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Abstract. We extend the definitions of the space pre-order and the mi-
nus partial order to the class of bounded linear operators on Banach
spaces. Thus, we generalize several results which are well-known for real
and complex matrices.
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1. Introduction

For complex matrices A and B of the same order, the space pre-order and
the minus partial order, respectively, are defined as follows:

A <s B ⇔ C(A) ⊆ C(B) and C(A∗) ⊆ C(B∗) (1.1)

A <− B ⇔ A−A = A−B and AA− = BA− for some A− ∈ {A−}, (1.2)

where C(A) denotes the column space of the matrix A, A∗ is the conjugate
transpose of A and {A−} denotes the set of all inner generalized inverses of
A, i.e. {A−} = {G : AGA = A}. Notice that in (1.1) the condition C(A∗) ⊆
C(B∗) can be replaced by an equivalent condition N (B) ⊆ N (A), where
N (A) is the null space of the matrix A. The space pre-order ”<s” was defined
by Mitra [18], and the minus partial order ”<−” by Hartwig [13]. The minus
partial order is also called the rank subtractivity order because for matrices
A and B of the same order the following equivalence holds, [13]:

A <− B ⇔ rank(B −A) = rank(B)− rank(A).

Our aim is to extend the definitions of the space pre-order and the minus
partial order to the class of bounded linear operators on Banach spaces. We
generalize a considerably number of results which was proved for real and
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complex matrices. We extend the definition of the minus order to the class
of all bounded linear operators which have inner generalized inverses.

Many of the results involving these orders are collected in the mono-
graph [20], see also [1]-[4], [7], [11]-[15], [17], [19], [21], [22], [26]. The proofs in
[20] are mostly based on finite dimensional methods. We extend some results
to Banach space operators, using operator matrices and infinite dimensional
operator theory.

Among other things, generalized inverses are used in solving both matrix
and operator equations, see [8], [6]. Also, one may consider the equation
BXC <− A. It was considered as matrix equation in [28] and it was consider
over a ring in [27].

In [26], Šemrl extended the definition of minus partial order to B(H),
the algebra of bounded linear operators on Hilbert space H.

First we give some notations.
Let X and Y denote arbitrary complex Banach spaces and let B(X, Y )

denote the set of all bounded linear operators from X to Y . Also, B(X) =
B(X,X). We use N (A) and R(A) to denote null-space and range of A ∈
B(X,Y ), respectively. By a projection we mean a bounded linear operator
P ∈ B(X) such that P 2 = P . Thus a projection is bounded linear idempotent.
When P is a projection then R(P ) and N (P ) are closed and X = R(P ) ⊕
N (P ).

If A ∈ B(X,Y ) and there exists some B ∈ B(Y, X), such that ABA = A
holds, then B is an inner generalized inverse (or in short g-inverse) of A and
we say that the operator A is relatively regular.

If CAC = C holds for some C ∈ B(Y,X), C 6= 0, then C is an outer
generalized inverse of A. An operator D ∈ B(Y, X) is a reflexive generalized
inverse of A, if D is both inner and outer generalized inverse of A.

If C1, C2 are inner generalized inverses of A, then C1AC2 is a reflexive
generalized inverse of A.

The set of all inner (reflexive) generalized inverses of A is denoted by
{A−} ({A−r }). Let us denote by Breg(X, Y ) the class of all relatively regular
operators from B(X, Y ). Identifying a complex m × n matrix A with linear
operator A : Cn → Cm, we conclude that the set of all complex m×n matrices
is equal to B(Cn,Cm) = Breg(Cn,Cm).

The closed subspace M ⊆ X is complemented in X if there exists a
closed subspace N ⊆ X such that X = M ⊕N . In this case we say that M
and N are complementary subspaces in X.

The following lemma is well-known.

Lemma 1.1. An operator A ∈ B(X, Y ) is left invertible if and only if A is in-
jective and R(A) is closed and complemented in Y . An operator A ∈ B(X, Y )
is right invertible if and only if A is surjective and N (A) is complemented in
X.

The equivalence of (i) and (ii) in the following lemma is well known [8].
For equivalence of (ii) and (iii) see also [9].
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Lemma 1.2. If A ∈ B(X, Y ) then the following three conditions are equivalent:
(i) A is relatively regular.
(ii) N (A) and R(A), respectively, are closed and complemented subspaces

of X and Y .
(iii) There exists a Banach space Z and the operators P ∈ B(Z, Y ), Q ∈

B(X,Z) such that P is left invertible, Q is right invertible and A = PQ.

Proof. (i) ⇔ (ii): This is well-known. See [8], 1.1.5 Corollary.
(ii) ⇒ (iii): Let Z = R(A) ⊆ Y . Since Y is Banach space and R(A) is closed,
it follows that Z is Banach space. Let us define the operators Q : X → Z
and P : Z → Y as follows:

Qx = Ax, ∀x ∈ X, and Pz = z, ∀z ∈ Z.

Then Q is surjective and, by assumption, N (Q) = N (A) is closed and com-
plemented in X. Hence, by Lemma 1.1, Q is right invertible. Similarly, P is
injective and R(P ) = Z = R(A) is closed and complemented in Y , so P is
left invertible. It is clear that A = PQ.
(iii) ⇒ (ii): Now suppose that A = PQ where P is left invertible and Q is
right invertible. It follows that R(A) = R(P ) and N (A) = N (Q). By Lemma
1.1 it follows that R(A) and N (A) are closed and complemented subspaces
of X and Y respectively. ¤

When it is the case as in Lemma 1.2 (iii) we say that (P,Q) is the the
full-rank decomposition of A, alluding to well-known matrix decomposition.

Notice that if A ∈ B(X, Y ) is left invertible or right invertible then A is
relatively regular.

For this paper, the most important decompositions of spaces are ex-
plained further.

Remark 1.3. Suppose that X and Y are Banach spaces such that X = X1 ⊕
X2 ⊕X3 and Y = Y1 ⊕ Y2 ⊕ Y3, where X1, X2, X3, X1 ⊕X2 are closed in X
and Y1, Y2, Y3, Y1 ⊕ Y2 are closed in Y . The direct sums means that for all
x ∈ X and for all y ∈ Y there exist unique xi ∈ Xi and yi ∈ Yi, i = 1, 2, 3,
such that x = x1 + x2 + x3 and y = y1 + y2 + y3.

Let P : X → X, Q : X1⊕X2 → X1⊕X2, R : Y → Y and S : Y1⊕Y2 →
Y1 ⊕ Y2 be linear idempotents such that R(P ) = X1 ⊕ X2, N (P ) = X3,
R(Q) = X1, N (Q) = X2, R(R) = Y1 ⊕ Y2, N (R) = Y3, R(S) = Y1 and
N (S) = Y2. Since X1 ⊕ X2 and X3 are closed and complementary in X, it
follows that P is a bounded idempotent, i.e. a projection. This follows from
the closed graph theorem. Since X1 and X2 are closed and complementary
in X1 ⊕ X2, it follows that Q is bounded. Similarly, R and S are bounded
idempotents. Hence I −P , I −Q, I −R and I −S are bounded idempotents
too. Of course, operators P1 : X → X1 ⊕X2 and R1 : Y → Y1 ⊕ Y2 defined
by P1x = Px, ∀x ∈ X, and R1y = Ry, ∀y ∈ Y , are bounded too.

Suppose now that Aij ∈ B(Xj , Yi). Finally suppose that mapping A :
X → Y is defined by Ax = A11x1 + A12x2 + A13x3 + A21x1 + A22x2 +
A23x3 + A31x1 + A32x2 + A33x3, where x = x1 + x2 + x3, x1 ∈ X1, x2 ∈ X2,
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x3 ∈ X3. It is easy to see that A is linear. It is also bounded. Indeed, for
x = x1 + x2 + x3 ∈ X1 ⊕X2 ⊕X3 we have

‖Ax‖ ≤ ‖A11x1‖+ ‖A12x2‖+ ‖A13x3‖+ ‖A21x1‖+ ‖A22x2‖+ ‖A23x3‖
+ ‖A31x1‖+ ‖A32x2‖+ ‖A33x3‖ ≤ 3M(‖x1‖+ ‖x2‖+ ‖x3‖)
= 3M(‖QP1x‖+ ‖(I −Q)P1x‖+ ‖(I − P )x‖
≤ 3M(‖Q‖‖P1‖+ ‖I −Q‖‖P1‖+ ‖I − P‖)‖x‖,

where M = max{‖Aij‖ : i, j = 1, 2, 3}. So, A ∈ B(X,Y ).
Conversely, suppose that A ∈ B(X,Y ). Let the mappings Aij : Xj → Yi

are defined by A11x1 = SR1Ax1, A12x2 = SR1Ax2, A13x3 = SR1Ax3,
A21x1 = (I − S)R1Ax1, A22x2 = (I − S)R1Ax2, A23x3 = (I − S)R1Ax3,
A31x1 = (I − R)Ax1, A32x2 = (I − R)Ax2, A33x3 = (I − R)Ax3, x1 ∈ X1,
x2 ∈ X2, x3 ∈ X3. It is easy to see that Aij , i, j = 1, 2, 3, are linear and
bounded operators and Ax = A11x1+A12x2+A13x3+A21x1+A22x2+A23x3+
A31x1 +A32x2 +A33x3, for arbitrary x = x1 +x2 +x3 ∈ X1⊕X2⊕X3 = X.

In this case we simply write:

A =




A11 A12 A13

A21 A22 A23

A31 A32 A33


 :




X1

X2

X3


 →




Y1

Y2

Y3




Therefore, if X and Y are Banach spaces such that X = X1 ⊕ X2 ⊕ X3

and Y = Y1 ⊕ Y2 ⊕ Y3, where X1, X2, X3, X1 ⊕ X2 are closed in X and
Y1, Y2, Y3, Y1⊕Y2 are closed in Y then A is bounded linear operator if and only
if Aij , i, j ∈ {1, 2, 3}, are bounded linear operators on appropriate subspaces.
Moreover, the subspaces X1⊕X3, X2⊕X3 and Y1⊕Y3, Y2⊕Y3 are also closed
in X and Y respectively. To verify this, we consider the following operator:

A =




0 0 0
0 I 0
0 0 0


 :




X1

X2

X3


 →




X1

X2

X3


 ,

where I : X2 → X2 is the identity operator. We conclude from the previous
explanation that A ∈ B(X), since I ∈ B(X2). Hence A is continuous and
therefore N (A) = X1 ⊕X3 is closed subspace in X. The closedness of other
sums can be proved analogously.

We can define the space pre-order for operators in the same way as for
matrices.

Definition 1.4. Let A,B ∈ B(X, Y ). Then A is said to be below B under the
space pre-order, if R(A) ⊆ R(B) and N (B) ⊆ N (A). We denote the space
pre-order by ’<s’, and write A <s B, whenever A is below B under <s.

We define the minus partial order only for relatively regular operators.

Definition 1.5. Let A, B ∈ Breg(X, Y ) be relatively regular, bounded linear
operators from Banach space X to Banach space Y . Then A is said to be
below B under the minus partial order if there exists a g-inverse A− ∈ {A−}
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of A such that AA− = BA− and A−A = A−B. We denote the minus order
by ’<−’, and write A <− B, whenever A is below B under <−.

Remark 1.6. Similarly to the case of matrices, the space pre-order is induced
by the minus partial order. Suppose that A,B ∈ Breg(X, Y ) and A <− B,
i.e. AA− = BA− and A−A = A−B for some A− ∈ {A−}. We know that
AA− is a projection from Y onto R(A), and I −A−A is a projection from X
onto N (A). Hence

R(A) = R(AA−) = R(BA−) ⊆ R(B)

N (A) = R(I −A−A) = N (A−A) = N (A−B) ⊇ N (B).

So,
A,B ∈ Breg(X,Y ) and A <− B ⇒ A <s B.

Finally, we recall the well-known Kato theorem (theorem 4.7.5 in [23]).

Theorem 1.7. Let X, Y be Banach spaces, and let A ∈ B(X,Y ). If Z is
closed subspace in Y , such that R(A)⊕Z is closed subspace in Y , then R(A)
is closed in Y .

2. Space pre-order

The main goal of this section is to give some basic properties and to provide
several characterizations of space pre-order. Note that all these properties
also hold for real and complex matrices. In our consideration we will need
the following lemmas.

Lemma 2.1. (See also [10], [5]) Let X, Y, Z and W be Banach spaces, A ∈
B(X,Y ), B ∈ Breg(Z, Y ) and C ∈ B(Z, W ). Then

(i) R(A) ⊆ R(B) ⇔ A = BB−A, for each B− ∈ {B−},
(ii) N (B) ⊆ N (C) ⇔ C = CB−B, for each B− ∈ {B−}.

Proof. As B is relatively regular, by Lemma 1.2, it follows that there exists
a closed subspace Z1 ⊆ Z, and a closed subspace Y1 ⊆ Y , such that Z =
Z1 ⊕N (B) and Y = R(B) ⊕ Y1. With regard to these decompositions, it is
easy to see that the operator B has the following matrix form:

B =
[

B1 0
0 0

]
:
[

Z1

N (B)

]
→

[ R(B)
Y1

]
,

where B1 is invertible. An arbitrary g-inverse B− of B has the form

B− =
[

B−1
1 M2

M3 M4

]
:
[ R(B)

Y1

]
→

[
Z1

N (B)

]
,

where M2, M3, M4 are arbitrary bounded linear operators on appropriate
subspaces.

(i): If A = BB−A then R(A) ⊆ R(B). Suppose that R(A) ⊆ R(B).
Then operator A is of the form:

A =
[

A1

0

]
: X →

[ R(B)
Y1

]
,
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where A1x = Ax, ∀x ∈ X. Now, we obtain that

BB−A =
[

B1 0
0 0

] [
B−1

1 M2

M3 M4

] [
A1

0

]

=
[

I B1M2

0 0

] [
A1

0

]
=

[
A1

0

]
= A,

for all B− ∈ {B−}.
(ii): If C = CB−B then N (B) ⊆ N (C). If N (B) ⊆ N (C) it follows that

C =
[

C1 0
]

:
[

Z1

N (B)

]
→ W,

where, C1z = Cz,∀z ∈ Z1. As before we obtain CB−B = C, ∀B− ∈ {B−}.
¤

Lemma 2.2. Let 0 6= x0 ∈ X, y0 ∈ Y , where X and Y are normed spaces.
Then there exists T ∈ B(X, Y ) such that Tx0 = y0.

Proof. From the consequence of the Hahn-Banach theorem it follows that
there exists bounded functional f ∈ X ′ such that f(x0) = 1. If T is defined
by Tx = f(x)y0 then T ∈ B(X,Y ) and Tx0 = y0. ¤

Corollary 2.3. Let 0 6= B ∈ B(X, Y ) and A ∈ B(Z, W ), where X,Y, Z and
W are normed spaces. If ATB = 0 for all T ∈ B(Y, Z) then A = 0.

Proof. Since B 6= 0, there exists x0 ∈ X such that Bx0 = y0 6= 0. Assume to
the contrary that there exists some z0 ∈ Z such that Az0 = w0 6= 0. From
Lemma 2.2 it follows that we can find some T ∈ B(Y, Z) such that Ty0 = z0.
Hence ATBx0 = ATy0 = Az0 = w0 6= 0, a contradiction. ¤

It is well-known that if A and C are non null matrices then AB−C is
invariant under the choices of B− ∈ {B−} if and only if R(C) ⊆ R(B) and
R(A∗) ⊆ R(B∗). This is proved in [24] for complex matrices and in [21] for
matrices over arbitrary field. In the next theorem we will show that analogous
result is valid for bounded operators on Banach spaces.

Theorem 2.4. Let A,B, C ∈ B(X, Y ) be nonnull operators where B is rela-
tively regular. Then the following three conditions are equivalent:

(i) AB−C is invariant under the all choices of B− ∈ {B−}.
(ii) AB−

r C is invariant under the all choices of B−
r ∈ {B−

r }.
(iii) R(C) ⊆ R(B) and N (B) ⊆ N (A).

Proof. There exist closed subspaces X1 ⊆ X and Y1 ⊆ Y such that X =
X1⊕N (B) and Y = R(B)⊕Y1 and with regard to these decompositions we
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have:

B =
[

B1 0
0 0

]
:
[

X1

N (B)

]
→

[ R(B)
Y1

]
,

B− =
[

B−1
1 K2

K3 K4

]
:
[ R(B)

Y1

]
→

[
X1

N (B)

]
and

B−
r =

[
B−1

1 M2

M3 M3B1M2

]
:
[ R(B)

Y1

]
→

[
X1

N (B)

]

for some bounded operators K2, K3, K4, M2, M3 and invertible operator
B1 6= 0.
(i) ⇒ (ii) is trivial.
(ii) ⇒ (iii): Suppose that AB−

r C is invariant under the choice of B−
r . Assume

that A and C have the following matrix forms:

A =
[

A1 A2

]
:
[

X1

N (B)

]
→ Y and

C =
[

C1

C2

]
: X →

[ R(B)
Y1

]
.

We have that

AB−
r C = A1B

−1
1 C1 + A1M2C2 + A2M3C1 + A2M3B1M2C2

does not depend on M2 and M3. If we put M2 = M3 = 0 it follows AB−
r C =

A1B
−1
1 C1. So if M2 = 0 then A2M3C1 = 0, ∀M3. Similarly, A1M2C2 = 0,

∀M2 and so A2M3B1M2C2 = 0, ∀M2, ∀M3. Suppose that C2 6= 0. From
Corollary 2.3 it follows that A1 = 0 and A2M3B1 = 0, ∀M3. From the same
cause A2 = 0 so A = 0, a contradiction. Therefore C2 = 0 and since C 6= 0
it follows C1 6= 0. Again from Corollary 2.3 we obtain that A2 = 0. We have
just shown that R(C) ⊆ R(B) and N (B) ⊆ N (A).
(iii) ⇒ (i): Now suppose R(C) ⊆ R(B) and N (B) ⊆ N (A). As in the proof
of Lemma 2.1 we conclude that

A =
[

A1 0
]

:
[

X1

N (B)

]
→ Y and

C =
[

C1

0

]
: X →

[ R(B)
Y1

]
,

for some A1 and C1. We have

AB−C =
[

A1 0
] [

B−1
1 K2

K3 K4

] [
C1

0

]
= A1B

−1
1 C1,

which does not depend on K2, K3 and K4. ¤

In the next theorem we will give several characterizations of space pre-
order.

Theorem 2.5. Let A,B ∈ B(X,Y ) where B 6= 0 is relatively regular, and let
(P, Q) be the full-rank decomposition of B. Then the following six conditions
are equivalent:
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(i) A <s B.
(ii) AB−A is invariant under the all choices of B− ∈ {B−}.
(iii) AB−

r A is invariant under the all choices of B−
r ∈ {B−

r }.
(iv) A = BB−A = AB−B, for all B− ∈ {B−}.
(v) A = BMB, for some M ∈ B(Y, X).
(vi) A = PTQ, for some bounded linear operator T .

Proof. If A = 0 then all six conditions are satisfied. Assume that A 6= 0. Then
(i) ⇔ (ii) ⇔ (iii) follows from Theorem 2.4 and (i) ⇔ (iv) ⇔ (v) follows from
Lemma 2.1.
(i) ⇒ (vi): Since R(A) ⊆ R(B) = R(P ) and N (Q) = N (B) ⊆ N (A), from
Lemma 2.1 it follows A = PP−1

l A = AQ−1
r Q = PP−1

l AQ−1
r Q = PTQ,

where T = P−1
l AQ−1

r is a bounded linear operator.
(vi) ⇒ (i): Since A = PTQ and (P, Q) is the full-rank factorization of B, we
obtain R(A) ⊆ R(P ) = R(B) and N (B) = N (Q) ⊆ N (A), i.e. A <s B. ¤

Remark 2.6. If B is relatively regular than it is clear that A <s B if and only
if

A =
[

T 0
0 0

]
:
[

X1

N (B)

]
→

[ R(B)
Y1

]
, for some T ∈ B(X1,R(B)).

Also 0 <s A for all A and A <s 0 if and only if A = 0.

3. Minus order

Now, we investigate the minus order for relatively regular operators on Ba-
nach spaces. There are many characterizations of minus partial order. In
matrix case the equivalences:

A <− B ⇔ rank(B) = rank(A) + rank(B −A),

B = A⊕ (B −A) ⇔ {B−} ⊆ {A−},
A <− B ⇔ {B−} ⊆ {A−},

{B−} ⊆ {A−} ⇔ {B−
r } ⊆ {A−},

are proved in [13], [16], [19], [25], respectively.
It is proved in [14] that rank(B) = rank(A)+rank(B−A) if and only if there
exist unitary matrices U and V such that

A = U




Da 0 0
0 0 0
0 0 0


 V ∗ and B = U




Da + RDb−aS RDb−a 0
Db−aS Db−a 0

0 0 0


 V ∗,

where Da and Db−a are diagonal matrices of orders a×a and (b−a)× (b−a)
with positive diagonal elements and a = rank(A), b = rank(B).
Also, it is proved in [20] that A <− B if and only if there exist non-singular
matrices R and S such that

A = Rdiag(Ia, 0, 0)S and B = Rdiag(Ia, Ib−a, 0)S,
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where Ia and Ib−a are identity matrices.
The following theorem is the main result of this paper. It generalizes the
above equivalences to the class Breg(X, Y ).

Theorem 3.1. Suppose that A,B ∈ Breg(X, Y ), where X and Y are Banach
spaces. Then the following are equivalent:

(i) A <− B
(ii) R(B) = R(A)⊕R(B −A)
(iii) There exist decompositions X = X1 ⊕ X2 ⊕ N (B) and Y = R(A) ⊕

R(B − A) ⊕ Y1 for some closed subspaces X1, X2 ⊆ X, Y1 ⊆ Y such
that X1⊕X2, R(B−A) and R(A)⊕R(B−A) are closed and there exist
invertible bounded operators C1 ∈ B(X1,R(A)) and C2 ∈ B(X2,R(B −
A)) such that

A =




C1 0 0
0 0 0
0 0 0


 :




X1

X2

N (B)


 →




R(A)
R(B −A)

Y1


 and

B =




C1 0 0
0 C2 0
0 0 0


 :




X1

X2

N (B)


 →




R(A)
R(B −A)

Y1


 .

(iv) {B−} ⊆ {A−}.
(v) {B−

r } ⊆ {A−}.
Proof. We may assume that B 6= 0 because if B = 0 then each of conditions
(i)-(v) is equivalent to condition A = 0.
(i) ⇒ (ii): Since B is relatively regular, it follows by Lemma 1.2 that B = PQ
where P ∈ B(R(B), Y ) is left invertible, Py = y, ∀y ∈ R(B) and Q ∈
B(X,R(B)) is right invertible, Qx = Bx,∀x ∈ X. By Remark 1.6 it follows
A <s B, and hence by Theorem 2.5 we obtain that A = PTQ for some
T ∈ B(R(B)). By the definition of the minus partial order there exists A− ∈
{A−} such that AA− = BA− and A−A = A−B. Let G = A−AA−. Then
G ∈ {A−r }, AG = BG and GA = GB. Hence PTQG = PQG so TQG = QG
since P is left invertible. Next, AGA = A, that is, PTQGPTQ = PTQ.
Thus TQGPT = T and therefore QGPT = T . Now from GAG = G we
obtain T 2 = (QGPT )(QGPT ) = QGAGPT = QGPT = T . So A = PTQ
where T ∈ B(R(B)) is a projection. It follows that R(B) = R(T ) ⊕ N (T ).
Since Q is right invertible and Py = y, ∀y ∈ R(B), it follows that R(A) =
R(PTQ) = R(PT ) = R(T ). Similarly, R(B − A) = R(PQ − PTQ) =
R(P (I − T )Q) = R(P (I − T )) = R(I − T ) = N (T ). Thus we have proved
R(B) = R(A)⊕R(B −A).
(ii) ⇒ (iii): Suppose that R(B) = R(A)⊕R(B−A). Since N (B) and R(B),
respectively, are closed and complemented subspaces of X and Y it follows
that there exist closed subspaces X3 ⊆ X and Y1 ⊆ Y such that X =
X3 ⊕N (B) and Y = R(B)⊕ Y1. Then operator B has the following matrix
form

B =
[

B1 0
0 0

]
:
[

X3

N (B)

]
→

[ R(B)
Y1

]
,
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where B1 is invertible. Let X1 = B−1
1 (R(A)) and X2 = B−1

1 (R(B − A)).
Since R(B) = R(A)⊕R(B −A) and since R(A) and R(B) are closed, from
Kato Theorem 1.7 we conclude that R(B − A) is closed too. Since B1 is
bounded (equivalently continuous), it follows that X1 and X2 are closed.
Since B1 is invertible, we deduce that X3 = X1 ⊕X2. Suppose further that
x ∈ N (B). Since 0 = Bx = Ax + (B − A)x ∈ R(A) ⊕ R(B − A) it follows
that Ax = 0 = (B −A)x, so N (B) ⊆ N (A).
It follows from the above discussion that A and B have the following matrix
forms:

A =




K L 0
0 0 0
0 0 0


 :




X1

X2

N (B)


 →




R(A)
R(B −A)

Y1


 and

B =




C1 0 0
0 C2 0
0 0 0


 :




X1

X2

N (B)


 →




R(A)
R(B −A)

Y1


 ,

for some bounded operators K, L and some invertible bounded operators C1,
C2 defined on appropriate subspaces.
Let us show that K = C1 and L = 0. Let x ∈ X1. Then Bx = C1x + 0 ∈
R(A)⊕R(B−A). On the other hand, Bx = Ax+(B−A)x = Kx+(B−A)x ∈
R(A)⊕R(B − A). We conclude that Kx = C1x, ∀x ∈ X1, that is, K = C1.
Similarly, for x ∈ X2, we have Bx = 0 + C2x ∈ R(A) ⊕ R(B − A). On the
other hand Bx = Ax + (B − A)x = Lx + (B − A)x ∈ R(A)⊕R(B − A), so
Lx = 0, ∀x ∈ X2, i.e. L = 0.
(iii) ⇒ (iv): Suppose that (iii) holds. Then an arbitrary G ∈ {B−} is of the
form

G =




C−1
1 0 G13

0 C−1
2 G23

G31 G32 G33


 :




R(A)
R(B −A)

Y1


 →




X1

X2

N (B)


 ,

for some operators G13, G23, G31, G32, G33. It is easy to verify that AGA = A,
that is, {B−} ⊆ {A−}.
(iv) ⇒ (v) is trivial.
(v) ⇒ (i): Since AB−

r A = A, ∀B−
r ∈ {B−

r }, from Theorem 2.5 (iii) ⇔ (iv) it
follows that A = BB−A = AB−B, ∀B− ∈ {B−}. For arbitrary B− ∈ {B−},
G = B−BB− ∈ {B−

r } so A = AGA = BGA = AGB. Let F = GAG. Then
AFA = AGAGA = A, i.e. F ∈ {A−}. Also, AF = AGAG = AG = BGAG =
BF and FA = GAGA = GA = GAGB = FB. Hence A <− B. ¤

When it is the case as in Theorem 3.1, we say that the decompositions
X = X1⊕X2⊕N (B) and Y = R(A)⊕R(B−A)⊕Y1 are standard decompo-
sitions of X and Y . We will see that representation of operators with respect
to these decompositions, in the case when A <− B , is crucial in proving
most of the following theorems.
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Corollary 3.2. Let the operator B ∈ Breg(X, Y ) has the full-rank decompo-
sition B = PQ. Then the class of all operators A ∈ Breg(X, Y ) such that
A <− B is given by {PTQ : T is a projection}.
Proof. Suppose that A <− B. As in the proof (i) ⇒ (ii) of Theorem 3.1 we
obtain A = PTQ for some projection T . If A = PTQ where T is projection
then for G = Q−1

r TP−1
l we have AGA = A, AG = PTP−1

l = BG, and
GA = Q−1

r TQ = GB so A <− B. ¤

Theorem 3.3. The minus partial order is a partial order on Breg(X, Y ).

Proof. From Theorem 3.1 (iv), reflexivity and transitivity holds trivially. If
A <− B and B <− A, where A,B ∈ Breg(X, Y ) then, from Theorem 3.1 (ii),
it follows R(B) = R(A)⊕R(B −A) and R(A) = R(B)⊕R(A−B). Hence
R(B−A) = {0}, that is A = B and ’<−’ is a partial order on Breg(X, Y ). ¤

Corollary 3.4. Let A,B ∈ B(X, Y ). If {A−} = {B−} 6= ∅ then A = B.

Remark 3.5. Let A, B ∈ Breg(X, Y ) and A <− B. Then B − A is relatively
regular.
Indeed, from Theorem 3.1 it follows that

B −A =




0 0 0
0 C2 0
0 0 0


 :




X1

X2

N (B)


 →




R(A)
R(B −A)

Y1


 ,

where C2 is invertible, so we conclude that B −A is relatively regular.

Remark 3.6. If T and S are invertible operators and A,B ∈ Breg(X, Y ) then
A <− B if and only if TAS <− TBS. If A,B ∈ Breg(X, Y ) where A is left
or right invertible and if A <− B then A = B.
Since {(TXS)−} = {S−1X−T−1}, the first assertion follows from Theorem
3.1 (i) ⇔ (iv).
If A−1

r is a right inverse of A then we have the following sequence of im-
plications: A <− B ⇒ A = AB−A = BB−A = AB−B ⇒ I = AA−1

r =
AB−AA−1

r = AB− ⇒ A = AB−B = IB = B. The case when A is left
invertible is similar.

In the following theorem we will give a number of equivalent conditions
for minus partial order. The conditions analogous to (i)-(x) are also equivalent
in any regular semigroup, [22]. The equivalence of (i) and (xiii) is also valid
in regular ring, [13]. It is proved in [20] Theorem 3.3.16 that for real matrices
A and B, A <− B if and only if

rank(B −A) = rank((I −AA−)B) = rank(B(I −A−A)), ∀A− ∈ {A−}.
In the infinite dimensional case we can not use rank, so we use the image and
the null-space of a given operator. Notice that our conditions in (xiv) and
(xv) are weaker than above condition.

Theorem 3.7. Let A,B ∈ Breg(X, Y ). Then the following statements are
equivalent:
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(i) A <− B;
(ii) B −A <− B;
(iii) AA−r = BA−r and A−r A = A−r B for some A−r ∈ {A−r };
(iv) A = BA−r A = AA−r B for some A−r ∈ {A−r };
(v) A = AB−B = BB−A = AB−A for all B− ∈ {B−};
(vi) A <s B and {A−} ∩ {B−} 6= ∅;
(vii) A = AB−B = BB−A = AB−A for some B− ∈ {B−};
(viii) A = PB = BQ for some projections P ∈ B(Y ) and Q ∈ B(X);
(ix) A = PB = BM for some projection P ∈ B(Y ) and some operator

M ∈ B(X);
(x) A = KB = BM and KA = A for some operators K ∈ B(Y ) and

M ∈ B(X);
(xi) A−A = A−B and R(A) ⊆ R(B) for some A− ∈ {A−};
(xii) AA− = BA− and N (B) ⊆ N (A) for some A− ∈ {A−};
(xiii) B = A + (I − AA−)W (I − A−A) for some A− ∈ {A−} and some

W ∈ B(X, Y );
(xiv) N ((I −AA−)B) ⊆ N (B −A) and R(A) ⊂ R(B) for all A− ∈ {A−};
(xv) R(B −A) ⊆ R(B(I −A−A)) and N (B) ⊂ N (A) for all A− ∈ {A−}.

Proof. Some equivalences can be proved as in the case of regular semigroup,
[22]. It is proved here for completeness.
(i) ⇔ (ii) follows from equivalence of (i) and (ii) of Theorem 3.1.
(i) ⇒ (iii): There exists A− ∈ {A−} such that AA− = BA− and A−A =
A−B. For A−r = A−AA− (iii) is satisfied.
(iii) ⇒ (iv) is trivial.
(iv) ⇒ (i): For any B− ∈ {B−} it holds AB−A = AA−r BB−BA−r A =
AA−r BA−r A = AA−r A = A. The result follows from equivalence of (i) and
(iv) of Theorem 3.1.
(i) ⇒ (v) ⇒ (vi) ⇒ (vii) follows from Theorems 2.5 and 3.1.
(vii) ⇒ (viii): Let P = AB− and Q = B−A. Then P and Q are projections
and A = PB = BQ.
(viii) ⇒ (ix) ⇒ (x) is trivial.
(x) ⇒ (i): For any B− ∈ {B−} it holds AB−A = KBB−BM = KBM =
KA = A.
(i) ⇒ (xi) is trivial.
(xi) ⇒ (i): R(A) ⊆ R(B) so A = BB−A, ∀B− ∈ {B−} and hence AB−A =
AA−AB−A = AA−BB−BB−A = AA−BB−A = AA−A = A.
(i) ⇔ (xii): This part is similar to the proof of (i) ⇔ (xi).
(i) ⇒ (xiii): Suppose that A <− B, B− ∈ {B−} and G = B−BB−. Then
G ∈ {B−

r } ⊆ {A−}. From (i) ⇒ (v) , we have A = BGA = AGB = AGA.
Let A− = G and W = B. Than it is easy to show that A + (I −AA−)W (I −
A−A) = B.
(xiii) ⇒ (i): Let G = A−AA−. Then G ∈ {A−} and from assumption it
follows that BG = AG and GB = GA.
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(i) ⇒ (xiv): From Theorem 3.1 it follows that

A− =




C−1
1 G12 G13

G21 G22 G23

G31 G32 G33


 :




R(A)
R(B −A)

Y1


 →




X1

X2

N (B)




and hence

(I −AA−)B =




0 −C1G12C2 0
0 C2 0
0 0 0


 :




X1

X2

N (B)


 →




R(A)
R(B −A)

Y1




For x ∈ N ((I − AA−)B), x = x1 + x2 + x3 ∈ X1 ⊕ X2 ⊕ N (B) we have
0 = −C1G12C2x2+C2x2 ∈ R(A)⊕R(B−A) which is equivalent to C2x2 = 0
i.e. x2 = 0. Hence N ((I − AA−)B) = X1 ⊕ N (B) = N (B − A). Of course,
A <− B ⇒R(A) ⊆ R(B).
(xiv) ⇒ (i): From N ((I−AA−)B) ⊆ N (B−A) it follows N (B) ⊆ N (B−A),
so N (B) ⊆ N (A). Therefore A <s B and hence

B =
[

B1 0
0 0

]
:
[

X1

N (B)

]
→

[ R(B)
Y1

]
,

A =
[

A1 0
0 0

]
:
[

X1

N (B)

]
→

[ R(B)
Y1

]
and

A− =
[

A−1 G2

G3 G4

]
:
[ R(B)

Y1

]
→

[
X1

N (B)

]
,

where X1 and Y1 are closed subspaces, B1 is invertible and A−1 ∈ {A−1 } (A1 is
relatively regular because A is relatively regular). Now, N ((I −A1A

−
1 )B1) =

N ((I−AA−)B) ⊆ N (B−A) = N (B1−A1) = N ((I−A1B
−1
1 )B1). Since B1

is invertible it follows that N (I −A1A
−
1 ) ⊆ N (I −A1B

−1
1 ), that is R(A1) ⊆

N (I − A1B
−1
1 ). Thus we have proved that (I − A1B

−1
1 )A1 = 0. Therefore

B−1
1 ∈ {A−1 } and hence {B−} ⊆ {A−}, i.e., A <− B.

(i) ⇔ (xv): This part can be proved in a similar way as (i) ⇔ (xiv). ¤

Let

{A−}B = {G ∈ {A−} : AG = BG, GA = GB} and

{A−r }B = {G ∈ {A−r } : AG = BG, GA = GB}.
In the next theorem we obtain explicit representations of {A−}B and {A−r }B

(for matrix case see [17] and [18]).

Theorem 3.8. Let A, B ∈ Breg(X, Y ) such that A <− B. Then

(i) {A−}B = {B− −B−(B −A)B− : B− ∈ {B−}}
(ii) {A−r }B = {B−AB− : B− ∈ {B−}} = {B−

r AB−
r : B−

r ∈ {B−
r }}.

Proof. (i): Let us denote the right-hand side of (i) by R. Since A <− B we
have the following representations with respect to standard decompositions
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given in Theorem 3.1:

A =




C1 0 0
0 0 0
0 0 0


 , B =




C1 0 0
0 C2 0
0 0 0


 and B− =




C−1
1 0 H13

0 C−1
2 H23

H31 H32 H33


 ,

where H13,H23,H31,H32,H33 are arbitrary bounded operators. It follows
that G ∈ R if and only if

G = B−−B−(B−A)B− =




C−1
1 0 H13

0 0 0
H31 0 K


 :




R(A)
R(B −A)

Y1


 →




X1

X2

N (B)


 ,

for a particular choice of H13,H31 and K (K = H33 −H32C2H23). Now, it
is easy to show that AGA = A, AG = BG and GA = GB, i.e. G ∈ {A−}B .
Assume now that G ∈ {A−}B . Then

G =




C−1
1 G12 G13

G21 G22 G23

G31 G32 G33


 ,

for some operators Gij . From AG = BG and GA = GB we obtain G12 =
G21 = G22 = G23 = G32 = 0. It is easy to show that G = B− − B−(B −
A)B− ∈ R where

B− =




C−1
1 0 G13

0 C−1
2 0

G31 0 G33


 .

(ii): The proof of (ii) may be obtain in a similar way. We obtain that the set
{A−r }B is given by: 


C−1

1 0 G13

0 0 0
G31 0 G31C1G13


 ,

where G13 and G31 are arbitrary. ¤

Let A <− B, where A,B ∈ Cn×n are complex matrices, a = rank(A) <
rank(B) = b and let c1, c2 ∈ C, c2 6= 0, c1 + c2 6= 0. In [29] authors proved
that c1A + c2B is nonsingular if and only if B is nonsingular. Furthermore,
they proved that in this case the following formula holds:

(c1A+c2B)−1 = (c1+c2)−1B−1+(c−1
2 −(c1+c2)−1)[(0⊕In−a)B(0⊕In−a)]†,

where 0⊕ In−a =
[

0 0
0 In−a

]
and (·)† is the Moore-Penrose inverse of (·).

The next theorem shows that the same result is valid when A,B ∈
Breg(X,Y ). We obtain the more convenient formula for (c1A + c2B)−1.

Theorem 3.9. Let A <− B where A,B ∈ Breg(X, Y ) and let c1, c2 ∈ C,
c2 6= 0, c1+c2 6= 0. Then c1A+c2B is invertible if and only if B is invertible.
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Furthermore,

(c1A + c2B)−1 = c−1
2 B−1 + ((c1 + c2)−1 − c−1

2 )B−1AB−1 (3.1)

= c−1
2 B−1 + ((c1 + c2)−1 − c−1

2 )A−,

where A− ∈ {A−}B.

Proof. Since A <− B then, according to Theorem 3.1, we have the following
representations with respect to standard decompositions X = X1 ⊕ X2 ⊕
N (B), Y = R(A)⊕R(B −A)⊕ Y1:

A =




C1 0 0
0 0 0
0 0 0


 , B =




C1 0 0
0 C2 0
0 0 0


 ,

c1A + c2B =




(c1 + c1)C1 0 0
0 c2C2 0
0 0 0


 ,

where C1 and C2 are invertible operators. Since c2 6= 0, c1 + c2 6= 0, it is now
clear that B is invertible if and only if c1A + c2B is invertible if and only if
N (B) = {0} and Y1 = {0}. In this case X = X1⊕X2, Y = R(A)⊕R(B−A)
and with respect to these decompositions we have:

B−1 =
[

C−1
1 0
0 C−1

2

]
and (c1A+c2B)−1 =

[
(c1 + c2)−1C−1

1 0
0 c−1

2 C−1
2

]
,

so the formula (3.1) can be easily checked.
Since B is invertible and A <− B it follows from Theorem 3.8 that

{A−}B = {B−1AB−1}. ¤

Theorem 3.10. (see [20] Theorem 3.5.6) Let A,B ∈ Breg(X, Y ) such that
A <− B. Then

(i) For any A− ∈ {A−}B there exists B− ∈ {B−} such that B−A = A−A
and AB− = AA−.

(ii) For any B− ∈ {B−} there exists A− ∈ {A−}B such that AA− = AB−

and A−A = B−A.

Proof. (i): From Theorem 3.8 we conclude that A− ∈ {A−}B has the follow-
ing form with respect to standard decompositions of X and Y :

A− =




C−1
1 0 H13

0 0 0
H31 0 H33


 ,

for some operators H13, H31,H33. It is easy to show that B−A = A−A and
AB− = AA− where

B− =




C−1
1 0 H13

0 C−1
2 G23

H31 G32 G33


 ,
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where G23, G32, G33 are arbitrary.
(ii): Arbitrary B− ∈ {B−} has a matrix form:

B− =




C−1
1 0 F13

0 C−1
2 F23

F31 F32 F33


 .

The operator

A− =




C−1
1 0 F13

0 0 0
F31 0 G33


 ,

where G33 is arbitrary, has desired properties. ¤

As we know from Theorem 3.7 (i) ⇔ (viii), A <− B if and only if there
exist projections P and Q such that A = PB = BQ. We obtain the class
of all such projections. The following theorems are analogous to Theorems
3.5.13 - 3.5.18 in [20]. All of them can be proved using operators in matrix
form with respect to standard decomposition.

Theorem 3.11. Let A,B ∈ Breg(X, Y ) such that A <− B. Then the class of
all projections P ∈ B(Y ) such that A = PB is given by

P =




I 0 V (I − P33)
0 0 UP33

0 0 P33


 :




R(A)
R(B −A)

Y1


 →




R(A)
R(B −A)

Y1


 ,

where P33 ∈ B(Y1) is some projection, and U ∈ B(Y1,R(B − A)), V ∈
B(Y1,R(A)) are arbitrary operators.

Proof. If P has the given form, then P is a projection and A = PB. Let P be
a projection such that A = PB. Suppose that P = [Pij ], i, j ∈ {1, 2, 3}, with
respect to standard decomposition. From A = PB we conclude that P11 =
I, P12 = P21 = P22 = P31 = P32 = 0 and from P 2 = P we conclude that
P23 = P23P33, P13 = P13 + P13P33 and P33 = P 2

33. Hence P13 = V (I − P33)
and P23 = UP33 where U and V are arbitrary. ¤

In the same manner we obtain the following theorem.

Theorem 3.12. Let A,B ∈ Breg(X, Y ) such that A <− B. Then the class of
all projections Q ∈ B(X) such that A = BQ is given by

Q =




I 0 0
0 0 0

(I −Q33)V Q33U Q33


 :




X1

X2

N (B)


 →




X1

X2

N (B)


 ,

where Q33 ∈ B(N (B)) is some projection and U ∈ B(X2,N (B)), V ∈
B(X1,N (B)) are arbitrary operators.

Remark 3.13. Theorem 3.11 yields that Y = R(A)⊕R(B − A)⊕R(P33)⊕
N (P33). Of course, X = X1⊕X2⊕N (B) has standard decomposition. With
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respect to this decompositions, we obtain that A,B and P have the following
forms:

A =




C1 0 0
0 0 0
0 0 0
0 0 0


 , B =




C1 0 0
0 C2 0
0 0 0
0 0 0


 , P =




I 0 0 V
0 0 U 0
0 0 I 0
0 0 0 0


 ,

for some operators U and V .
Similarly, Theorem 3.12 yields that X1⊕X2⊕R(Q33)⊕N (Q33). With respect
to this decomposition A,B and Q have the following forms:

A =




C1 0 0 0
0 0 0 0
0 0 0 0


 , B =




C1 0 0 0
0 C2 0 0
0 0 0 0


 , Q =




I 0 0 0
0 0 0 0
0 L I 0
M 0 0 0


 ,

for some operators L and M .

Theorem 3.14. Let A,B ∈ Breg(X,Y ) such that A <− B. Then the class of all
projections P such that A = PB and R(P ) = R(A) is given by {AA− : A− ∈
{A−}B}. The class of all projections Q such that A = BQ and N (Q) = N (A)
is given by {A−A : A− ∈ {A−}B}.
Proof. According to Theorems 3.11 and 3.12 we see that the class of all
projections P such that A = PB, R(P ) = R(A) and all projections Q such
that A = BQ, N (Q) = N (A) have the following forms:

P =




I 0 V1

0 0 0
0 0 0


 and Q =




I 0 0
0 0 0
V2 0 0


 ,

respectively, where V1 and V2 are arbitrary. From the proof of Theorem 3.8
(i) we see that AA− and A−A where A− ∈ {A−}B have the above forms,
respectively. ¤

Theorem 3.15. Let A,B ∈ Breg(X, Y ) such that A <− B. If P is the projec-
tion such that A = PB, then P can be written as P = P1 + P2, where P1

is a projection such that A = P1B, R(P1) = R(A), and P2 is a projection
such that P1P2 = P2P1 = P2A = P2B = 0. If Q is the projection such that
A = BQ, then Q can be written as Q = Q1 + Q2, where Q1 is a projec-
tion such that A = BQ1, N (Q1) = N (A), and Q2 is a projection such that
Q1Q2 = Q2Q1 = AQ2 = BQ2 = 0.

Proof. According to Theorems 3.11, 3.12 and 3.14 we can take

P1 =




I 0 V (I − P33)
0 0 0
0 0 0


 , P2 =




0 0 0
0 0 UP33

0 0 P33


 and

Q1 =




I 0 0
0 0 0

(I −Q33)V 0 0


 , Q2 =




0 0 0
0 0 0
0 Q33U Q33


 .
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It is easy to show that P1, P2 and Q1, Q2 satisfy the conditions of the
theorem. ¤
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