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Abstract. In this article we introduce a full-rank representation of the
Drazin inverse AD of a given complex matrix A, which is based on an arbi-
trary full-rank decomposition of Al, l ≥ k, where k is the index of A. We
show that the known representation of the Drazin inverse of A, devised in
[7], represents a partial case of this result. Using this general representation,
we introduce a determinantal representation of the Drazin inverse. More
precisely, we represent elements of the Drazin inverse AD as ratios of two
expressions involving minors of the order rank(Ak), k = ind(A), taken from
the matrices A and rank invariant powers Al, l ≥ k. Also, we examine con-
ditions for the existence of the Drazin inverse for matrices whose elements
are taken from an integral domain. Finally, a few correlations between the
minors of powers of the Drazin inverse AD and the minors of the matrix Ak

are explicitly derived.

1. Introduction

The set of all m×n complex matrices of rank r is denoted by Cm×n
r , and

the set of all m × n matrices of rank r whose elements are taken from an

integral domain I is denoted by Im×n
r . Tr(A) denotes the trace of a square

matrix A, the determinantal rank of A is denoted by ρ(A), and |A| denotes

the determinant of A.
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An arbitrary matrix A ∈ Cn×n
r has the Drazin inverse, provided that

there exists the unique matrix AD ∈ Cn×n
r , satisfying

Ak+1AD = Ak, ADAAD = AD, AAD = ADA,

for some non-negative integer k= ind(A)=min
p
{p : rank(Ap+1)= rank(Ap)}.

In the case k = 1, the Drazin inverse is well-known as the group inverse of

A and is denoted by A#.

For A ∈ Cm×n, if G ∈ Cn×m satisfies AGA = A, GAG = G, then G is

a reflexive g-inverse of A. G is called the Moore-Penrose inverse of A if it

satisfies the equations

AGA = A, GAG = G, (AG)∗ = AG, (GA)∗ = GA.

We use the following notation from [1], [12]. Let A be an m×n matrix of

rank r; let α = {α1, . . . , αp} and β = {β1, . . . , βp} be subsets of {1, . . . ,m}
and {1, . . . , n}, respectively, of the order 1 ≤ p ≤ min{m,n}. Then |Aα

β |
denotes the minor of A determined by the rows indexed by α and the columns

indexed by β.

For 1 ≤ p ≤ n, denote the collection of strictly increasing sequences of p

integers chosen from {1, . . . , n}, by

Qp,n = {α : α = (α1, . . . , αp), 1 ≤ α1 < · · · < αp ≤ n} .

Let N = Qr,m ×Qr,n. For fixed α ∈ Qk,m, β ∈ Qk,n, 1 ≤ k ≤ r, let

I(α) = {I : I ∈ Qr,m, I ⊇ α} , J (β) = {J : J ∈ Qr,n, J ⊇ β} ,

N (α, β) = I(α)× J (β).

If A is a square matrix, then the coefficient of |Aα
β | in the Laplace expansion

of |A| is denoted by
∂

∂|Aα
β |
|A|. For the special case α = {i}, β = {j}, we

get the cofactor of aij :
∂

∂aij
|A | .

We use Cp(A) to denote the pth compound matrix of A with rows indexed

by r-element subsets of {1, . . . ,m}, columns indexed by r-element subsets

of {1, . . . , n}, and the (α, β) entry defined by |Aα
β |.
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Also, we use the following extensions of these notions:

Nrk
= Qrk,m ×Qrk,n, where rk = rank(Al), l ≥ k = ind(A);

for fixed α, β ∈ Qp,n, 1 ≤ p ≤ rk, let

Irk
(α) = {I : I ∈ Qrk,m, I ⊇ α} , Jrk

(β) = {J : J ∈ Qrk,n, J ⊇ β} ,

Nrk
(α, β) = Irk

(α)× Jrk
(β).

The paper is organized as follows. In Section 2 we introduce a full-rank

representation of the Drazin inverse of a complex matrix A, by means of

components from an arbitrary full-rank factorization of any matrix power

Al, l ≥ k = ind(A). We show that the Cline’s representation of the Drazin

inverse [7] gives a partial case of this general representation. This full-rank

representation will be used in Section 3. In Section 3 we introduce a deter-

minantal formula for the Drazin inverse of a given complex matrix A. In

other words, an arbitrary element of the Drazin inverse is characterized in

terms of minors of the order rk = rank(Ak), k = ind(A), selected from the

matrices A and Al, l ≥ k. Such an approach, as far as we know, is not

employed before. In the papers [1], [2], [3], [4], [12], [13], [14], concerning

the determinantal representation of generalized inverses, only r × r minors,

r = rank(A), are used in investigation and representation of the reflexive

g-inverses, the Moore-Penrose inverse and the group inverse. In the papers

[8], [9] there are investigated the determinantal representations of general-

ized inverses for matrices over an arbitrary field. In these papers it is allowed

to use minors of the order h, h ≤ rank(A), but its application in the repre-

sentation of the Drazin inverse is not mentioned. Among the other results,

we develop full-rank and determinantal representations for some expressions

involving the Drazin inverse, arising from the representations of the Drazin

inverse. As an consequence we obtain the known determinantal formula for

the reflexive g-inverses, introduced in [2].

In the set of matrices over an integral domain I we give a few necessary

and sufficient conditions for the existence of the Drazin inverse and its deter-
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minantal representation. These conditions are complementary with respect

to the conditions for the existence of the Drazin inverse, investigated in [13].

In the last section we investigate correlatons between the minors of the

order rank(Ak).

2. Representation of the Drazin inverse

based on the full-rank decomposition

Using the known Cline’s representation of the Drazin inverse [7], we intro-

duce a full-rank representation of the Drazin inverse in terms of the full-rank

factorization of the matrix powers Al, l ≥ k = ind(A).

Theorem 2.1. The Drazin inverse of a given matrix A ∈ Cn×n
r can be

represented in the form

AD = PAl(QAl A PAl)−1QAl ,

for an arbitrary integer l ≥ k = ind(A) and arbitrary full-rank factorization

Al = PAlQAl of the matrix power Al.

Proof. Using the following useful property of the Moore–Penrose inverse

from [7]: (BCD)† = D†C−1B†, where B has full column rank, C is nonsin-

gular and D has full row rank, we get

(A2l+1)† = (PAlQAlAPAlQAl)† = (QAl)†(QAlAPAl)−1(PAl)†.

Applying this result to the known representation of the Drazin inverse from

[7]: AD =Al(A2l+1)†Al, we obtain the following:

AD = PAlQAl(QAl)†(QAlAPAl)−1(PAl)†PAlQAl

= PAl(QAlAPAl)−1QAl . ¤

Remark 2.1. From [16] we can derive the following general representation

for an arbitrary reflexive g-inverse X of A:

X = V Q∗(P ∗UAV Q∗)−1P ∗U, rank(P ∗UAV Q∗)= rank(A).
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This representation is equivalent to the following representation, introduced

in [15]:

X = W1(W2AW1)−1W2, rank(W2AW1)= rank(A).

Therefore, the Drazin inverse and the class of reflexive g-inverses possess the

same general form:

W1(W2AW1)−1W2, where W2AW1 is invertible .

In the rest of this section we investigate representations of some expres-

sions involving the Drazin inverse, in terms of an arbitrary full-rank factor-

ization of rank invariant powers of A.

Theorem 2.2. If A is an n×n complex matrix of index k and Al = PAlQAl

is an arbitrary full-rank decomposition of Al, l ≥ k, then

(i) (AD)l = PAl(QAlAlPAl)−1QAl = PAl(QAlPAl)−2PAl ;

(ii) AAD = PAl(QAlPAl)−1QAl ;

(iii) (AD)† = (QAl)†QAlAPAl(PAl)†.

Proof. (i) Follows from (AD)l = (Al)# and the known representation of the

group inverse: If B = RS if a full-rank factorization of a square matrix B,

rthen B# = R(SR)−2S.

(ii) Using AAD = Al(A2l)†Al from [7], we obtain

AAD = PAlQAl(QAl)†(QAlPAl)†(PAl)†PAlQAl = PAl(QAlPAl)−1QAl .

(iii) PAl has full column rank, QAlPAl is invertible and QAl has full row

rank, and again applying the property (BCD)† = D†C−1B† from [7] we get

(AD)† =
(
PAl)(QAlAPAl)−1QAl

)†
= (QAl)†QAlAPAl(PAl)† ¤

Remark 2.2. The properties of the Drazin inverse investigated in Theorem

2.3 can be verified using the canonical form representation of the Drazin

inverse from [6, p. 122].
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3. Determinantal representation of the Drazin inverse

In the following theorem we introduce a determinantal representation

of the Drazin inverse. More precisely, elements of the Drazin inverse are

expressed in terms of minors of the order rank(Ak), k = ind(A), taken from

the matrices A and Al, l ≥ k.

Theorem 3.1. The Drazin inverse of an arbitrary matrix A ∈ Cn×n
r pos-

sesses the following determinantal representation:

(3.1)

AD
ij =

∑
(α,β)∈Nrk

(j,i)

| (Al)β
α |

∂

∂aji
|Aα

β |
∑

(γ,δ)∈Nrk

| (Al)δ
γ | |Aγ

δ |

=

∑
(α,β)∈Nrk

(j,i)

| (Al)β
α |

∂

∂aji
|Aα

β |

Tr(Crk
(Al+1))

, 1 ≤ i, j ≤ n,

where l ≥ k = ind(A) and rk = rank(Al).

Proof. Assume that A = PQ is an arbitrary full-rank factorization of A, and

Al = PAlQAl is a full-rank factorization of Al, l ≥ ind(()A). According to

Theorem 2.1, we get

(3.2) AD =
PAl adj(QAlP QPAl)QAl

|QAlPQPAl |
An application of the Cauchy-Binet theorem transforms the denominator in

(3.2) as follows:

|QAlPQPAl | =
∑

ε∈Qrk,r

| (QAlP )ε | | (QPAl)ε | =
∑

ε∈Qrk,r

|QAlPε | |QεPAl |

Another application of the Cauchy-Binet formula gives

|QAlPQPAl |=
∑

ε∈Qrk,r


 ∑

γ∈Qrk,n

| (QAl)γ | |P γ
ε |





 ∑

δ∈Qrk,n

|Qε
δ | | (PAl)δ |
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Hence,

|QAlPQPAl |=
∑

(γ,δ)∈Nrk

| (Al)δ
γ |


 ∑

ε∈Qrk,r

|P γ
ε | |Qε

δ |



=
∑

(γ,δ)∈Nrk

| (Al)δ
γ | |P γQδ |=

∑

(γ,δ)∈Nrk

| (Al)δ
γ | |Aγ

δ |

=
∑

δ∈Qrk

| (Al ·A)δ
δ | = Tr(Crk

(Al+1)).

Now we consider the overlying expression in (3.2). If the submatrix of

A, generated by deleting the ith row of A (the jth column respectively), is

denoted by A{i}
′
(A{j}′ respectively), then we can write

( adj(QAlP QPAl))ij = (−1)i+j | (QAl){j}
′
P Q(PAl){i}′ | .

The Cauchy-Binet formula produces

( adj(QAlP QPAl))ij =(−1)i+j
∑

ε′∈Qrk−1,r

| ((QAl){j}
′ · P )ε′ | | (Q · (PAl){i}′)ε′ |

= (−1)i+j
∑

ε′∈Qrk−1,r

|Qε′ · (PAl){i}′ | | (QAl){j}
′ · Pε′ | .

Now, applying the Cauchy-Binet formula to both of the determinants con-

tained in the last formula, we obtain

( adj(QAlPQPAl))ij =(−1)i+j
∑

ε′∈Qrk−1,r


 ∑

β′∈Qrk−1,n

∣∣Qε′
β′

∣∣|((PAl){i}′)β′ |

×

×

 ∑

α′∈Qrk−1,n

|Pα′
ε′ ||((QAl){j}

′
)α′ |


 .
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Therefore,

( adj(QAlPQPAl))ij =
∑

ε′∈Qrk−1,r


 ∑

β′∈Qrk−1,n

(−1)i
∣∣ Qε′

β′
∣∣ | ((PAl){i}′)β′ |


×

×

 ∑

α′∈Qrk−1,n

(−1)j |Pα′
ε′ | | ((QAl){j}

′
)α′ |


 .

Consequently,

(PAl adj(QAlPQPAl))ij =
rk∑

t=1

(PAl)it ( adj(QAlP QPAl))tj

=
∑

ε′∈Qrk−1,r

∑

β′∈Qrk−1,n

∣∣Qε′
β′

∣∣
(

rk∑
t=1

(−1)t(PAl)it |((PAl){t}′)β′ |
)
×

×

 ∑

α′∈Qrk−1,n

(−1)j |Pα′
ε′ | | ((QAl){j}

′
)α′ |




If i is contained in the combination β′, then
rk∑

t=1

(−1)t(PAl)it | ((PAl){t}′)β′ | = 0.

If the set β′ does not contain i, then i = βp and the system β′ is denoted by

β′ = {1 ≤ β1 < . . . < βp−1 < βp+1 < . . . < βrk
≤ n}.

If the set β denotes the following combination:

β={1 ≤ β1 < . . . < βp−1 < i = βp < βp+1 < . . . < βrk
≤ n}

we obtain the following representation for (PAl adj(QAlP QPAl))ij :

∑

ε′∈Qrk−1,r


 ∑

β∈Jrk
(i)

(−1)p
∣∣Qε′

β\{i}
∣∣|(PAl)β |




 ∑

α′∈Qrk−1,n

(−1)j |Pα′
ε′ | |((QAl){j}

′
)α′ |


.

Continuing in the same way, we get
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(PAl adj(QAlPQPAl)QAl)ij =
rk∑

t=1

(PAkl adj(QAlPQPAl))it (QAl)tj

=
∑

ε′∈Qrk−1,r


 ∑

β∈Jrk
(i)

(−1)p
∣∣ Qε′

β\{i}
∣∣ | (PAl)β |


×

×

 ∑

α′∈Qrk−1,n

|Pα′
ε′ |

rk∑
t=1

(−1)t(QAl)tj | ((QAl){t}
′
)α′ |


 .

Similarly, if j is contained in the combination α′, then
rk∑

t=1

(−1)t(QAl)tj | ((QAl){t}′)α′ | = 0.

Otherwise, j = αq and the systems α′ and α are equal to

α′ = {1 ≤ α1 < . . . < αq−1 < αq+1 < . . . < αrk
≤ n}

α = {1 ≤ α1 < . . . < αq−1 < j = αq < αq+1 < . . . < αrk
≤ n}

Therefore, the (i, j)th element of the matrix PAl adj(QAlPQPAl)QAl is equal

to

∑

ε′∈Qrk−1,r


 ∑

β∈Jrk
(i)

(−1)p
∣∣Qε′

β\{i}
∣∣ |(PAl)β |





 ∑

α∈Jrk
(j)

(−1)q
∣∣Pα\{j}

ε′
∣∣ |(QAl)α|




=
∑

(α,β)∈Nrk
(j,i)

| (Al)β
α |

∑

ε′∈Qrk−1,r

(−1)p+q
∣∣ P

α\{j}
ε′

∣∣ ∣∣ Qε′
β\{i}

∣∣

=
∑

(α,β)∈Nrk
(j,i)

| (Al)β
α | (−1)p+q|Pα\{j} | |Qβ\{i} |

=
∑

(α,β)∈Nrk
(j,i)

| (Al)β
α |

∂

∂aji
|Aα

β | . ¤

Corollary 3.1. The determinantal representation of an arbitrary element

of the Drazin inverse of a given matrix A ∈ Cn×n
r possesses the form
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(3.3) AD
ij =

∑

(α,β)∈Nrk
(j,i)

λα,β
∂

∂aji
|Aα

β | , 1 ≤ i, j ≤ n,

where the matrix Λ = (λα,β) satisfies the following conditions

(3.4) rank(Λ) = 1,
∑

(α,β)∈Nrk

λα,β |Aα
β | = 1.

Proof. Indeed, for arbitrary l ≥ k = ind(A) we can use

Λ = (|QAlAPAl |)−1
Crk

(
(Al)T

)

=


 ∑

(γ,δ)∈Nrk

| (Al)δ
γ | |Aγ

δ |


−1

Crk

(
(Al)T

)

=
(
Tr(Crk

(Al+1))
)−1

Crk

(
(Al)T

)
. ¤

Remark 3.1. (i) In the case l = ind(A) = 1, the result of Theorem 3.1

reduces to the known determinantal representation of the group inverse,

introduced in [13].

(ii) Representation of the Drazin inverse, given in Corollary 3.1, is similar

to the following representation of the reflexive g-inverses from [12]:

Proposition 3.1. Let A ∈ Cm×n
r . Then G = (gij) is a reflexive g-inverse

of A if and only if

gij =
∑

(α,β)∈N (j,i)

λα,β
∂

∂aji
|Aα

β | ,

where λα,β ∈ C and (α, β) ∈ N satisfy
∑

(α,β)∈N
λα,β |Aα

β | = 1,

and the rank of the matrix Λ = (λα,β) is

rank(Λ) = 1.

(iii) The generalized inverses over an arbitrary field are investigated in [8]

and [9]. In these papers it is allowed to use minors of the order h ≤ rank(A)
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from a given matrix A in the known determinantal representation of the

Moore-Penrose inverse. The order h of the minors is the greatest integer

satisfying

Nh(A) =
∑

(α,β)∈Nh

∣∣ A
α

β

∣∣ |Aα
β | 6= 0.

The algebraic complement of the order h, corresponding to aij is defined by

A
(h)
ij =

∑

(α,β)∈Nh(j,i)

∣∣ A
α

β

∣∣ ∂

∂aij
|Aα

β | .

The result of Theorem 3.1 is a continuation of these results in the following

sense: the determinantal representation of the Drazin inverse can be gener-

ated in the case h = rk = rank(Al), l ≥ k = ind(A), substituting the minors∣∣ A
α

β

∣∣ of the order h by the minors of the order rk from (Al)T .

In the light of Proposition 3.1 , it seems interesting to state the following

problem, representing the dual result to Corollary 3.1.

Problem 3.1. If each element of the matrix X can be represented by (3.3)

and (3.4), then does it follow that X = AD?

In the following theorem we introduce a determinantal representation of

a few expressions involving the Drazin inverse.

Theorem 3.2. For a given matrix A ∈ Cn×n
r with the Drazin inverse of the

index k, we obtain the following determinantal representations:

(i)

(AAD)ij =

∑
α∈Jrk

(i), j /∈α

| (QAl)α | | (PAl)α |
∑

γ∈Qrk,n

| (QAl)γ | | (PAl)γ |

=

∑
α∈Jrk

(i), j /∈α

| (QAl)α | | (PAl)α |

Tr(Crk
(Al))

, 1 ≤ i, j ≤ n.
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(ii)

(AD(AD)†)ij =

∑
α∈Jrk

(i), j /∈α

| (PAl)α | | (PAl)α |
∑

γ∈Qrk,n

| (PAl)γ | | (PAl)γ |

=

∑
α∈Jrk

(i), j /∈α

| (PAl)α | | (PAl)α |

Tr(Crk
(PAl(PAl)∗))

, 1 ≤ i, j ≤ n.

(iii)

((AD)†AD)ij =

∑
α∈Jrk

(i), j /∈α

| (QAl)α | | (PAl)α |
∑

γ∈Qrk,n

| (QAl)γ | | (QAl)γ |

=

∑
α∈Jrk

(i), j /∈α

| (QAl)α | | (PAl)α |

Tr(Crk
((QAl)∗QAl))

, 1 ≤ i, j ≤ n.

Proof. (i) We start from the representation AAD = PAl(QAlPAl)−1QAl ,

developed in the part (ii) of Theorem 2.3. Using the methods from [8], it is

an exercise to prove

(
(QAlPAl)−1QAl

)
tj

=

∑
α∈Jrk

(j)

| (QAl)α | ∂

∂(PAl)jt
| (PAl)α |

∑
γ∈Qrk,n

| (QAl)γ | | (PAl)γ | ,
(

1≤t≤rk

1≤j≤n

)
.

Now, for arbitrary 1 ≤ i, j ≤ n we get

(AAD)ij =
rk∑

t=1

(PAl)it

(
(QAlPAl)−1QAl

)
tj

=

∑
α∈Jrk

(j), i/∈α

| (QAl)α |
rk∑

t=1
(PAl)it

∂

∂(PAl)jt
| (PAl)α |

∑
γ∈Qrk,n

| (QAl)γ | | (PAl)γ |

=

∑
α∈Jrk

(i), j /∈α

| (QAl)α | | (PAl)α |
∑

γ∈Qrk,n

| (QAl)γ | | (PAl)γ | .
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In the rest of this part of the proof we use the following:
∑

γ∈Qrk,n

| (QAl)γ | | (PAl)γ |=
∑

γ∈Qrk,n

| (Al)γ
γ |= Tr(Crk

(Al)).

(ii), (iii) Using the known result from [7]:

AD(AD)† = Al(Al)†, (AD)†AD = (Al)†Al,

we get
AD(AD)†=PAl(PAl)†=PAl ((PAl)∗PAl)−1 (PAl)∗

(AD)†AD =(QAl)†QAl =(QAl)∗ (QAl(QAl)∗)−1
QAl .

Now, the proof can be completed in the same way as in the part (i) ¤

It seems interesting to replace the components PAl and QAl
from the

full-rank factorization Al = PAlQAl
by two appropriate full rank matrices

PS ∈ Cm×rk
rk

and QT ∈ Crk×n
rk

. This idea leads to the following determinantal

representation of the subclass of {2}-inverses.

Theorem 3.3. Assume that A ∈ Cm×n
r has the index k and rk = rank(Ak).

Let PS ∈ Cm×rk
rk

and QT ∈ Crk×n
rk

satisfy rank(QT APS) = rk. Then the

matrix G, defined by

Gij =

∑
(α,β)∈Nrk

(j,i)

| (PSQT )β
α |

∂

∂aji
|Aα

β |
∑

(γ,δ)∈Nrk

| (PSQT )δ
γ | |Aγ

δ |

=

∑
(α,β)∈Nrk

(j,i)

| (PSQT )β
α |

∂

∂aji
|Aα

β |

Tr(Crk
(PSQT A))

, 1 ≤ i ≤ n; 1 ≤ j ≤ m

satisfies G ∈ A{2}.

Proof. Using the principles from Theorem 3.1, one can verify

G = PS(QT APS)−1QT .
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Consider two full rank matrices QS ∈ Crk×n
rk

and PT ∈ Cn×rk
rk

, such that

rank(QT APS) = rk. Then PSQS is the full-rank factorization of the matrix

S = PSQS ∈ Cn×n
rk

and PT QT is the full-rank factorization of the matrix

T = PT QT ∈ Cn×n
rk

. According to the known result about {1, 2}-inverses

and full-rank factorizations from [5], we get

G = PSQSQ
(1,2)
S (QT APS)−1P

(1,2)
T PT QT = S(TAS)(1,2)T.

Using the general solution of the equation (2) from [16, p. 56], it is easy to

conclude that G ∈ A{2}. ¤

Example 3.1. Let us consider the matrix

A =




1 −1 1 1
0 1 −1 1
1 −1 1 2
1 −1 1 1


 .

It is easy to verify the following: r= rank(A) = 3, rank(A2)= rank(A3)=2.

This implies k= ind(A)=2, rk = rank(A2)=2.

Let the matrices PS and QT be chosen as follows:

PS =




1 −5
1 1

−2 −8
1 7


 , QT =




1 − 4
3 − 1

3 0

0 1
3

1
3 1


 .

Applying the result of Theorem 3.3 we obtain the following {2}-inverse of

A:

X =




0 1 1 3

− 1
10

1
2

2
5

11
10

3
10 − 1

2 − 1
5 − 3

10

− 1
5 0 − 1

5 − 4
5




.

In the case
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PS =PA2 =



−4 3

1 0
−5 4
−4 3


 , QT =QA2 =

[
0 1 −1 0
1 0 0 1

]

we obtain the following Drazin inverse of A:

AD =




1
2

1
2 − 1

2
1
2

7
4

5
2 − 5

2
7
4

5
4

3
2 − 3

2
5
4

1
2

1
2 − 1

2
1
2




.

The determinantal representation of the reflexive g-inverses, introduced

in [2] can be derived as a consequence of Theorem 3.3.

Corollary 3.2. The class of reflexive g-inverses of A ∈ Cm×n
r is character-

ized by the following determinantal formula

Gij =

∑
(α,β)∈N (j,i)

|Hβ
α |

∂

∂aji
|Aα

β |
∑

(γ,δ)∈N
|Hδ

γ | |Aγ
δ |

, 1 ≤ i ≤ n; 1 ≤ j ≤ m

where H ∈ Cm×n
r satisfies rank(AH) = rank(HA) = r.

Proof. Using the following known general solution of the system of equations

(1), (2) from [15], [16]:

G = W1(W2AW1)−1W2, W1 ∈ Cn×r
r , W2 ∈ Cr×n

r

we conclude that G can be derived from the set of {2}-inverses, defined in

Theorem 3.3, for the case rk = r, PS = W1, QT = W2. This implies the

following determinantal representation for G:

Gij =

∑
(α,β)∈N (j,i)

| (W1W2)β
α |

∂

∂aji
|Aα

β |
∑

(γ,δ)∈N
| (W1W2)δ

γ | |Aγ
δ |

, 1 ≤ i ≤ n; 1 ≤ j ≤ m
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Now, W1, W2 can be considered as the factors of the full-rank factorization

of the matrix H = W1W2 ∈ Cm×n
r . In [2] it is proved that the conditions

rank(AH) = rank(HA) = r are equivalent to rank(W2AW1) = r, which

ensures invertibility of the matrix W2AW1. ¤

Now we give a few necessary and sufficient conditions for the existence of

the Drazin inverse, for matrices whose elements are taken from an integral

domain I. These results are additional with respect to the conditions for

the existence of the Drazin inverse, proposed in [13]. Derivation of the

determinantal formula for the Drazin inverse can be transferred from the set

of complex matrices. Remark that in [13] the Drazin inverse is investigated

only through the representation AD = Ak(A2k+1)(1)Ak, where k = ind(A)

and (A2k+1)(1) stands for an arbitrary g-inverse of A.

Theorem 3.4. Let A be an n×n matrix of rank r over I, A = PQ be a full-

rank factorization of A. Let k = ind(A) and assume that l is an arbitrary

integer satisfying l ≥ k. Consider the sequences Pi, Qi, i = 1, . . . , l defined

as follows:

A=PQ=P1Q1, P = P1 ∈ Cn×r1
r1

, Q = Q1 ∈ Cr1×n
r1

,

QiPi = Pi+1Qi+1, Pi+1 ∈ Cri×ri+1
ri+1

, Qi+1 ∈ Cri+1×ri
ri+1

, i=1, . . . , l

such that Pi+1Qi+1 is a full-rank factorization for QiPi, i = 1, . . . , l. Then

Al = PAlQAl is the full-rank factorization of Al, where PAl = P1 · · ·Pl,

QAl = Ql · · ·Q1, l ≥ k. Also, the following conditions are equivalent:

(i) AD exists, and k = ind(A) < ∞.

(ii) QkPk is the invertible matrix over I.

(iii) QAkAPAk is the invertible matrix over I.

(iv) u =
∑

(γ,δ)∈Nrk

| (Ak)δ
γ | |Aγ

δ | = Tr(Crk
(Ak+1)) is invertible in I.

Moreover, the Drazin inverse, if it exists, is given by the following full-
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rank and determinantal representations

(3.5)

AD = PAl(QAlAPAl)−1QAl ;

(AD)ij = u−1
∑

(α,β)∈Nrk
(j,i)

| (Al)β
α |

∂

∂aji
|Aα

β |

Proof. (i) ⇔ (ii): This is a known result [7, Theorem 1]

(ii) ⇔ (iii): The matrix QkPk is invertible if and only if (QkPk)k+1 =

QAkAPAk is invertible.

(iii) ⇔ (iv): A square matrix over a ring is invertible if and only if its

determinant is invertible in the ring [10], [11]. Hence, QAkAPAk is invertible

matrix in I if and only if |QAkAPAk | is invertible in I. From Theorem 3.1

we obtain

|QAkAPAk | =
∑

(γ,δ)∈Nk

| (Ak)δ
γ | |Aγ

δ | = Tr(Crk
(Ak+1))

and complete this part of the proof.

(iii) ⇒ (i): If QAkAPAk is invertible, then rank(QAkAPAk) = rk. This

means the following:

rank(PAk) = rank(QAk) = rk

Consequently,

(3.6) rank(Ak) = rank(PAkQAk) ≤ rk

Also, using

Tr(Crk
(QAkAPAk)) = Tr(Crk

(QAk) · Crk
(A) · Crk

(PAk))

= Tr(Crk
(A) · Crk

(PAk) · Crk
(QAk))

= Tr(Crk
(APAkQAk)) = Tr(Crk

(Ak+1))

we conclude rank(Ak+1)= rank(QAkAPAk)= rk, which means rank(Ak)≥
rk. Using this result and (3.6) we conclude rk = rank(Ak) = rank(Ak+1),

which means k = ind(A) < ∞.
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Finally, the representations (3.5) can be developed applying the method

used in the set of complex matrices. ¤

As an easy consequence of Theorem 3.4 we obtain the following result

related to the conditions for the existence and representations of the Drazin

inverse. Some of these conditions are complementary with respect to the

results from [13].

Corollary 3.3. Let A be an n× n matrix of rank r over I and A = PQ be

its full-rank factorization of A. Then the following conditions are equivalent:

(i) A# exists.

(ii) QP is the invertible matrix over I.

(iii) QAP is the invertible matrix over I.

(iv) u =
∑

(γ,δ)∈N
|Aδ

γ | |Aγ
δ |=

(
∑

γ∈Qr,n

|Aγ
γ |

)2

= Tr(Cr(A2)) is invertible in

I.

Moreover, the group inverse, if it exists, is given by the following general

and determinantal representation:

(3.7)

AD = P (QAP )−1Q = P (QP )−2Q;

(A#)ij = u−1
∑

(α,β)∈N (j,i)

|Aβ
α |

∂

∂aji
|Aα

β |

Remark 3.1. Equivalence of the conditions (i) and (iv) and the determinan-

tal representation of the group inverse are the known results in [13].

Using (AD)l = (Al)# from [7], the known results about the existence and

the determinantal representation of the group inverse from [13], together

with the results of Corollary 3.3, we obtain a few conditions for the existence

of (AD)l and its determinantal representation.

Corollary 3.4. Let A be an n × n matrix over I, such that ρ(Al) = rk,

where l ≥ ind(A) is an arbitrary integer. Then the following conditions are

equivalent:
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(i) (AD)l exists.

(ii) Crk
(Al) has a group inverse.

(iii) u =

(
∑

γ∈Qrk,n

| (Al)γ
γ |

)2

= Tr(Cr(A2l)) is invertible in I.

(iv) ρ(Al) = ρ(A2l) and A2l is regular.

(v) QAlPAl is the invertible matrix over I.

(vi) QAlAPAl is the invertible matrix over I.

Moreover, if (AD)l, exists, then it is given by

(
(AD)l

)
ij

=u−2
∑

(α,β)∈Nrk
(j,i)

| (Al)β
α |

∂

∂(Al)ji
| (Al)α

β |

4. Minors of the Drazin inverse

Now we examine properties of the minors of the Drazin inverse. Our

motivation for this investigation is based on the following results. It is well

known that if A is an m×n matrix of rank r over an integral domain I, then

A† and A∗ have the proportional r× r minors [1]. In [2] it is proved that A

admits a g-inverse whose r× r minors are proportional to the corresponding

minors of a given m × n matrix H if and only if Tr(Cr(AH)) is invertible.

Similarly, if A is an n × n matrix, then A# and A have the proportional

minors of the order r [13]. In Theorem 4.4 we generalize the result from

[13], and show that the Drazin inverse AD and Al, l ≥ k = ind(A) have the

proportional minors of the order rk = rank(Ak). Firstly we prove several

useful relations between the minors selected from the powers of the Drazin

inverse and the corresponding minors taken from the Drazin inverse.

Lemma 4.1. Let A ∈ Cn×n
r has a Drazin inverse AD of index k and rk =

rank(Ak). Then for each p ≥ 1 the following two identities are valid:

(i) Crk
((AD)p+1) = Crk

((AD)p)Tr(Crk
(AD));
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(ii) Crk
((AD)p) = Crk

(AD)
[
Tr(Crk

(AD))
]p−1 ;

(iii) There exist constants ci, di, 1 ≤ i ≤ (
n
rk

)
, such that

(
Crk

((AD)p)
)
ij

= cidj ·
(
Crk

((AD)p)
)
11

, 1 ≤ i, j ≤
(

n

rk

)
.

Proof. The proof proceeds by the induction on p. Indeed, in the case p=1

the statement (ii) is evident. Since rank(AD) = rank(Ak) [7], we conclude

rank(Crk
(AD))=1. Consequently, there exist constants ci, dj which satisfy

(
Crk

(AD)
)
ij

= cidj

(
Crk

(AD)
)
11

, 1 ≤ i, j ≤
(

n

rk

)
.

Hence, (iii) is also satisfied in the case p = 1.

Finally, the statement (i) can be verified for the case p = 1 as follows:

(
Crk

((AD)2)
)
ij

=
( n

rk
)∑

t=1

(
Crk

(AD)
)
it

(
Crk

(AD)
)
tj

=
( n

rk
)∑

t=1

cidt

(
Crk

(AD)
)
11

ctdj

(
Crk

(AD)
)
11

=cidj

(
Crk

(AD)
)
11

( n
rk

)∑
t=1

ctdt

(
Crk

(AD)
)
11

=
(
Crk

(AD)
)
ij

( n
rk

)∑
t=1

(
Crk

(AD)
)
tt

=
(
Crk

(AD)
)
ij

Tr(Crk
(AD)).

Suppose that the identities (i), (ii) and (iii) are already true for any

number p less than u. We prove (i), (ii) and (iii) for p=u+1. Indeed, using

Crk
((AD)p+1)=Crk

((AD)p)Crk
(AD) and the inductive hypothesis for (i) in

the case p = u, we get

Crk
((AD)u+1) =Crk

(AD)Crk
((AD)u)

=Crk
(AD)Crk

((AD)u−1)Tr(Crk
(AD))

= Crk
((AD)u)Tr(Crk

(AD)).
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Therefore, the statement (i) is valid.

An application of the proposition (ii) for the case p = u in the statement

(i) gives us that

Crk
((AD)u+1) = Crk

(AD)
[
Tr(Crk

(AD))
]u−1

Tr(Crk
(AD)),

which confirms (ii) for p = u + 1.

Lastly, from the inductive hypothesis for (iii) we obtain

(4.1)

(
Crk

((AD)u+1)
)
ij

=
(
Crk

((AD)u)
)
ij

Tr(Crk
(AD))

= cidj

(
Crk

((AD)u)
)
11

Tr(Crk
(AD)).

Using (i) and (4.1) we obtain
(
Crk

((AD)u+1)
)
ij

= cidj

(
Crk

((AD)u+1)
)
11

.

This verifies (iii) in the case p = u + 1 and completes the proof. ¤

Theorem 4.1. The Drazin inverse, the powers of the Drazin inverse of

a given matrix A ∈ Cn×n
r and the matrix power Ak, k = ind(A), have

proportional minors of the order rk = rank(Ak), as follows:

(i) Crk
(AD) =

[
Tr(Crk

(AD))
]1−k [

Tr(Crk
(Ak))

]−2
Crk

(Ak);

(ii) Crk
((AD)p) =

[
Tr(Crk

(AD))
]p−k [

Tr(Crk
(Ak))

]−2
Crk

(Ak);

(iii) Cr((A#)p)=
[
Tr

(
[ Tr(Cr(A))]−2

Cr(A)
)]p−1

[ Tr(Cr(A))]−2
Cr(A),

where p ≥ 1 is an arbitrary integer.

Proof. (i) Applying the known result from [7]: (AD)k = (Ak)#, we obtain

Crk
((AD)k) = Crk

((Ak)#).

Using Crk
((Ak)#) =

(
Crk

(Ak)
)# and Crk

((AD)k) =
(
Crk

(AD)
)k we get

(4.2)
(
Crk

(Ak)
)#

=
(
(Crk

(A))D
)k

.

Now, using (Crk
(A))k = Crk

(Ak) and the following known result about the

group inverse from [13]:

(4.3) Tr(Cr(A#)) = [ Tr(Cr(A))]−2
Cr(A),
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we can write

(4.4)
(
(Crk

(A))k
)#

=
(
Crk

(Ak)
)#

=
[
Tr(Crk

(Ak))
]−2

Crk
(Ak),

It is easy to show that (Crk
(A))D = Crk

(AD). Using this result together

with (4.2) and (4.4), we obtain
(
(Crk

(A))D
)k

=
(
Crk

(AD)
)k

=Crk

(
(AD)k

)
=

[
Tr(Crk

(Ak))
]−2

Crk
(Ak).

Consequently, (AD)k and Ak have proportional minors of the order rk. Now,

applying proposition (i) of Lemma 4.1, we get

Crk
(AD) =

[
Tr(Crk

(AD))
]1−k [

Tr(Crk
(Ak))

]−2
Crk

(Ak).

(ii) Follows from the just proved result and from the part (i) of Lemma

4.1.

(iii) In the case k = 1 an application of (4.3) to the result (i) of Lemma

4.1 leads to Tr(Cr(A#)) = [ Tr(Cr(A))]−2
Cr(A), and produce the following

Cr((A#)p) =
[
Tr(Cr(A#))

]p−1
[ Tr(Cr(A))]−2

Cr(A)

=
[
Tr

(
[ Tr(Cr(A))]−2

Cr(A)
)]p−1

[ Tr(Cr(A))]−2
Cr(A). ¤

Remark 4.1. (i) In the case k = ind(A) = 1, part (i) of Theorem 3.3 pro-

duces the known result (4.3). This result is also obtained in the case p = 1

from the part (iii) of Theorem 3.3.

(ii) From Theorem 3.3 and Theorem 4.1 we conclude that G is the Drazin

inverse of A if and only if the following two statements are valid: (i) G is a

{2}-inverse of A and (ii) G and Ak, k = ind(A), have proportional minors

of the order rk = rank(Al), l ≥ k.

Example 4.1. Consider the following matrix

A =




1 −1 1 1
0 1 −1 1
1 −1 1 2
1 −1 1 1


 .
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The minors of the order rk = 2, selected from AD (derived in Example 3.1)

are contained in the matrix

C2(AD) =




3
8 − 3

8 0 0 − 3
8

3
8

1
8 − 1

8 0 0 − 1
8

1
8

0 0 0 0 0 0

− 1
2

1
2 0 0 1

2 − 1
2

− 3
8

3
8 0 0 3

8 − 3
8

− 1
8

1
8 0 0 1

8 − 1
8




.

Also,

C2(A2) =




3 −3 0 0 −3 3
1 −1 0 0 −1 1
0 0 0 0 0 0

−4 4 0 0 4 −4
−3 3 0 0 3 −3
−1 1 0 0 1 −1




.

This confirms the following result, which follows from part (i) of Theorem

4.1:

C2(AD) =
[
Tr(Crk

(AD))
]−1 [

Tr(C2(A2))
]−2

C2(A2)=2 ∗ 1/16 ∗ C2(A2).

Finally, using

C2((AD)2) =




3
16 − 3

16 0 0 − 3
16

3
16

1
16 − 1

16 0 0 − 1
16

1
16

0 0 0 0 0 0

− 1
4

1
4 0 0 1

4 − 1
4

− 3
16

3
16 0 0 3

16 − 3
16

− 1
16

1
16 0 0 1

16 − 1
16
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which confirms the following computation, implied by the part (ii) of The-

orem 3.4:

C2((AD)2) =
[
Tr(C2(A2))

]−2
C2(A2)=1/16 ∗ C2(A2).

From Theorem 3.1 and Theorem 4.1 we conclude the following.

Corollary 4.1. Consider A ∈ Cn×n
r of the index k. Then the Drazin inverse

of A can be expressed in terms of one’s own minors and the minors of A, as

follows:

AD
ij =

∑
(α,β)∈Nrk

(j,i)

| (AD)β
α |

∂

∂aji
|Aα

β |
∑

(γ,δ)∈Nrk

| (AD)δ
γ | |Aγ

δ |

=

∑
(α,β)∈Nrk

(j,i)

|(AD)|βα
∂

∂aji
|Aα

β |

Tr(Crk
(ADA))

, 1 ≤ i, j ≤ n,

where rk = rank(Ak).
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