∗. Since an commutes with
(a∗)† = (a#)∗, then, applying the involution, (a∗)n commutes with a#. Now,
we can easily verify that conditions (i)-(xii) hold.

Conversely, we will show that the condition ana∗ = a∗an is satisfied.
(i) By Lemma 1.1, the hypothesis an(aa∗a)† = (aa∗a)†an can be written

as ana†(a†)∗a† = a†(a†)∗a†an. Multiplying this equality by a from the left
and from the right sides, we get anaa†(a†)∗a†a = aa†(a†)∗a†aan. Using
Theorem 1.1, we have

(5) an(a†)∗ = (a†)∗an.

Applying the involution to (5), it follows

(6) a†(a∗)n = (a∗)na†.

The equalities ana†(a†)∗a† = a†(a†)∗a†an and (5) imply

ana† = (ana†(a†)∗a†)aa∗ = a†(a†)∗a†anaa∗ = a†((a†)∗a†a)ana∗

= a†((a†)∗an)a∗ = a†an(a†)∗a∗ = a∗((a†)∗an)a† = a∗an(a†)∗a†

= a∗anaa†(a†)∗a† = a∗a(ana†(a†)∗a†) = a∗aa†(a†)∗a†an = a†an.(7)

Then, by (6), (7) and Lemma 3.1, we have a∗an = ana∗.
(ii) The assumption a†(an + (a∗)n) = (an + (a∗)n)a† is equivalent to

(8) a†an + a†(a∗)n = ana† + (a∗)na†.
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Multiplying (8) by a from the left and from the right sides, we have

ana + aa†(a∗)na = aan + a(a∗)na†a,

which yields aa†(a∗)na = a(a∗)na†a. Multiplying the previous equality by
a† from the left and from the right sides, we get, by Theorem 1.1,

(9) a†(a∗)n = (a∗)na†.

From (8) and (9), we conclude a†an = ana†, which implies a∗an = ana∗, by
Lemma 3.1.

(iii) Using the condition ama∗(a#)n = (a#)nama∗, we obtain

(10) aa∗(a#)n = (a#)m−1ama∗(a#)n = (a#)m−1(a#)nama∗ = (a#)naa∗,

which gives

a∗ = a†an((a#)naa∗) = a†anaa∗(a#)n = a†an(aa∗(a#)n)an+1a†(a#)n

= a†an(a#)naa∗anaa†a(a#)n+1 = a∗aa#.(11)

Now, by the previous equality, we have aa† = (a†)∗a∗ = (a†)∗a∗aa# =
aa# and a∗ = (aaa#)∗ = (aaa†)∗ = aa†a∗ = aa#a∗. From this equal-
ity, (10) and (11), we observe a∗an = aa#a∗an = an−1((a#)naa∗)an =
an−1aa∗(a#)nan = ana∗.

(iv) The equality amana∗ = ama∗an gives a#aa∗ = (a#)m+n(amana∗) =
(a#)m+nama∗an = (a#)na∗an and

ana∗(a#)n = (a#)m(amana∗)(a#)n = (a#)mama∗an(a#)n = (a#aa∗)aa#

= (a#)na∗anaa# = (a#)na∗an = a#aa∗.

Now, by this, we prove that condition (iii) holds:

ama∗(a#)n = am(a#)n(ana∗(a#)n) = am(a#)na#aa∗ = (a#)nama∗.

(v) If a∗(a#)n = (a#)na∗, then the equality (iii) is satisfied.
(vi) From a∗(a†)n = (a#)na∗, it follows

a#a = (a#)n+1a(a†a)∗an = ((a#)na∗)(a†)∗an = a∗(a†)n(a†)∗an

= a†a(a∗(a†)n)(a†)∗an = a†a(a#)na∗(a†)∗an = a†aa#a = a†a,

and a is EP, by Theorem 1.2. The equalities a† = a# and (vi) imply
a∗(a#)n = (a#)na∗. So, the condition (v) holds.
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(vii) Multiplying the hypothesis a(a∗)na† = (a∗)n from the right side by
a†, we obtain (a∗)na† = a†(a∗)n. Hence, (a∗)n = a((a∗)na†) = aa†(a∗)n and

(12) a#a = (a#)n[(a∗)n]∗ = (a#)n(aa†(a∗)n)∗ = (a#)nanaa† = aa†.

The equality (12) and Theorem 1.2 give a is EP. By Lemma 3.2 and (a∗)na† =
a†(a∗)n, we deduce a∗an = ana∗.

(viii) Using the equality a(a∗)na# = (a∗)n, we get aa†(a∗)n =
aa†a(a∗)na# = a(a∗)na# = (a∗)n which implies (12) and, by Theorem 1.2,
a is EP. Since a† = a#, from (viii), we conclude that (vii) holds.

(ix) By the assumption a∗(a∗)na# = a∗a#(a∗)n, we have

(a∗)n = a†a2(aa†)∗a(a#)2(a∗)n = a†a2(a†)∗(a∗a#(a∗)n)
= a†a2(a†)∗a∗(a∗)na# = a†a2(a†)∗(a∗(a∗)na#)aa#

= a†a2(a†)∗a∗a#(a∗)naa# = a†a2aa†a(a#)2(a∗)naa# = (a∗)naa#.(13)

This equality gives aa# = [(a∗)n]∗(a#)n = [(a∗)naa#]∗(a#)n = (aa#)∗aa#.
Since (aa#)∗aa# is symmetric element, then aa# is symmetric and, by The-
orem 1.2, a is EP. Now, by (ix), (13) and aa† = a†a , we observe

a#(a∗)na = a(a#)2(a∗)na = aa†a(a#)2(a∗)na = (a†)∗(a∗a#(a∗)n)a
= (a†)∗a∗((a∗)na#a) = aa†(a∗)n = a†a(a∗)n = (a∗)n.

Thus, the condition (viii) is satisfied.
(x) Suppose that a∗a∗(a#)n = a∗(a#)na∗. Then

(a#)na∗ = aa†a(a#)n+1a∗ = (a†)∗(a∗(a#)na∗) = (a†)∗a∗a∗(a#)n

= (a†)∗(a∗a∗(a#)n)aa# = (a†)∗a∗(a#)na∗aa#

= aa†(a#)na∗aa# = aa†a(a#)n+1a∗aa# = (a#)na∗aa#,

which yields aa# = (a†)∗a†an+1((a#)na∗aa#) = (a†)∗a†an+1(a#)na∗ = aa†.
Hence, by Theorem 1.2, a is EP. From a†a = aa† and (x), we show that the
condition (v) holds:

a∗(a#)n = aa†a∗(a#)n = (a†)∗(a∗a∗(a#)n) = (a†)∗a∗(a#)na∗ = (a#)na∗.

(xi) From the hypothesis (a∗)na†a# = a#(a∗)na†, we get

(14) (a∗)na† = (a∗)na†aa† = ((a∗)na†a#)aaa† = a#(a∗)na†aaa†

and then

a#(a∗)na† = (a∗)na†a# = a†a((a∗)na†a#) = a†aa#((a∗)na†)
= a†aa#a#(a∗)na†aaa† = a†(a#(a∗)na†)aaa†

= a†(a∗)na†a#aaa† = a†(a∗)na†aa† = a†(a∗)na†.
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By the previous equality, we obtain

(15) a(a∗)n+1 = a2(a#(a∗)na†)aa∗ = a2a†(a∗)na†aa∗ = aaa†(a∗)n+1.

Now, the equality (15) gives

a#ana∗ = (a#)2an+1a∗ = (a#)2(a(a∗)n+1)∗ = (a#)2(aaa†(a∗)n+1)∗

= (a#)2an+1aa†a∗ = ana†a∗

implying

(16) a#a = (a#)n−1(a#ana∗)(a†)∗ = (a#)n−1ana†a∗(a†)∗ = aa†a†a.

Using (14) and (16), it follows
(17)

(a∗)na† = a#(a∗)na†aaa† = a#(aa†a†aan)∗ = a#(a#aan)∗ = a#(a∗)n.

Therefore, by (17) and (xi),
(18)
(a∗)na# = a†a2(a#(a∗)n)a# = a†a2((a∗)na†a#) = a†a2a#(a∗)na† = (a∗)na†.

Obviously, by (17) and (18), (a∗)na# = a#(a∗)n which yields a∗(a∗)na# =
a∗a#(a∗)n. So, the equality (ix) is satisfied.

(xii) Assume that a†a#(a∗)n = a#(a∗)na†. Then

a†a#(a∗)n = a#(a∗)na† = a#a†a(a∗)na† = a#a†a2(a#(a∗)na†)
= (a#)2aa†a2a†a#(a∗)n = a#aa†a(a#)2(a∗)n = a#a#(a∗)n

and consequently

a†a#a∗ = a†a#((a#)n−1an)∗ = (a†a#(a∗)n)((a#)n−1)∗

= a#a#(a∗)n((a#)n−1)∗ = a#a#a∗.

This equality implies

a#a = a#(a#)2aa†aa2 = (a#a#a∗)(a†)∗a2 = a†a#a∗(a†)∗a2

= a†a#a†aa2 = a†(a#)2aa†aa2 = a†a.

Thus, element a#a is symmetric and a is EP, by Theorem 1.2. When we
use a† = a# and (xii), we obtain a#a#(a∗)n = a#(a∗)na# and

a(a∗)na# = a2(a#(a∗)na#) = a2a#a#(a∗)n = a#a(a∗)n = a†a(a∗)n = (a∗)n.

Hence, the condition (viii) holds.
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For n = 1 in Theorem 3.1, we get new equivalent conditions for an
element a of a ring with involution to be normal, extending some results
from [25].

Theorem 3.2. Let a ∈ R† ∩R# and m ∈ N . Then a is normal if and only
if one of the following equivalent conditions holds:

(i) ama∗a# = a#ama∗ (or a∗ama# = a#a∗am);

(ii) amaa∗ = ama∗a (or aa∗am = a∗aam).

4 Generalized Hermitian elements

In this section we consider an element a in rings with involution which
is generalized Hermitian. In the following theorem we assume again that
element a is MP-invertible and group invertible and we investigate equivalent
conditions for element a to be generalized Hermitian element. The following
theorem is motivated by results about Hermitian elements in [1, 9, 25] which
are recovered for m = n = 1.

Theorem 4.1. Let a ∈ R† ∩ R# and m,n ∈ N . Then an = (a∗)n if and
only if one of the following equivalent conditions holds:

(i) anaa† = (a∗)n (or anam = (a∗)nam or an(a#)m = (a∗)n(a#)m);

(ii) ana† = (a∗)na† (or ana# = (a∗)na† or ana# = a†(a∗)n or (a∗)na†(a#)n =
a#);

(iii) a†an = a#(a∗)n;

(iv) a∗(a∗)n(a#)n = a∗;

(v) (a∗)na†(a†)n = a#;

(vi) (a∗)na†(a#)n = a†;

(vii) a#(a∗)n(a#)n = a†;

(viii) a(a∗)na† = an.

Proof. Assume that an = (a∗)n. Then ana∗ = (a∗)n+1 = a∗an and, by
Lemma 3.2, we conclude that a commutes with its Moore–Penrose inverse
and a# = a†. Since the group inverse a# doubly commutes with a, we
deduce that a# commutes with an. Obviously, the conditions (i)-(viii) hold.
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Conversely, we prove that a satisfies the equality an = (a∗)n.
(i) Using the condition anaa† = (a∗)n, we obtain

an = [(a∗)n]∗ = (anaa†)∗ = aa†(a∗)n = aa†anaa† = anaa† = (a∗)n.

(ii) By the assumption ana† = (a∗)na†, we have an = ana†a = (a∗)na†a,
which gives (a∗)n = (an)∗ = ((a∗)na†a)∗ = a†aan = a†a(a∗)na†a = an.

(iii) Suppose that a†an = a#(a∗)n. Now, we have an = a(a†an) =
aa#(a∗)n and

(a∗)n = a†a(a∗)n = a†a(aa#(a∗)n) = a†aan = (a†an)a
= a#(a∗)na = a#(aa#(a∗)n)a = a#ana = an.

(iv) The equality a∗(a∗)n(a#)n = a∗ gives

(19) aa† = (a†)∗a∗ = (a†)∗a∗(a∗)n(a#)n = aa†(a∗)n(a#)n,

which yields aa# = (aa†)aa# = aa†(a∗)n(a#)naa# = aa†(a∗)n(a#)n = aa†.
Because aa† is symmetric, aa# is symmetric too. Thus, from Theorem 1.2,
a is EP and aa† = a†a = aa#. So, by this equality and (19),

an = (aa†)an = (aa†)(a∗)n(a#)nan = a†a(a∗)naa# = (a∗)naa† = (a∗)n.

(v) When we apply the assumption (a∗)na†(a†)n = a#, we see that

aa# = a(a∗)na†(a†)n = a((a∗)na†(a†)n)aa† = aa#aa† = aa†.

Therefore, aa# is symmetric and, by Theorem 1.2, a is EP. Then, by a# = a†

and (v), we get that the condition (i) holds:

(a∗)nam = ((a∗)na†(a†)n)am+n+1 = a#am+n+1 = am+n.

(vi) Assume that (a∗)na†(a#)n = a†. Now

aa# = aa†aa# = a(a∗)na†(a#)naa# = a((a∗)na†(a#)n) = aa†.

Since aa# is symmetric, by Theorem 1.2, a is EP. Using a# = a† and (vi),
we show that condition (i) holds:

an(a#)m = a#an(a#)m−1 = a†an(a#)m−1 = (a∗)na†(a#)nan(a#)m−1

= (a∗)na#a#a(a#)m−1 = (a∗)n(a#)m.

(vii) If a#(a∗)n(a#)n = a†, then

a#a = a#aa†a = a#aa#(a∗)n(a#)na = (a#(a∗)n(a#)n)a = a†a.
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Therefore, a#a is symmetric and a is EP, by Theorem 1.2. It follows, by
a# = a† and (vii), that a satisfies the condition (iii):

a†an = a#(a∗)n(a#)nan = a#(a∗)naa# = a#(a∗)naa† = a#(a∗)n.

(ix) From the hypothesis a(a∗)na† = an, we have

a#a = (a#)nan = (a#)na(a∗)na† = (a#)n(a(a∗)na†)aa† = a#aaa† = aa†,

implying that a#a is symmetric and a is EP, by Theorem 1.2. The equalities
aa† = a†a and (ix) give ana† = a†an = a†a(a∗)na† = (a∗)na†. Thus, the
condition (ii) is satisfied.

When n = 1, Theorem 4.1 implies the next new conditions for charac-
terizations of Hermitian elements in rings with involution and generalizes
some recent results in [25].

Theorem 4.2. Let a ∈ R† ∩ R# and m ∈ N . Then a is Hermitian if and
only if aam = a∗am (or a(a#)m = a∗(a#)m).

5 Conclusions

In this paper we investigate necessary and sufficient conditions for Moore-
Penrose invertible and group invertible element a in rings with involution
to be EP, generalized normal and generalized Hermitian elements. As a
corollary, we obtain some new characterization of normal and Hermitian
elements in terms of equations involving their adjoints, Moore-Penorse and
group inverse and their powers, extending some earlier results.

Acknowledgement. We are grateful to referees for their helpful com-
ments concerning the paper.
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