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Abstract

We investigate some necessary and sufficient conditions for the hy-
brid reverse order law (ab)# = b†a† in rings with involution. Assuming
that a and b are Moore-Penrose invertible, we present equivalent con-
dition for the product ab to be EP element.
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1 Introduction

We start with some standard notations. Let R be an associative ring with
the unit 1, and let a ∈ R. Then a is group invertible if there exists x ∈ R
satisfying

(1) axa = a, (2) xax = x, (5) ax = xa;

such x is the uniquely determined group inverse of a, written x = a#.
The group inverse a# double commutes with a, that is, ax = xa implies
a#x = xa# [1]. Denote by R# the set of all group invertible elements of R.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R is self-adjoint (or Hermitian) if a∗ = a.
An element a ∈ R is Moore–Penrose invertible if there exists x ∈ R

satisfying the so-called Penrose conditions [11],

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa;
∗The authors are supported by the Ministry of Education and Science, Republic of

Serbia, grant no. 174007.

1



such x is the uniquely determined Moore–Penrose inverse of a denoted by
x = a†. We provide a short proof: if b, c are two candidates for a Moore–
Penrose inverse of a, then ab = (ac)(ab) is self-adjoint. The product of two
self-adjoint elements ab and ac is self-adjoint if and only if they commute.
Hence, ab = acab = abac = ac. In the same way we can prove that ba = ca.
Now we have b = bab = bac = cac = c. Thus, the Moore–Penrose inverse of
a is unique if it exists. The set of all Moore–Penrose invertible elements of
R will be denoted by R†.

If δ ⊂ {1, 2, 3, 4, 5} and b satisfies the equations (i) for all i ∈ δ, then b
is an δ–inverse of a. The set of all δ–inverse of a is denote by a{δ}. Notice
that a{1, 2, 5} = {a#} and a{1, 2, 3, 4} = {a†}. If a is invertible, then a#

and a† each coincide with the ordinary inverse of a. The set of all invertible
elements of R will be denoted by R−1.

For a ∈ R consider two annihilators

a◦ = {x ∈ R : ax = 0}, ◦a = {x ∈ R : xa = 0}.
An element a ∈ R is: left *-cancellable if a∗ax = a∗ay implies ax =

ay; it is right *-cancellable if xaa∗ = yaa∗ implies xa = ya; and it is *-
cancellable if it is both left and right *-cancellable. We observe that a is
left *-cancellable if and only if a∗ is right *-cancellable. In C∗-algebras all
elements are *-cancellable. A ring R is called *-reducing if every element of
R is *-cancellable. This is equivalent to the implication a∗a = 0 ⇒ a = 0
for all a ∈ R.

We recall the definition of EP elements [9].

Definition 1.1. An element a of a ring R with involution is said to be EP
if a ∈ R# ∩R† and a# = a†.

The EP elements are important since they are characterized by commu-
tativity with their Moore–Penrose inverse.

In the theory of generalized inverses, one of fundamental procedures is to
find generalized inverses of products. If a, b ∈ R are invertible, then ab is also
invertible, and the inverse of the product ab satisfied (ab)−1 = b−1a−1. This
equality is called the reverse order law, and it can be used to simplify various
expressions that involve inverses of products. Since this formula cannot
be trivially extended to various generalized inverse of the product ab, the
reverse order law for various generalized inverses yields a class of interesting
problems that are fundamental in the theory of generalized inverses. Many
authors studied these problems [1, 2, 4, 5, 6, 7].

Greville [6] proved that (ab)† = b†a† holds for complex matrices, if and
only if: a†a commutes with bb∗, and bb† commutes with a∗a. In the case of
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linear bounded operators on Hilbert spaces, the analogous result was proved
by Izumino [7]. The corresponding result in rings with involution was proved
in [8].

C.Y. Deng [4] presented some necessary and sufficient conditions con-
cerning the reverse order law (ab)# = b#a# for the group invertible linear
bounded operators a and b on Hilbert space. He used the matrix form of
operators induced by some natural decomposition of Hilbert spaces.

In this paper we introduce some conditions equivalent to the hybrid
reverse order law (ab)# = b†a† in rings with involution, motivated by [4].
We prove that the assumption of inclusion (ab){1, 5} ⊆ b{1, 3, 4} · a{1, 3, 4}
automatically implies equality. We also give several conditions equivalent to
(ab)# = b†a† = (ab)† (that is, the product of elements a and b be EP). We
also study conditions related to the reverse order laws (ab)# = (a†ab)†a†,
(ab)# = (a∗ab)†a∗, (ab)# = b†(abb†)† and (ab)# = b∗(abb∗)†.

To conclude this section, we state the following well-known results on
the Moore-Penrose inverse, which be used later.

Lemma 1.1. If a ∈ R†, then

(i) a · a{1, 3} = {aa†};
(ii) a{1, 4} · a = {aa†}.

Proof. We only prove the statement (i), because (ii) follows similarly. For
a(1,3) ∈ a{1, 3}, we have

aa(1,3) = aa†aa(1,3) = (aa(1,3)aa†)∗ = (aa†)∗ = aa†.

Thus, a · a{1, 3} ⊆ {aa†}. By a† ∈ a{1, 3}, aa† ∈ a · a{1, 3}.
Lemma 1.2. Let a, b ∈ R.

(i) If a, a†ab ∈ R†, then (a†ab)† = (a†ab)†a†a.

(ii) If b, abb† ∈ R†, then (abb†)† = bb†(abb†)†.

Proof. The statement (i) follows from

(a†ab)†a†a = (a†ab)†a†ab(a†ab)†a†a = (a†ab)†(a†aa†ab(a†ab)†)∗

= (a†ab)†(a†ab(a†ab)†)∗ = (a†ab)†.

The second statement can be verified in the same way.

By Remark after Theorem 2.4 in [11], [11, Theorem 2.1] can be formu-
lated as follows.
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Theorem 1.1. Let R be a ring with involution, let a, b ∈ R† and let (1 −
a†a)b be left *-cancellable. Then the following conditions are equivalent:

(a) abb†a†ab = ab;

(b) b†a†abb†a† = b†a†;

(c) a†abb† = bb†a†a.

2 Reverse order law for the group inverse

If a and b are any matrices such that the product ab is defined, Cline [3] has
developed a representation for the Moore–Penrose inverse of the product
of ab, as follows: (ab)† = (a†ab)†(abb†)†. In [17], Z. Xiong and Y. Qin
generalized this result to the case of the weighted Moore–Penrose inverse.

The mixed-type reverse-order laws for matrix product ab like (ab)† =
(a†ab)†a†, (ab)† = b†(abb†)†, (ab)† = (a∗ab)†a∗, (ab)† = b∗(abb∗)† have also
been considered, see [14, 15, 16].

The equations (ab)# = (a†ab)†a† , (ab)# = (a∗ab)†a∗, (ab)# = b†(abb†)†

and (ab)# = b∗(abb∗)† which appear in this section can be seen as a special
case of the above results.

In the following theorem, some necessary and sufficient conditions for
(ab)# = (a†ab)†a† to be satisfied are given.

Theorem 2.1. If b ∈ R, a, a†ab ∈ R†, and ab ∈ R#, then the following
statements are equivalent:

(i) (ab)# = (a†ab)†a†,

(ii) (a†ab)†a† ∈ (ab){5},
(iii) abaa† = ab and (a†ab)†ba = ab(a†ab)†,

(iv) (a†ab){1, 3, 4} · a{1, 3, 4} ⊆ (ab){5}.
Proof. (i) ⇒ (ii): This is clear.

(ii) ⇒ (iii): The assumption (a†ab)†a† ∈ (ab){5} give (a†ab)†a†ab =
ab(a†ab)†a†. Then, (a†ab)†a†aba = ab(a†ab)#a†a and, by Lemma 1.2(i),
(a†ab)†ba = ab(a†ab)†. Notice that (a†ab)†a† ∈ (ab){1}, by

ab(a†ab)†a†ab = a(a†ab(a†ab)†a†ab) = aa†ab = ab. (2.1)

Now, we obtain ab = abab(a†ab)†a† and

abaa† = abab(a†ab)†a†aa† = abab(a†ab)#a† = ab.
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(iii)⇒ (iv): Let abaa† = ab and (a†ab)†ba = ab(a†ab)†. For (a†ab)(1,3,4) ∈
(a†ab){1, 3, 4} and a(1,3,4) ∈ a{1, 3, 4}, by Lemma 1.1 and Lemma 1.2, we
obtain that (a†ab)(1,3,4)a(1,3,4) ∈ (ab){5}:
ab(a†ab)(1,3,4)a(1,3,4) = a(a†ab(a†ab)(1,3,4))a(1,3,4) = aa†ab(a†ab)†a(1,3,4)

= (ab(a†ab)†)a(1,3,4) = (a†ab)†b(aa(1,3,4))
= (a†ab)†a†(abaa†) = (a†ab)†a†ab

= (a†ab)(1,3,4)a†ab = (a†ab)(1,3,4)a(1,3,4)ab.

Hence, for any (a†ab)(1,3,4) ∈ (a†ab){1, 3, 4} and a(1,3,4) ∈ a{1, 3, 4}, we
conclude that (a†ab)(1,3,4)a(1,3,4) ∈ (ab){5} and the statement (iv) holds.

(iv) ⇒ (i): By the hypothesis (iv), (a†ab)† ∈ (a†ab){1, 3, 4} and a† ∈
{1, 3, 4}, we deduce (a†ab)†a† ∈ (ab){5}. The equalities (2.1) and

((a†ab)†a†ab(a†ab)†)a† = (a†ab)†a†

imply (a†ab)†a† ∈ (ab){1, 2} and the condition (i) is satisfied.

Remark. The following results concerning (ab)# = (a∗ab)†a∗, (ab)# =
b†(abb†)† and (ab)# = b∗(abb∗)† can be proved in the similar way as in
Theorem 2.1. Let a, b ∈ R and ab ∈ R#.

(1) If a, a∗ab ∈ R†, then

(ab)# = (a∗ab)†a∗ ⇔ (a∗ab)†a∗ ∈ (ab){5}
⇔ abaa† = ab and (a∗ab)†a∗aba = ab(a†ab)†a∗a
⇔ (a∗ab){1, 3, 4} · a∗ ⊆ (ab){5}.

(2) If b, abb† ∈ R†, then

(ab)# = b†(abb†)† ⇔ b†(abb†)† ∈ (ab){5}
⇔ b†bab = ab and ba(abb†)† = (abb†)†ab

⇔ b{1, 3, 4} · (abb†){1, 3, 4} ⊆ (ab){5}.
(3) If b, abb∗ ∈ R†, then

(ab)# = b∗(abb∗)† ⇔ b∗(abb∗)† ∈ (ab){5}
⇔ b†bab = ab and babb∗(abb∗)† = bb∗(abb∗)†ab

⇔ b∗ · (abb∗){1, 3, 4} ⊆ (ab){5}.
Supposing that a and b are Moore–Penrose invertible elements in ring

with involution, we study conditions which ensure that b† = (ab)#a in the
next theorem. As we will see, these conditions imply that product ab is an
EP element.
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Theorem 2.2. If a, b ∈ R†, and ab ∈ R#, then the following statements
are equivalent:

(i) b† = (ab)#a,

(ii) b = a†ab = baa† and abb† = b†ba,

(iii) bR ⊂ a∗R, a†ab = baa† and abb† = b†ba,

(iv) (a∗)◦ ⊂ b◦, a†ab = baa† and abb† = b†ba,

(v) ab ∈ R†, (ab)# = b†a† = (ab)† and b = a†ab.

Proof. (i) ⇒ (ii): Applying the hypothesis b† = (ab)#a, we obtain

abb† = (ab(ab)#)a = ((ab)#a)ba = b†ba,

and

a†ab = a†abb†b = (bb†a†a)∗b = (b(ab)#aa†a)∗b = (bb†)∗b = b.

Since
aa†(ab)# = aa†ab[(ab)#]2 = ab[(ab)#]2 = (ab)#,

we have

baa† = bb†baa† = b(aa†b†b)∗ = b(aa†(ab)#ab)∗ = b((ab)#ab)∗ = b(b†b)∗ = b.

Thus, (ii) is satisfied.
(ii) ⇒ (i): Let b = a†ab = baa† and abb† = b†ba. By the equalities

b(ab)#ab = a†(ab(ab)#ab) = a†ab = b (2.2)

and
(ab)#ab(ab)#a = (ab)#a, (2.3)

we deduce that (ab)#a ∈ b{1, 2}. Using

(ab)#b†b = [(ab)#]2abb†b = [(ab)#]2ab = (ab)#,

we get

b(ab)#a = b(ab)#(b†ba) = b((ab)#a)bb† = bb†bb† = bb†,

which gives that b(ab)#a is selfadjoint, i.e. (ab)#a ∈ b{3}. Further, from

ab(ab)# = (abb†)b(ab)# = b†b(ab(ab)#) = b†b((ab)#a)b = b†bb†b = b†b,
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we have (ab)#ab = ab(ab)# = b†b is selfadjoint, that is, (ab)#a ∈ b{4}. So,
we conclude that b† = (ab)#a.

(ii) ⇔ (iii): To show that b = a†ab is equivalent to bR ⊂ a∗R, obviously,
if b = a†ab, then bR ⊂ a†R = a∗R. Conversely, bR ⊂ a∗R gives b = a∗x,
for some x ∈ R, which implies b = a†a(a∗x) = a†ab.

(ii) ⇔ (iv): This equivalence follows from b = baa† iff b(1− aa†) = 0 iff
(1− aa†)R ⊂ b◦ iff (a∗)◦ ⊂ b◦.

(i) ⇒ (v): Suppose that b† = (ab)#a. It can be check easily that b†a† ∈
(ab){1, 2}. Observe that, b†b = (ab)#ab = ab(ab)# and

aa†b† = aa†(ab)#a = aa†ab((ab)#)2a = ab((ab)#)2a = (ab)#a = b†.

Now, we obtain

abb†a† = (ab(ab)#)aa† = b†baa† = ((aa†b†)b)∗ = (b†b)∗ = b†b

and
b†a†ab = (ab)#aa†ab = (ab)#ab = b†b.

Consequently, b†a† ∈ (ab){3, 4, 5}, by abb†a† = b†a†ab = b†b. Hence, ab ∈ R†
and (ab)# = b†a† = (ab)†. The equality b = a†ab follows as in part (i) ⇒
(ii).

(v)⇒ (i): Using (ab)# = b†a† = (ab)† and b = a†ab, we obtain (ab)#ab =
b†a†ab is selfadjoint, (2.2) and (2.3). Thus, (ab)#a ∈ b{1, 2, 4}. From

b(ab)#a = bb†a†a = (a†abb†)∗ = (bb†)∗ = bb†,

we have (ab)#a ∈ b{3} and the statement (i) holds.

Remark. Similarly to Theorem 2.2, if a, b ∈ R† and ab ∈ R#, then

a† = b(ab)# ⇔ a†ab = baa† and a = abb† = b†ba
⇔ aR ⊂ b∗R, a†ab = baa† and abb† = b†ba
⇔ (b∗)◦ ⊂ a◦, a†ab = baa† and abb† = b†ba
⇔ ab ∈ R†, (ab)# = b†a† = (ab)† and a = abb†.

Corollary 2.1. Let a, b ∈ R†, and ab ∈ R#. If any of conditions (i)-(iv) of
Theorem 2.2 (or any of conditions of Remark after Theorem 2.2) is satisfied,
then (ab)# = b†a† = (ab)†.

The next result contains equivalent condition for (ab)# = b†a† to hold
in a ring with involution.
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Theorem 2.3. If a, b ∈ R† and ab ∈ R#, then the following statements are
equivalent:

(i) (ab)# = b†a†,

(ii) (ab)#a = b†a†a and a∗ab = a∗abaa†,

(iii) (ab)#a = b†a†a and a†ab = a†abaa†,

(iv) b(ab)# = bb†a† and abb∗ = b†babb∗,

(v) b(ab)# = bb†a† and abb† = b†babb†.

Proof. (i) ⇒ (ii): By the condition (ab)# = b†a†, we get (ab)#a = b†a†a and

a∗ab = a∗ab((ab)#ab) = a∗abab(ab)# = a∗ababb†a†

= a∗(ababb†a†)aa† = a∗abaa†.

Thus, the statement (ii) holds.
(ii) ⇒ (iii): The equalities (ab)#a = b†a†a and a∗ab = a∗abaa† imply

that the conditon (iii) is satisfied:

a†ab = a†(a†)∗(a∗ab) = a†(a†)∗a∗abaa† = a†abaa†.

(iii) ⇒ (i): Let (ab)#a = b†a†a and a†ab = a†abaa†. Then, from

ab = ab((ab)#a)b = abb†a†ab

and

b†a† = (b†a†a)a† = (ab)#aa† = ((ab)#a)b((ab)#a)a†

= b†a†abb†a†aa† = b†a†abb†a†,

we deduce that b†a† ∈ (ab){1, 2}. Since

(b†a†a)b = (ab)#ab = (ab)#a(a†ab) = (ab)#aa†abaa†

= ((ab)#ab)aa† = ab((ab)#a)a† = abb†a†aa†

= abb†a†,

we notice that b†a† ∈ (ab){5}. Hence, (ab)# = b†a†.
(i) ⇒ (iv) ⇒ (v) ⇒ (i): Similarly as (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
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The condition a†ab = a†abaa† in Theorem 2.3 can be replaced with
equivalent conditions Ra†ab ⊂ Ra∗ or (a∗)◦ ⊂ (a†ab)◦. Also, the condition
abb† = b†babb† in Theorem 2.3 can be replaced with equivalent conditions
abb†R ⊂ b∗R or ◦(b∗) ⊂◦ (abb†).

Sufficient conditions for the reverse order law (ab)# = b†a† are given in
the following theorem.

Theorem 2.4. Suppose that a, b ∈ R† and ab ∈ R#. Then each of the
following conditions is sufficient for (ab)# = b†a† to hold:

(i) (ab)#a = b†a†a and a†ab = baa†,

(ii) b(ab)# = bb†a† and b†ba = abb†.

Proof. (i) Using (ab)#a = b†a†a and a†ab = baa†, we have

abb†a† = (ab(ab)#)abb†a† = ((ab)#a)bab(b†a†a)a† = b†a†(abab(ab)#)aa†

= b†a†a(baa†) = b†a†aa†ab = b†a†ab.

So, b†a† ∈ (ab){5}. By the equalities

ab(b†a†a)b = ab(ab)#ab = ab

and

b†a†abb†a† = (b†a†a)a†ab(b†a†a)a† = (ab)#aa†ab(ab)#aa†

= ((ab)#a)a† = b†a†aa† = b†a†,

we conclude that b†a† ∈ (ab){1, 2}. Thus, (ab)# = b†a†.
(ii) Similarly as item (i).

Adding the assumption that (1−a†a)b is left ∗-cancellable, the following
theorem gives a characterization of (ab)# = b†a†.

Theorem 2.5. Let a, b ∈ R†, and let (1− a†a)b be left *-cancellable. Then
the following conditions are equivalent:

(i) ab ∈ R# and (ab)# = b†a†,

(ii) b†a† ∈ (ab){1, 5},
(iii) b{1, 3, 4} · a{1, 3, 4} ⊆ (ab){1, 5},
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(iv) ab ∈ R# and ab(ab)# = abb†a† = b†a†ab.

Proof. (i) ⇒ (ii) ∧ (iv): This is obvious.
(ii) ⇒ (iii): Assume that b†a† ∈ (ab){1, 5}. Let a(1,3,4) ∈ a{1, 3, 4} and

b(1,3,4) ∈ b{1, 3, 4}. Since abb†a†ab = ab, by Theorem 1.1 (parts (a) and (c)),
we have a†abb† = bb†a†a. By this equality and Lemma 1.1, we get

abb(1,3,4)a(1,3,4) = a(a†abb†)a(1,3,4) = abb†a†aa(1,3,4) = abb†a†aa† = abb†a†

(2.4)
and

b(1,3,4)a(1,3,4)ab = b(1,3,4)(a†abb†)b = b(1,3,4)bb†a†ab = b†bb†a†ab = b†a†ab.
(2.5)

Since abb†a† = b†a†ab, we observe that abb(1,3,4)a(1,3,4) = b(1,3,4)a(1,3,4)ab,
that is b(1,3,4)a(1,3,4) ∈ (ab){5}. Using the equality (2.4) and the assumption
b†a† ∈ (ab){1}, we get

abb(1,3,4)a(1,3,4)ab = abb†a†ab = ab,

i.e. b(1,3,4)a(1,3,4) ∈ (ab){1}. So, the condition (iii) is satisfied.
(iii) ⇒ (i): If b{1, 3, 4} · a{1, 3, 4} ⊆ (ab){1, 5}, by b† ∈ b{1, 3, 4} and

a† ∈ a{1, 3, 4}, we notice that b†a† ∈ (ab){1, 5}. From Theorem 1.1 (parts
(a) and (b)), we conclude that b†a† ∈ (ab){2}. Hence, ab ∈ R# and (ab)# =
b†a†.

(iv) ⇒ (ii): The conditions ab ∈ R# and ab(ab)# = abb†a† = b†a†ab give
b†a† ∈ (ab){5} and

ab = ab(ab)#ab = abb†a†ab.

Thus, b†a† ∈ (ab){1} and the statement (ii) holds.

Theorem 2.6. Let a, b ∈ R† and let (1 − a†a)b be left *-cancellable. If
ab ∈ R#, then the inclusion (ab){1, 5} ⊆ b{1, 3, 4} · a{1, 3, 4} is always an
equality.

Proof. Suppose that (ab){1, 5} ⊆ b{1, 3, 4}·a{1, 3, 4}. Since (ab)# ∈ (ab){1, 5},
then there exist a(1,3,4) ∈ a{1, 3, 4} and b(1,3,4) ∈ b{1, 3, 4} such that (ab)# =
b(1,3,4)a(1,3,4). Further, by Lemma 1.1, we have

b†b(ab)#aa† = b†(bb(1,3,4))(a(1,3,4)a)a† = b†bb†a†aa† = b†a†

which yields

ab(b†a†)ab = abb†b(ab)#aa†ab = ab(ab)#ab = ab.
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Therefore, by Theorem 1.1 (parts (a) and (c)), we have a†abb† = bb†a†a im-
plying (2.4) and (2.5). From the equalities abb(1,3,4)a(1,3,4) = b(1,3,4)a(1,3,4)ab,
(2.4) and (2.5), we notice that abb†a† = b†a†ab. By Theorem 2.5, b†a† ∈
(ab){1, 5} gives b{1, 3, 4} · a{1, 3, 4} ⊆ (ab){1, 5}. So, (ab){1, 5} = b{1, 3, 4} ·
a{1, 3, 4}.

Remark. Theorem 2.5 and Theorem 2.6 hold in C∗-algebras and *-
reducing rings without the hypothesis (1− a†a)b is left *-cancellable, since
this condition is automatically satisfied.

In the following theorems, necessary and sufficient conditions for the
reverse order law (ab)# = b†a† = (ab)† are obtained. Thus, some equivalent
conditions which ensure that the product ab is EP are considered.

Theorem 2.7. Suppose that a, b ∈ R† and ab ∈ R#. Then ab ∈ R† and
(ab)# = b†a† = (ab)† if and only if one of the following equivalent conditions
holds:

(i) a†ab ∈ R† and b(ab)# = bb†a† = (abb†)†,

(ii) abb† ∈ R† and (ab)#a = b†a†a = (a†ab)†,

(iii) ab, a†ab ∈ R†, (ab)# = (a†ab)†a† and (a†ab)† = b†a†a,

(iv) ab, abb† ∈ R†, (ab)# = b†(abb†)† and (abb†)† = bb†a†,

(v) ab, a∗ab ∈ R†, (ab)# = (a∗ab)†a∗ and (a∗ab)† = b†(a∗a)#,

(vi) ab, abb∗ ∈ R†, (ab)# = b∗(abb∗)† and (abb∗)† = (bb∗)#a†.

Proof. If ab ∈ R† and (ab)# = b†a† = (ab)†, then the conditions (i)-(vi)
hold, by [10, Theorem 2.1].

Conversely, we will show that each of the conditions (i)-(vi) is sufficient
for (ab)# = b†a† = (ab)†, or for one of the preceding already established
conditions of this theorem.

(i) Suppose that b(ab)# = bb†a† = (abb†)†. Then, we observe that b†a† ∈
(ab){1, 2}, from

a(bb†a†)ab = ab(ab)#ab = ab,

and

b†a†abb†a† = b†(bb†a†)a(bb†a†) = b†b(ab)#ab(ab)#

= b†(b(ab)#) = b†bb†a† = b†a†.
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The hypothesis bb†a† = (abb†)† implies that abb†a† = abb†bb†a† is selfadjoint,
that is b†a† ∈ (ab){3}. Note that

(ab)#b†b = [(ab)#]2abb†b = [(ab)#]2ab = (ab)#.

Now, we get b†a† ∈ (ab){5}, by

b†a†ab = b†(bb†a†)ab = b†b(ab)#ab = b†ba(b(ab)#) = b†b(abb†a†)∗

= (a(bb†a†)b†b)∗ = (ab(ab)#b†b)∗ = (ab(ab)#)∗

= (abb†a†)∗ = abb†a†.

Hence, the reverse order law (ab)# = b†a† holds. Further, we observe that

b†a†ab = (ab)#ab = ab(ab)# = abb†a†

is selfadjoint and (ab)† = b†a†.
(ii) It follows in the same manner as (i).
(iii) Let (ab)# = (a†ab)†a† and (a†ab)† = b†a†a. By Lema 1.2, we obtain

(ab)#a = (a†ab)†a†a = (a†ab)†. Thus, the condition (ii) is satisfied.
(iv) Analogy as (iii) ⇒ (ii), we get (iv) ⇒ (i).
(v) Since a ∈ R†, then a∗a ∈ R# and a† = (a∗a)#a∗ (see [9]). The

equalities (ab)# = (a∗ab)†a∗ and (a∗ab)† = b†(a∗a)# give

(ab)# = (a∗ab)†a∗ = b†(a∗a)#a∗ = b†a†.

From (a∗ab)† = b†(a∗a)#, we deduce that b†a†ab = b†(a∗a)#a∗ab is self-
adjoint. Therefore, abb†a† = ab(ab)# = b†a†ab is selfadjoint also and
(ab)† = b†a†.

(vi) Similarly as the condition (v).

Theorem 2.8. If a, b ∈ R†, then the following conditions are equivalent:

(i) ab ∈ R† ∩R# and (ab)# = b†a† = (ab)†,

(ii) (a†)∗b ∈ R† ∩R# and [(a†)∗b]# = b†a∗ = [(a†)∗b]†,

(iii) a(b†)∗ ∈ R† ∩R# and [a(b†)∗]# = b∗a† = [a(b†)∗]†.

Proof. (i) ⇒ (ii): By [10, Theorem 2.1], the conditions ab ∈ R† ∩ R# and
(ab)# = b†a† = (ab)† imply (a†)∗b ∈ R† and [(a†)∗b]† = b†a∗. Then, from

(a†)∗bb†a∗ = (abb†a†)∗ = (b†a†ab)∗ = b†a†ab = b†a∗(a†)∗b,

we deduce that b†a∗ ∈ (ab){5}. Thus, (a†)∗b ∈ R# and [(a†)∗b]# = b†a∗.
((ii) ⇒ (i)) ∧ ((i) ⇔ (iii)): Analogously as (i) ⇒ (ii).
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An element a ∈ R† is bi-dagger if a2 ∈ R† and (a2)† = (a†)2.
Applying Theorem 2.7 and Theorem 2.8, if a = b, then equivalent con-

ditions can be obtained such that a is bi-dagger and a2 is EP (that is
(a2)† = (a†)2 = (a2)# = (a#)2).

In a unital C∗–algebra A, an element a ∈ A is regular if there exists some
b ∈ A satisfying aba = a. Recall that a ∈ A is Moore–Penrose invertible if
and only if a is regular. Thus, anything with a group inverse automatically
has a Moore–Penrose inverse. So, the results presented in this section hold
in a C∗–algebra with conditions a, b are regular and ab ∈ A# instead of
a, b ∈ A† and ab ∈ A† ∩ A#. Also, notice that if a is regular and ab ∈ A#,
then a†ab is regular too. In the ring of square complex matrices, since every
complex matrix has a Moore–Penrose inverse, we only need to assume that
the product ab is a group invertible and we obtain that results of this section
are valid. If a is an m×n complex matrix and b is an n×m complex matrix,
all equations are applicable to these rectangular matrices.

3 Conclusions

In this paper we present necessary and sufficient conditions related to the
reverse order law (ab)# = b†a† to hold in rings with involution, applying
purely algebraic techniques. When we suppose that a is group invertible and
b is Moore-Penrose invertible (or a is Moore-Penrose invertible and b is group
invertible), we get similar results for the reverse order laws (ab)# = b†a#

(or (ab)# = b#a†) [12]. In the case of bounded linear operators on Hilbert
spaces, where the method of operator matrices is very useful, similar results
for the reverse order law (ab)# = b#a# are given. It could be interesting to
extend this work to the reverse order law of a triple product.

Acknowledgement. We are grateful to the anonymous referees. Their
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