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Fredholm theory in irreducible C*-algebras
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Abstract. We use the C* algebra “spectral permanence” for the Moore-Penrose inverse to offer an update
of Section 6.3 of the well-known book by Caradus, Pfaffenberger and Yood [2], as well as an extension of
Theorem 5.1 in [4].

1. Introduction and preliminaries

If H is a Hilbert space we shall write B00(H) ⊆ B(H) for the two-sided ideal of finite rank operators,
and B0(H) for the larger ideal of compact operators, and recall that B0(H) is actually the norm closure of
B00(H). In a general Banach algebra A we shall write A−1 = A−1

le f t ∩ A−1
ri1ht , for the (multiplicative) group of

all invertible elements of A, which is indeed the intersection of the larger semigroups A−1
le f t and A−1

ri1ht of left
and of right invertibles.

Let A be a C∗ algebra with the unit 1. The well-known Gelfand-Naimark-Segal theorem states that there
is a Hilbert space H and a *-isometric homomorphism

Γ : A→ B(H) ,

from A to the algebra B = B(H) of bounded operators on H. This homomorphism Γ is called Gelfand-
Naimark-Segal (GNS) representation of the algebra A. The effect of the GNS representation is to reduce
general C∗ algebras to closed *-subalgebras of the algebras B(H): certainly the image Γ(A) which C* iso-
morphic to A really is such a subalgebra, and the GNS theorem itself was responsible for a change in the
meaning of the expression “C* algebra” to be synonymous with what used to be call “B* algebras” [10].
The usual terminology is that A is “represented over” H.

When a ∈ A we shall sometimes write â for the image Γ(a) ∈ B(H). Evidently, since Γ is a *-
homomorphism,

(̂a∗) = (̂a)∗ = â∗ ∈ B(H) (a ∈ A) .
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The authors are supported by the Ministry of Education and Science, Serbia, grant no. 174007.
Email addresses: dragandjordjevic70@gmail.com (Dragan S. Djordjević), mladvlad@open.telekom.rs (Snežana Č.

Živković-Zlatanović), hartere@gmail.com (Robin E. Harte)
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If Γ : A→ B(H) and if there is a closed subspace V ⊆ H for which, for each T = â ∈ Γ(A) we have reduction

â(V) ⊆ V ; â(V⊥) ⊆ V⊥ ,

then V ⊆ H is said to be a reducing subspace for the C* algebra A. Now the algebra A is said to be irreducible
if the only reducing subspace for A are {0} and H.

Irreducible algebras have an important property ([1] Theorem 6.3.3) relating their image in B(H) to the
compact ideal B0(H).

Theorem 1.1. Let A be an irreducible C∗ algebra. If the GNS image of A, Γ(A), contains even one non zero compact
operator then it contains them all, i.e. there is implication

1.1 Γ(A) ∩ B0(H) , {0} =⇒ B0(H) ⊆ Γ(A) .

We recall that the finite rank operators B00(H) are generated by the rank one operators H ⊗ H where if
x, y ∈ H we write

(x ⊗ y)(w) = 〈w; x〉y (w ∈ H) .

The following shows that if the image of a two-sided ideal of a C∗ algebra A contains any non trivial
rank one operator then it contains all the finite rank operators. If in particular the ideal is closed then it
follows that its image contains all the compact operators.

Theorem 1.2. Let A be a C∗ algebra which is represented over H. If Γ(A) contains rank-one operators, and if M is a
non-zero two-sided ideal of A, then B00(H) ⊂ Γ(M).

Moreover, if M is closed, then B0(H) = Γ(M).

Proof. The first part is actually true if H is Babach space, and Γ(A) is a subalgebra of B(H) containing
rank-one operators. Just go trough the standard proof. This is Theorem 5.2.1 in [2].

The second part follows from cl B00(H) = B0(H) if H is a Hilbert space.

For T ∈ B(H) we use the following notations: T−1(0) - the null space, T(H) - the range, null(T) =
dim T−1(0), def(T) = codim T(H), asc(T) - the ascent, dsc(T) the descent of T.

If a ∈ A and A is C∗ algebra with the unit 1, then the spectrum of a in A is

σA(a) = σle f t
A (a) ∪ σri1ht

A (a) ,

where
σle f t

A (a) = {λ ∈ C : a − λ < A−1
le f t} ,

and
σri1ht

A (a) = {λ ∈ C : a − λ < A−1
ri1ht} .

Obviously, if A is represented over H, σA(a) = σΓ(A) (̂a), and similarly for the left and the right spectrum.
It is known that if B is C∗ algebra with the unit 1 and if A is C∗ subalgebra of B also with the unit 1, then
σA(a) = σB(a) for all a ∈ A. Therefore, σB(H) (̂a) = σΓ(A) (̂a) = σA(a) for all a ∈ A. Hence, if a ∈ A and â is
invertible in B(H), then a ∈ A−1 and a−1 ∈ A.

The analogous assertion holds for the left and the right spectrum.

Lemma 1.1. Let A be a C∗ algebra which is represented over H, and let a ∈ A. Then â is left (right) invertible in B(H)
if and only if a is left (right) invertible in A.

In other words
σle f t

A (a) = σle f t
B(H) (̂a) and σri1ht

A (a) = σri1ht
B(H) (̂a).
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Proof. Clearly, if a is left invertible in A, then â is left invertible in B(H).
To prove the converse, suppose that â is left invertible in B(H). Then â−1(0) = {0} and â(H) is closed.

Hence â∗(H) is closed and H = â(H) ⊕ (̂a∗)−1(0) and so, â∗(H) = â∗̂a(H) and the range â∗̂a(H) is closed. Since
(̂a∗̂a)−1(0) = â−1(0) = {0}, from selfadjointness of â∗̂a we get that â∗̂a = â∗a is invertible in B(H). From a ∈ A it
follows that a∗, a∗a ∈ A. Consequently, (a∗a)−1 ∈ A. Since (a∗a)−1a∗a = 1 and (a∗a)−1a∗ ∈ A, we obtain that a is
left invertible in A.

A generalized inverse for an element a ∈ A of a Banach algebra is an element b ∈ A for which

a = aba . (1)

Evidently necessary and sufficient for a ∈ A to have as generalized inverse is the condition a ∈ aAa . If b ∈ A
satisfies (1) then so also does c = bab, in which case also c = cac, so that the relationship between an element
and its generalized inverse can be made symmetric. Further if (1) holds then each of the elements ba = (ba)2

and ab = (ab)2 are idempotent. When A is a C* algebra then it is possible for the generalized inverse b ∈ A
to also generate self adjoint idempotents ab and ba, so that

a = aba ; b = bab ; (ab)∗ = a ; (ba)∗ = ba .

It turns out that such a generalized inverse b ∈ A is determined uniquely if it exists, in which case it referred
to as the Moore Penrose inverse of a ∈ A, and written a†.

In general it is rather obvious that if T ∈ B(X) has a generalized inverse S ∈ B(X) that it must also have
closed range: indeed

T(X) = TS(X) = (I − TS)−1(0) ,

since the range of such an operator is the null space of another. For Hilbert spaces the reverse implication
is also true: If we specialize to the algebra B = B(H) then elements, i.e. operators have generalized inverses
if and only if they have closed range: if T ∈ B(H) is arbitrary there is equivalence

∃T† ∈ B(H)⇐⇒ T ∈ B(H)∩ ⇐⇒ T(H) = cl(TH) .

Notice that if T† exists, then T†T is the orthogonal projection from H onto T∗(H) = T∗T(H), and I − T†T is
the orthogonal projection from H onto T−1(0) = (T∗T)−1(0).

If A is a C∗ algebra, we write
A∩ = {a ∈ A : a ∈ aAa} ,

for the set of “relatively regular” elements and A† for the set of elements for which there exists Moore-
Penrose inverse. Now what is interesting for C∗ algebras that Harte and Mbekhta ([6], Theorem 6) have
shown that whenever a ∈ A is relatively regular, then it necessarily has a Moore Penrose inverse, i.e.

A∩ = A†. (2)

Recall that a ∈ A is relatively regular if and only if the ideal aA is closed ([6], Theorems 2 and 8). In [7] the
reduced minimum modulus of the operator La, the left multiplication by a, is considered:

γ(a) ≡ γA(a) = γ(La) = inf{‖ax‖ : dist(x,L−1
a (0)) ≥ 1, x ∈ A}.

From [8], Theorem IV.5.2 it follows that γ(a) > 0 iff La(A) = aA is closed. Therefore,

γ(a) > 0 ⇐⇒ a ∈ A∩. (3)

We recall that if A ⊂ B for C∗ algebra B, then ([7], Theorem 4(4.4))

γA(a) = γB(a). (4)

From (3) and (4) we conclude that a ∈ A is relatively regular in A iff it is relatively regular in B:

A∩ = A ∩ B∩. (5)
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Now from (2) and (5) it follows

A† = A∩ = A ∩ B∩. (6)

The assertion (6) is equivalent to the following assertion which is proved in [4], Theorem 4.2 by using Drazin
inverse: If A, B are C∗ algebras and T : A→ B is an isometric C∗ homomorphism, then

a ∈ A† ⇐⇒ Ta ∈ B∩.

It is not difficult to see that the previous assertions are also equivalent to the following. For the convenience
of the reader we give a complete proof via Drazin inverse.

Theorem 1.3. Let A be a C∗-algebra, which is represented over H, and let t ∈ A satisfy t̂(H) = cl t̂(H). Then there
exists t† ∈ A.

Proof. Since t̂(H) = cl t̂(H), we conclude that (̂t∗̂t )(H) = cl(̂t∗̂t )(H) and t̂ † = (̂t∗̂t )†̂t∗. Since t ∈ A we get that
t̂∗, t̂∗̂t ∈ A. Also, σA(t∗t) = σB(H) (̂t∗̂t ). According to the proof of Lemma 1.1, the range of t̂∗̂t is closed and from
the selfadjointness of t̂∗̂t we obtain that asc(̂t∗̂t ) = dsc(̂t∗̂t ) = 1. Hence 0 < acc σB(H) (̂t∗̂t ) = acc σÂ (̂t∗̂t ). The
inverse (̂t∗̂t )† is given by the functional calculus, since the Moore-Penrose inverse of a selfadjoint operator
t̂∗̂t coincides with its Drazin inverse [3]. Precisely,

(̂t∗̂t )† =
1

2πi

∫

γ

1
λ

(λI − t̂∗̂t )−1dλ,

where γ is a Jordan curve around σB(H) (̂t∗̂t ) \ {0}, separating σB(H) (̂t∗̂t ) \ {0} from {0}. For all λ ∈ γ we have
that (λI − t̂∗̂t )−1 ∈ Â. Consequently, (̂t∗̂t )† ∈ Â and (̂t )† ∈ Â. The mapping Γ : A → Â is an ∗-isometric
isomorphism, so there exists t† ∈ A satisfying (̂t†) = (̂t )† (= t̂ †).

2. Fredholm theory

An operator T ∈ B(H) is called upper semi-Fredholm if null(T) < ∞ and T(H) is closed, while T ∈ B(H)
is called lower semi-Fredholm if def(T) < ∞. An operator T ∈ B(H) is called semi-Fredholm if it is upper or
lower semi-Fredholm. For such an operator the index is given by i(T) = null(T) − def(T), and if it is finite
then T is called Fredholm, or T ∈ Φ(H). When i(T) = 0, then T is called Weyl, or T ∈ W(H).

An operator T ∈ B(H) is called left Fredholm, or T ∈ Φl(H), if T is relatively regular upper semi-
Fredholm, while T is called right Fredholm, or T ∈ Φr(H), if T is relatively regular lower semi-Fredholm.
Clearly, Φ(H) = Φl(H) ∩Φr(H).

The set of left Weyl operators, Wl(H), is the set of left Fredholm operators with non-positive index,
while the set of right Weyl operators, Wr(H), is the set of right Fredholm operators with non-negative
index. Evidently,W(H) =Wl(H) ∩Wr(H).

An operator T ∈ B(H) is called left Browder, or T ∈ Bl(H), if T is left Fredholm with finite ascent,
while T is called right Browder, or T ∈ Br(H), if T is right Fredholm with finite descent ([11]). The set
of Browder operators, B(H), is the set of Fredholm operators with finite ascent and descent. Clearly,
B(H) = Bl(H) ∩ Br(H).

Let π : B(H)→ B(H)/B0(H) be the natural homomorphism.
Recall that T ∈ B(H) is, respectively, left Fredholm, right Fredholm, Fredholm in B(H), provided that

π(T) is: left invertible, right invertible, invertible ([1], Theorem 5.1.5; [2], Theorem 4.3.2, 4.3.3; [2], Theorem
3.2.8; [5], Theorem 6.4.3; [9], Theorem 16.13).

An operator T ∈ B(H) is, respectively, left Weyl, right Weyl, Weyl, if and only if T ∈ B(H)−1
l + B0(H),

T ∈ B(H)−1
r + B0(H), T ∈ B(H)−1 + B0(H) ([9], Theorem 19.7).

We write

U +comm V = {C + D : (C,D) ∈ U × V , CD = DC}
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for the commuting sum of subsets U,V ⊆ B(H) .
An operator T ∈ B(H) is, respectively, left Browder, right Browder, Browder, if and only if T ∈ B(H)−1

l +comm

B0(H), T ∈ B(H)−1
r +comm B0(H), T ∈ B(H)−1 +comm B0(H) ([11], Theorem 5 and 6; [2], Theorem 1.4.5).

These definitions and assertions enable us to consider the same notion in C∗-algebras with respect
to proper ideals. Let M be a closed two-sided ideal of A, and let ρ : Â → Â/(M̂ ∩ B0(H)) be the natural
homomorphism. Now it is easy to define left-, right-, and Fredholm elements in A with respect to M̂∩B0(H).
Moreover, t ∈ A is left (right) Weyl in A with respect to ρ, provided that t̂ ∈ Â−1

l + (M̂ ∩ B0(H)) (̂t ∈
Â−1

r + (M̂ ∩ B0(H))), and t ∈ A is Weyl in A with respect to ρ, provided that t̂ ∈ Â−1 + (M̂ ∩ B0(H)).
Also, t ∈ A is left (right) Browder in A with respect to ρ, provided that t̂ ∈ Â−1

l +comm (M̂ ∩ B0(H))

(̂t ∈ Â−1
r +comm(M̂∩B0(H))), and t ∈ A is Browder in A with respect toρ, provided that t̂ ∈ Â−1+comm(M̂∩B0(H)).

Now we prove (again) Theorem 6.3.4 in [1] in a different way using Theorem 1.3. Notice that the original
formulation in [2] does not require that A is irreducible, but this general situation is not supported by a
correct proof in [2]. Hence, we use the additional assumption. Also the following theorem is an extension
of Theorem 6.3.4 in [1] and Theorem 5.1 in [4].

Theorem 2.1. Let A be an irreducible C∗-algebra, which is represented over H, and let M be a non-zero closed
two-sided ideal of A. Then for t ∈ A the following hold:

(a) t̂ is a left Fredholm operator in B(H) ⇐⇒ ρ(t̂) is left invertible;
(b) t̂ is a right Fredholm operator in B(H) ⇐⇒ ρ(t̂) is right invertible;
(c) t̂ is a Fredholm operator in B(H) ⇐⇒ ρ(̂t ) is invertible in Â/(M̂ ∩ B0(H)).
(d) t̂ is left Weyl in B(H) ⇐⇒ t̂ is left Weyl in Â with respect to M̂ ∩ B0(H).
(e) t̂ is right Weyl in B(H) ⇐⇒ t̂ is right Weyl in Â with respect to M̂ ∩ B0(H).
(f) t̂ is Weyl in B(H) ⇐⇒ t̂ is Weyl in Â with respect to M̂ ∩ B0(H).

Proof. (a) Suppose that t̂ is left Fredholm in B(H). Then t̂(H) is closed, and by Theorem 1.3 there exists
t̂ † ∈ Â. Now we consider I − t̂ †̂t. If I − t̂ †̂t = 0, then t̂ is left invertible and therefore ρ(̂t) is left invertible. If
I− t̂ †̂t , 0, since I− t̂ †̂t is the orthogonal projection of H onto t̂−1(0) (which is finite dimensional subspace), so
I − t̂ †̂t ∈ B00(H) ∩ Â , {0}. Since A is irreducible, by Theorem 1.1 it follows that B0(H) ⊂ Â, and by Theorem
1.2, B0(H) ⊂ M̂. Now, from (̂t∗̂t)−1(0) = t̂−1(0), it follows null(̂t∗̂t) < ∞. Since t̂∗̂t is selfadjoint and has the
closed range (see the proof of Lemma 1.1), it follows that null(̂t∗̂t) = dim(̂t∗̂t(H))⊥ = codim t̂∗̂t(H) = def(̂t∗̂t),
and so, t̂∗̂t is Weyl in B(H). Hence there exist S ∈ B(H)−1 and K ∈ B0(H) such that t̂∗̂t = S + K. Since t̂∗̂t, K ∈ Â,
we get S ∈ Â and so Ŝ−1 ∈ Â. It follows that S−1̂t∗̂t = I + S−1K, S−1̂t∗ ∈ Â and S−1K ∈ B0(H) ⊂ M̂ which implies
that ρ(̂t ) is left invertible.

On the other hand, if ρ(̂t ) is left invertible, then obviously π(̂t ) is left invertible and t̂ is left Fredholm in
B(H). Notice that we do not need the irreducibility of A in this direction.

(b) Suppose that t̂ is right Fredholm in B(H). Then t̂(H) is closed, and by Theorem 1.3 there exists t̂ † ∈ Â.
If I − t̂̂t † = 0, then t̂ is right invertible and therefore ρ(̂t) is right invertible. Suppose that I − t̂̂t † , 0. Since
(I − t̂̂t †)(H) = (̂t̂t †)−1(0) = (̂t †)−1(0) = t̂(H)⊥ and dim t̂(H)⊥ = codim t̂(H) < ∞ because t̂ is right Fredholm in
B(H), we get that I − t̂̂t † ∈ B00(H)∩ Â , {0}. It implies B0(H) ⊂ M̂. For the rest of the proof change the order
of t̂∗ and t̂ in the previous proof.

The converse is clear.
(c) Follows from (a) and (b).
(d) Suppose that t̂ is left Weyl in B(H). Then t̂(H) is closed, and there exists t̂ † ∈ Â. If I − t̂ †̂t = 0, then t̂

is left invertible and therefore t̂ is left Weyl in Â with respect to M̂∩ B0(H). If I − t̂ †̂t , 0, in the same way as
in the proof of (a) we conclude that B0(H) ⊂ M̂. There exist S ∈ B(H)−1

l and K ∈ B0(H) such that t̂ = S + K.

Since t̂, K ∈ Â, it follows that S ∈ Â. By Lemma 1.1 it follows that S ∈ Â−1
l , and we obtain that t̂ is left Weyl

in A with respect to M̂ ∩ B0(H).
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On the other hand, if t̂ = U + V, where U ∈ Â−1
l and V ∈ M̂∩B0(H), then obviously t̂ is left Weyl in B(H).

(e) Similarly to (d).
(f) Suppose that t̂ is Weyl in B(H). As in the previous we conclude that there exists t̂ † ∈ Â. If both I − t̂ †̂t

and I− t̂̂t † are equal to zero, then t̂ is invertible in Â, and therefore, it is Weyl in Â with respect to M̂∩B0(H).
If I − t̂ †̂t , 0 or I − t̂̂t † , 0, then as in the proof for (a) and (b) we conclude that B0(H) ⊂ M̂. Now, there

exist S ∈ B(H)−1 and K ∈ B0(H) such that t̂ = S + K. Since t̂, K ∈ Â, it follows that S ∈ Â. Hence S ∈ Â−1, and
we obtain that t̂ is Weyl in A with respect to M̂ ∩ B0(H).

The converse is clear.

We remark that, analogously to (d), (e) and (f) respectively, it can be proved with the same assumptions as
in Theorem 2.1 that, for t ∈ A, t̂ is left (right) Browder in B(H) iff t̂ is left (right) Browder in Â with respect
to M̂ ∩ B0(H), as well as, t̂ is Browder in B(H) iff t̂ is Browder in Â with respect to M̂ ∩ B0(H).
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