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Abstract

In this paper we present new results related to the various equiva-
lencies of the reverse order law (AB)† = B†A† for the Moore-Penrose
inverse for operators on Hilbert spaces. Some finite dimensional results
given by Tian [13] are extended to infinite dimensional settings; also
some new more general relations are proved.
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1 Introduction

Let X, Y, Z be Hilbert spaces, and let L(X, Y ) be the set of all linear bounded
operators from X to Y . For A ∈ L(X, Y ) we use, respectively, N (A), R(A),
A∗ for the null space, the range space and the adjoint of A.

The Moore-Penrose inverse of A ∈ L(X,Y ) (if it exists) is the unique
operator A† ∈ L(Y, X) satisfying the following four Penrose equations:

(I) AA†A = A, (II) A†AA† = A†, (III) (AA†)∗ = AA†, (IV ) (A†A)∗ = A†A.

It is well-known that A† exists for given A if and only if R(A) is closed.
We assume that the reader is familiar with the generalized invertibility

and the Moore-Penrose inverse (see, for example, [1], [4], [8]).
The reverse order law of the form (AB)† = B†A† does not hold in gene-

ral for the Moore-Penrose inverse. The classical equivalent condition (A∗A
commutes with BB†, and BB∗ commutes with AA†) is proved in [9] for
complex matrices, in [2], [3] and [11] for closed-range linear bounded opera-
tors on Hilbert spaces, and in [12] for rings with involutions. A lot of papers
concerning various forms and conditions for the reverse order law are also
investigated, for example [6], [10], [14].

In this paper we present a set of equivalencies of the reverse-order law
(AB)† = B†A† for the Moore-Penrose inverse of bounded linear operators
on Hilbert spaces. Some finite dimensional results, given by Tian [13], are

1The authors are supported by the Ministry of Science, Republic of Serbia, grant No.
174007.
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extended to infinite dimensional settings. Also, some further generalizations
are obtained. As a corollaries, we get some results for generalized inverses
for the positive integer powers of the operators. Connection with mixed-type
reverse order law (AB)† = B†(A†ABB†)†A† is presented.

We continue with several auxiliary results.

Lemma 1.1. Let A ∈ L(X, Y ) have a closed range. Then A has the matrix
decomposition with respect to the orthogonal decompositions of spaces X =
R(A∗)⊕N (A) and Y = R(A)⊕N (A∗):

A =
[

A1 0
0 0

]
:
[ R(A∗)
N (A)

]
→

[ R(A)
N (A∗)

]
,

where A1 is invertible. Moreover,

A† =
[

A−1
1 0
0 0

]
:
[ R(A)
N (A∗)

]
→

[ R(A∗)
N (A)

]
.

The proof is straightforward.

Lemma 1.2. [7] Let A ∈ L(X,Y ) have a closed range. Let X1 and X2 be
closed and mutually orthogonal subspaces of X, such that X = X1⊕X2. Let
Y1 and Y2 be closed and mutually orthogonal subspaces of Y , such that Y =
Y1 ⊕ Y2. Then the operator A has the following matrix representations with
respect to the orthogonal sums of subspaces X = X1⊕X2 = R(A∗)⊕N (A),
and Y = R(A)⊕N (A∗) = Y1 ⊕ Y2 :

(a)

A =
[

A1 A2

0 0

]
:
[

X1

X2

]
→

[ R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 maps R(A) into itself and D > 0 (meaning D ≥ 0

invertible). Also,

A† =
[

A∗1D
−1 0

A∗2D
−1 0

]
.

(b)

A =
[

A1 0
A2 0

]
:
[ R(A∗)
N (A)

]
→

[
Y1

Y2

]
,

where D = A∗1A1+A∗2A2 maps R(A∗) into itself and D > 0 (meaning D ≥ 0
invertible). Also,

A† =
[

D−1A∗1 D−1A∗2
0 0

]
.
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Here Ai denotes different operators in any of these two cases.

The reader should notice the difference between the following notations.
If A,B ∈ L(X), then [A,B] = AB −BA denotes the commutator of A and
B. On the other hand, if U ∈ L(X, Z) and V ∈ L(Y,Z), then [U V ] :[

X
Y

]
→ Z denote the matrix form of the corresponding operator.

The following result is Proposition 2.1. from [11] (also can be found in
[4], pp 127), and it will be useful tool for proving the existence of Moore-
Penrose inverses of some terms.

Lemma 1.3. Let A ∈ L(Y, Z) and B ∈ L(X,Y ) have closed ranges. Then
AB has a closed range if and only if A†ABB† has a closed range.

The following result is proved in [7], Lemma 2.1.

Lemma 1.4. Let X, Y be Hilbert spaces, let C ∈ L(X,Y ) have a closed
range, and let D ∈ L(Y ) be Hermitian and invertible. Then R(DC) = R(C)
if and only if [D, CC†] = 0.

In the next proposition, a lot of well-known and important facts and
properties concerning Moore-Penrose inverse are collected, especially those
we are using in the proofs.

Proposition 1.1. Let A ∈ L(X, Y ) be closed-range operator and let M ∈
L(Y ) and N ∈ L(X) be positive definite invertible operators. Then:

(1) A∗ = A†AA∗ = A∗AA†, A = AA∗(A∗)† = (A∗)†A∗A;

(2) A† = A∗(AA∗)† = (A∗A)†A∗, (AA∗)† = (A∗)†A†, (A∗A)† = A†(A∗)†;

(3) R(A) = R(AA†) = R(AA∗);

(4) R(A†) = R(A∗) = R(A†A) = R(A∗A);

(5) R(I −A†A) = N (A†A) = N (A) = R(A∗)⊥;

(6) R(I −AA†) = N (AA†) = N (A†) = N (A∗) = R(A)⊥.

Lemma 1.5. Let H be Hermitian bounded linear operator. Then:

(∀n ∈ N) (Hn)† = (H†)n.
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Proof. For n = 1 we actually have well-known identity for Moore-Penrose
inverse. For other values of n, it is easy to check all four Penrose equation,
using the following fact:

H = H†H2 = H2H†,

which follows from Proposition 1.1 for any Hermitian operator H.

Remark 1.1. According to the Lemma 1.5, if the operator T has the form:

T =
( ∗ ∗

0 0

)
,

where ”∗” denotes arbitrary component, then:

((T ∗T )†)n = (T †(T †)∗)n = T †((T †)∗T †)n−1(T ∗)† = T †((TT ∗)†)n−1(T †)∗,

where TT ∗ has the following form (”inv.” means some invertible operator):

TT ∗ =
(

inv. 0
0 0

)
,

which provides us with simplified computations.
If the operator S has the form:

S =
( ∗ 0
∗ 0

)
,

then:

((SS∗)†)n = ((S†)∗S†)n = (S†)∗(S†(S†)∗)n−1S† = (S∗)†((S∗S)†)n−1S†,

where S∗S has the following form:

S∗S =
(

inv. 0
0 0

)
,

which provides us with simplified computations.
Those facts will be used in the proof of our main result.

Proposition 1.2. Let X and Y be arbitrary Hilbert spaces and let A ∈
L(X, Y ). For any m ∈ N,

(a) ((AA∗)†)m(AA∗)m = ((A∗)†A†)m(AA∗)m = AA†;
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(b) (AA∗)m((AA∗)†)m = (AA∗)m((A∗)†A†)m = AA†;

(c) ((A∗A)†)m(A∗A)m = (A†(A∗)†)m(A∗A)m = A†A;

(d) (A∗A)m((A∗A)†)m = (A∗A)m(A†(A∗)†)m = A†A.

Proof.

(a) ((AA∗)†)m(AA∗)m = ((AA∗)†)m−1(AA∗)†AA∗(AA∗)m−1 =
= ((AA∗)†)m−1(A∗)†A∗(AA∗)m−1 =
= ((AA∗)†)m−1(AA∗)m−1 = . . . =
= (AA∗)†AA∗ = (A∗)†A∗ = (AA†)∗ = AA†;

by using Proposition 1.1(2), we have desired result. On the completely
analogous way other three statements can be proved. Let us prove, for
example, statement (c).

(c) ((A∗A)†)m(A∗A)m = ((A∗A)†)m−1(A∗A)†A∗A(A∗A)m−1 =
= ((A∗A)†)m−1A†A(A∗A)m−1 =
= ((A∗A)†)m−1(A∗A)m−1 = . . . =
= (A∗A)†A∗A = A†A.

Lemma 1.6. Let X and Y be arbitrary Hilbert spaces and let A ∈ L(X,Y ).
For any m ∈ N,

((AA∗)mA)† = A†((A∗)†A†)m, (A(A∗A)m)† = (A†(A∗)†)mA†.

Proof. We prove the first identity by checking all four Penrose equations,
using the Proposition 1.2 for simpler computation. The second one can be
proved analogously.

(I) (AA∗)mAA†((A∗)†A†)m(AA∗)mA = (AA∗)mAA†AA†A = (AA∗)mA;

(II) A†((A∗)†A†)m(AA∗)mAA†((A∗)†A†)m = A†AA†AA†((A∗)†A†)m =
= A†((A∗)†A†)m;
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(III) (AA∗)mAA†((A∗)†A†)m = (AA∗)m−1((A∗)†A†)m−1(A∗)†A† =
= AA†(A∗)†A† = AA†,

which is Hermitian;

(IV ) A†((A∗)†A†)m(AA∗)mA = A†AA†A = A†A,

which is Hermitian.

2 Main results

The following theorem is a generalization of the main result from [13] to the
infinite dimensional settings.

Theorem 2.1. Let X, Y and Z be Hilbert spaces, and let A ∈ L(Y, Z) and
B ∈ L(X, Y ) be bounded linear operators, such that A, B and AB have
closed ranges. The following statements are equivalent:

(a) (AB)† = B†A†;

(b) (AB)† = B†A†ABB†A†;

(c) ((A†)∗B)† = B†A∗;

(d) (A(B†)∗)† = B∗A†;

(e) (ABB†)† = BB†A† and (A†AB)† = B†A†A;

(f) (AB)† = B†(A†ABB†)†A† and (A†ABB†)† = BB†A†A;

(g) (AB)† = (A†AB)†A† and (A†AB)† = B†A†A;

(h) (AB)† = B†(ABB†)† and (AAB†)† = BB†A†;

(i) (AB)† = (A∗AB)†A∗ and (A∗AB)† = B†(A∗A)†;

(j) (AB)† = B∗(ABB∗)† and (ABB∗)† = (BB∗)†A†;

(k) (AB)† = B∗(A∗ABB∗)†A∗ and (A∗ABB∗)† = (BB∗)†(A∗A)†;

(l) (AB)† = B∗B(AA∗ABB∗B)†AA∗ and
(AA∗ABB∗B)† = (BB∗B)†(AA∗A)†;
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(m) (AB)† = B∗BB∗((A∗A)2(BB∗)2)†A∗AA∗ and
((A∗A)2(BB∗)2)† = ((BB∗)2)†((A∗A)2)†;

(n) {B(1,3)A(1,3)} ⊆ {(AB)(1,3)} and {B(1,4)A(1,4)} ⊆ {(AB)(1,4)}.
Proof. Let we say something about the existence of the Moore-Penrose in-
verse of various terms appearing in the formulas above. The existence of
(A†ABB†)† follows immediately from Lemma 1.3. It is easy to see the exis-
tence of ((A†)∗B)† and (A(B†)∗)†. We have

R(B∗A∗A) = B∗(R(A∗A)) = B∗(R(A∗)) = R((AB)∗)

is closed, which implies the existence of (A∗AB)†, (A†AB)† and also of
(A∗ABB∗)†, because of:

R(A∗ABB∗) = A∗A(R(BB∗)) = A∗A(R(B)) = R(A∗AB) = R((B∗A∗A)∗).

On completely analogous way one can prove the existence of (ABB†)† and
(ABB∗)†.

First, we enlist some parts of the proof regardless of the decomposition
we will use later.
(a) ⇔ (n) : This is already proven as Corollary 6.2.4 in [8].
(a) ⇔ (e) : Already proven as Theorem 2.4.c) in [7].
(f) − (m) ⇒ (a) : Those implications are proven on the same way: the
second part of the statement is replaced onto the first one, and common
identities (see Proposition 1.1 and Lemma 1.5) are applied if necessary. As
a result, we yield statement (a). For illustration, we will present two specific
cases:
(j) ⇒ (a) : (AB)† = B∗(ABB∗)† = B∗(BB∗)†A† = B†A†.
(m) ⇒ (a) : Here we will use Lemma 1.5 for n = 2.

(AB)† = B∗BB∗((A∗A)2(BB∗)2)† = B∗BB∗((BB∗)2)†((A∗A)2)†A∗AA∗ =
= B∗BB∗(BB∗)†(BB∗)†(A∗A)†(A∗A)†A∗AA∗ =
= B∗BB†(BB∗)†(A∗A)†A†AA∗ = B∗(BB∗)†(A∗A)†A∗ = B†A†.

(a) ⇒ (b) : B†A† = (AB)† = (AB)†AB(AB)† = B†A†ABB†A†.
(a) ⇒ (g) : (AB)† = B†A† = B†A†AA† = (A†AB)†A†, according to the
already proven statement (e).
(a) ⇒ (h) : (AB)† = B†A† = B†BB†A† = B†(A†BB†)†, according to the
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already proven statement (e).
For the rest of the proof, we will use the following operator decompositions.
Using Lemma 1.1, we conclude that the operator B has the following matrix
form:

B =
[

B1 0
0 0

]
:
[ R(B∗)
N (B)

]
→

[ R(B)
N (B∗)

]
,

where B1 is invertible. Then

B† =
[

B−1
1 0
0 0

]
:
[ R(B)
N (B∗)

]
→

[ R(B∗)
N (B)

]
.

From Lemma 1.2 also follows that the operator A has the following matrix
form:

A =
[

A1 A2

0 0

]
:
[ R(B)
N (B∗)

]
→

[ R(A)
N (A∗)

]
,

where D = A1A
∗
1 + A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =
[

A∗1D
−1 0

A∗2D
−1 0

]
:
[ R(A)
N (A∗)

]
→

[ R(B)
N (B∗)

]
.

(a) ⇔ (c) ⇔ (d) : Easy computations shows that statements (a), (c) and
(d) are equivalent to: (A1B1)† = B−1

1 A∗1D
−1, (D−1A1B1)† = B−1

1 A∗1 and
(A1(B∗

1)−1)† = B∗
1A∗1D

−1, respectively. Each of them is further equivalent
to the following:

A1A
∗
1D

−1A1 = A1, [A1A
∗
1, D

−1] = 0, [B1B
∗
1 , A∗1D

−1A1] = 0. (1)

Proving the statements: (a) ⇒ (f) and (a) ⇒ (i)−(j) are very similar, so we
will show it only on the case (a) ⇒ (i). Using the decomposition described
above, it is easy to conclude that (i) becomes:

(A1B1)† = (D1/2A1B1)†D1/2,

(D1/2A1B1)†D−1/2Ai = B−1
1 A∗1D

−2Ai, i = 1, 2.

Now we will show that (a) implies the first statement, by checking all four
Penrose equations. For the first and the second equation, it is clear. Let we
check the third and forth.

(III) D1/2A1B1(A1B1)†D−1/2 = D1/2A1B1B
−1
1 A∗1D

−1D−1/2 =

= D1/2A1A
∗
1D

−1D−1/2,
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which is, under the premise (a), Hermitian.

(IV ) (A1B1)†D−1/2D1/2A1B1 = B−1
1 A∗1D

−1D−1/2D1/2A1B1 =
= B−1

1 A∗1D
−1A1B1,

For the sake of completeness, we enlist the equivalent forms for (f) and (j) :

(f) : (A1B1)† = B−1
1 (D−1/2A1)†D−1/2,

(D−1/2A1)†D−1/2Ai = A∗1D
−1Ai, i = 1, 2;

and

(j) : (A1B1)† = B∗
1(A1B1B

∗
1)†,

(D1/2A1B1)†D−1/2Ai = (B1B
∗
1)−1A∗1D

−1.

The proof that (a) ⇒ (k)− (m) will be omitted here, because it will be
found later, in Theorem 2.2, for more general case.
Now, it remains only part:
(b) ⇒ (a) : If we use usual matrix forms for the operators A and B, it
actually remains to be proven that:

(A1B1)† = B−1
1 A∗1D

−1A1A
∗
1D

−1 ⇒ (A1B1)† = B−1
1 A∗1D

−1.

Let us denote W = A∗1D
−1A1. For the expression (A1B1)† = B−1

1 A∗1D
−1A1A

∗
1D

−1,
proper Penrose equations are the following:

1. A1 = A1W
2;

2. W 3A∗1 = WA∗1;

3. [A1WA∗1, D
−1] = 0;

4. [B1B
∗
1 ,W 2] = 0.

On the other side, Penrose equations for (A1B1)† = B−1
1 A∗1D

−1 are the
following:

1. A1 = A1W ;
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2. WA∗1 = A∗1;

3. [A1A
∗
1, D

−1] = 0;

4. [B1B
∗
1 ,W ] = 0.

The operator W is Hermitian, moreover - it is positive (W = T ∗T, where
T = D−1/2A1). This is the reason I + W is invertible, so we have:

A1 = A1W
2 ⇔ A1(I −W 2) = 0 ⇔ A1(I −W )(I + W ) = 0
⇒ A1(I −W ) = 0,

which means
A1 = A1W.

By using this fact, we have the proof immediately.

The next theorem presents one possible way for generalization of some
statements from the previous theorem.

Theorem 2.2. Let X, Y and Z be Hilbert spaces, and let A ∈ L(Y, Z) and
B ∈ L(X, Y ) be bounded linear operators, such that A, B and AB have
closed ranges. Let m and n be arbitrary nonnegative integers. The following
statements are equivalent:

(a) (AB)† = B†A†;

(l’) (AB)† = (B∗B)n((AA∗)mAB(B∗B)n)†(AA∗)m and
((AA∗)mAB(B∗B)n)† = (B(B∗B)n)†((AA∗)mA∗)†;

(m’) (AB)† = B∗(BB∗)n((A∗A)m+1(BB∗)n+1)†(A∗A)mA∗ and
((A∗A)m+1(BB∗)n+1)† = ((BB∗)†)n+1((A∗A)†)m+1.

Proof. First, we show the existence of the operators ((A∗A)m+1(BB∗)n+1)†

and ((AA∗)mAB(B∗B)n)†. By Lemma 1.3, if P and Q are closed-range
operators, then PQ is closed-range if and only if P †PQQ† is closed range.
Let we put

P = (A∗A)m, Q = (BB∗)n.

They are closed-range as a powers of Hermitian closed-range operators A∗A
and BB∗. (The Hermitian operator H ∈ L(X) is closed-range if and only
if 0 /∈ acc(σ(H)). According to the spectral mapping theorem, if Hermi-
tian operator H is closed-range, then Hn is also closed-range for arbitrary
positive integer n.) Let us compute P †PQQ† :

P †PQQ† = ((A∗A)m)†(A∗A)m(BB∗)n((BB∗)n)† =
= ((A∗A)†)m(A∗A)m(BB∗)n((BB∗)†)n = A†ABB†,
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which is closed-range operator because of Lemma 1.3. Thus, we proved
that (A∗A)m+1(BB∗)n+1 has closed range, which implies the existence of
its Moore-Penrose inverse.

Let us now put

P = (AA∗)mA, Q = B(B∗B)n.

By computing P †PQQ† :

P †PQQ† = ((AA∗)mA)†(AA∗)mAB(B∗B)n(B(B∗B)n)† =
= A†((A∗)†A†)m(AA∗)mAB(B∗B)n(B†(B∗)†)nB† = A†ABB†,

we conclude using Lemma 1.3 that it is closed range operator, which implies
(AA∗)mAB(B∗B)n has closed range, and because of that the Moore-Penrose
inverse.

Now, the proof starts.

(l′) ⇒ (a) : (AB)† = (B∗B)n((AA∗)mAB(B∗B)n)†(AA∗)m =
= (B∗B)n(B(B∗B)n)†((AA∗)mA)†(AA∗)m =
= (B∗B)n((B∗B)†)nB†A†((AA∗)†)m(AA∗)m = B†A†,

where we used the following fact: if H is hermitian, then H2H† = H =
H†H2.

(a) ⇒ (l′) : Using the decompositions:

A =
(

A1 A2

0 0

)
, B =

(
B1 0
0 0

)
,

the implication becomes:

(A1B1)† = B−1
1 A∗1D

−1 ⇒
{ (A1B1)† = (B∗

1B1)n(DmA1B1(B∗
1B1)n)†Dm,

(DmA1B1(B∗
1B1)n)† = (B∗

1B1)−nB−1
1 A∗1D

−(m+1).

We can easily prove that (DmA1B1(B∗
1B1)n)† = (B∗

1B1)−n(A1B1)†D−m, by
immediately checking all four Penrose equations under the premise (A1B1)† =
B−1

1 A∗1D
−1.

The second part is now clear:

(DmA1B1(B∗
1B1)n)† = (B1B

∗
1)−n(A1B1)†D−m = (B∗

1B1)−lB−1
1 A∗1D

−(m+1),
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so we completed this part of the proof.
(m′) ⇒ (a) :

(AB)† = B∗(BB∗)n((A∗A)m+1(BB∗)n+1)†(A∗A)mA∗ =
= (B∗B)nB∗((BB∗)†)n+1((A∗A)†)m+1A∗(AA∗)m =
= (B∗B)nB∗(BB∗)†((BB∗)†)n((A∗A)†)m(A∗A)†A∗(AA∗)m =
= (B∗B)n−1B∗BB†((BB∗)†)n((A∗A)†)mA†AA∗(AA∗)m−1 =
= (B∗B)n−1B∗((BB∗)†)n((A∗A)†)mA∗(AA∗)m−1 =
= . . .

= B∗(BB∗)†(A∗A)†A∗ = B†A†.

(a) ⇒ (m′) : Here we also use the following decompositions:

A =
(

A1 A2

0 0

)
, B =

(
B1 0
0 0

)
,

but in the calculation there are some steps which should be explained.
Let us denote T = (A∗A)m+1(BB∗)n+1. It is easier to compute on the
following way:

T = A∗(AA∗)mAB(B∗B)nB∗ =
(

A∗1D
mA1(B1B

∗
1)n+1 0

A∗2D
mA1(B1B

∗
1)n+1 0

)
;

now,

T † =
(

(Dm+1/2A1(B1B
∗
1)n+1)†D−1/2A1 (Dm+1/2A1(B1B

∗
1)n+1)†D−1/2A2

0 0

)
.

Remains to find ((A∗A)†)m+1. It can be computed on this way:

(A∗A)† = A†(A†)∗ =
(

A∗1D
−1A1 A∗1D

−1A2

A∗2D
−1A1 A∗2D

−1A2

)
.

It is easy to prove by induction that for arbitrary nonnegative integer k:

((A∗A)†)k =
(

A∗1D
−(k+1)A1 A∗1D

−(k+1)A2

A∗2D
−(k+1)A1 A∗2D

−(k+1)A2

)
.

Also, it is clear:

(A∗A)k+1 = A∗(AA∗)kA =
(

A∗1D
kA1 A∗1D

kA2

A∗2D
kA1 A∗2D

kA2

)
.
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Now, we have all necessary terms for computing (m′) in the terms of A1, A2

and B1. Thus, we should prove that (A1B1)† = B−1
1 A∗1D

−1 implies:

{ (A1B1)† = B∗
1(B1B

∗
1)n(Dm+1/2A1B1B

∗
1(B1B

∗
1)n)†Dm+1/2,

(Dm+1/2A1(B1B
∗
1)n+1)†D−1/2Ai = (B∗

1B1)−(n+1)A∗1D
−(m+2)Ai, i = 1, 2.

We can prove the first part is true by checking all four Penrose equations
for

(Dm+1/2A1B1B
∗
1(B1B

∗
1)n)† = (B1B

∗
1)−n(B∗

1)−1(A1B1)†D−(m+1/2),

under the premise (A1B1)† = B−1
1 A∗1D

−1.
Now, the second part:

(Dm+1/2A1(B1B
∗
1)n+1)†D−1/2Ai

= (B1B
∗
1)−n(B∗

1)−1(A1B1)†D−(m+1/2)D−1/2Ai =
= (B1B

∗
1)−n(B∗

1)−1B−1
1 A∗1D

−1D−(m+1/2)D−1/2Ai =

= (B1B
∗
1)−(n+1)A∗1D

−(m+2)Ai.

Remark 2.1. If we put m = 0, n = 0 in statement (l′), it becomes (k)
from the Theorem 2.1, if m = 1, n = 1 it becomes (m). Also if we put m =
1, n = 1 in (m′), it becomes (l). Suppose other and further generalizations
are possible.

The next result is immediate corollary of the Theorem 2.1 and Theorem
2.2.

Corollary 2.1. Let X and Y be Hilbert spaces, and let A ∈ L(X, Y ) be
bounded linear closed-range operator. The following statements are equiva-
lent:

(a) (A2)† = (A†)2, namely, A is a bi-dagger;

(b) ((A†)∗A)† = A†A∗;

(c) (A(A†)∗)† = A∗A†;

(d) (A2A†)† = A(A†)2 and (A†A2)† = (A†)2A;

(e) (A2)† = A†(A†A2A†)†A† and (A†A2A†)† = A(A†)2A;

(f) (A2)† = (A†A2)†A† and (A†A2)† = (A†)2A;
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(g) (A2)† = A†(A2A†)† and (A2A†)† = A(A†)2;

(h) (A2)† = (A∗A2)†A∗ and (A∗A2)† = A†(A∗A)†;

(i) (A2)† = A∗(A2A∗)† and (A2A∗)† = (AA∗)†A†;

(j) (A2)† = A∗(A∗A2A∗)†A∗ and (A∗A2A∗)† = (AA∗)†(A∗A)†;

(k) (A2)† = A∗A(AA∗A2A∗A)†AA∗ and (AA∗A2A∗A)† = (AA∗A)†(AA∗A)†;

(l) (A2)† = A∗AA∗((A∗A)2(AA∗)2)†A∗AA∗ and
((A∗A)2(AA∗)2)† = ((AA∗)2)†((A∗A)2)†;

(m) (A2)† = (A∗A)n((AA∗)mA2(A∗A)n)†(AA∗)m and
((AA∗)mA2(A∗A)n)† = (A(A∗A)n)†((AA∗)mA∗)†;

(n) (A2)† = A∗(AA∗)n((A∗A)m+1(AA∗)n+1)†(A∗A)mA∗ and
((A∗A)m+1(AA∗)n+1)† = ((AA∗)†)n+1((A∗A)†)m+1.

For the sake of completeness, we shall repeat some results already proven
in [7] as the (c)−parts of the Theorems 2.2, 2.3 and 2.4.

Theorem 2.3. Let X, Y and Z be Hilbert spaces, and let A ∈ L(Y, Z) and
B ∈ L(X, Y ) be bounded linear operators, such that A, B and AB have
closed ranges. The following statements are equivalent:

(a) (AB)† = B†A†;

(b1) AB(AB)† = ABB†A† and (AB)†AB = B†A†AB;

(b2) A∗AB = BB†A∗AB and ABB∗ = ABB∗A†A;

(b3) R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗);

(c1) AB(AB)†A = ABB† and A†AB = B(AB)†AB;

(c2) [A∗A,BB†] = 0 and [A†A,BB∗] = 0;

(d1) (ABB†)† = BB†A† and (A†AB)† = B†A†A;

(d2) B†(ABB†)† = B†A† and (A†AB)† = B†A†.

The following theorem establishes the connection between the basic re-
verse order law (AB)† = B†A† and mixed-type reverse order law (AB)† =
B†(A†ABB†)†A†. This mixed-type reverse order law is deeply considered in
the paper [5].
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Theorem 2.4. Let X, Y and Z be Hilbert spaces, and let A ∈ L(Y, Z) and
B ∈ L(X, Y ) be bounded linear operators, such that A, B and AB have closed
ranges. Then (AB)† = B†A† if and only if (AB)† = B†(A†ABB†)†A†, and
AB satisfies any one of the following conditions:

(a) ABB†A†AB = AB;

(b) B†A†ABB†A† = B†A†;

(c) [A†A,BB†] = 0;

(d) A†ABB† is an idempotent;

(e) BB†A†A is an idempotent;

(f) B†(A†ABB†)†A† = B†A†;

(g) (A†ABB†)† = BB†A†A.

Proof. Statements (a) − (g) are mutually equivalent, as it is proved in the
Theorem 2.1. from [7]. From this result and from the statement (f), Theo-
rem 2.1, the conclusion is easy to obtain.
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