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Abstract

We consider right and left Fredholm operator matrices of the form[
A C
T S

]
, which are linear and bounded on the Banach space Z =

X ⊕ Y .
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1 Introduction

Let Z be an infinite dimensional Banach space, such that Z = X ⊕ Y for

some closed subspaces X and Y . This sum will be also denoted by

[
X
Y

]
. If

W is a finite dimensional subspace of X, then dimW denotes its dimension.
If W is infinite dimensional, then we simply write dimW = ∞. However,
if U is a closed subspace of a Hilbert space, then dimH(U) denotes the
orthogonal dimension of U .

Let L(X,Y ) denote the set of all linear bounded operators from X to Y .
We abbreviate L(X) = L(X,X). The set of all finite rank operators from
X to Y is denoted by F(X,Y ). For A ∈ L(X,Y ) we use R(A) and N (A)
to denote the range and the null-space of A, respectively.

If Z = X ⊕ Y , then any M ∈ L(Z) can be decomposed as the following
operator matrix

M =

[
A C
T S

]
:

[
X
Y

]
→

[
X
Y

]
,

for some A ∈ L(X), C ∈ L(Y,X), T ∈ L(X,Y ) and S ∈ L(Y ). On the
other hand, any choice of A,C, T, S (linear and bounded operators on the
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corresponding subspaces), produces a linear and bounded operator M on
the space Z. Moreover, M is finite rank if and only if all A,C, T, S are finite
rank operators.

If A and C are fixed, then we use the notation M(T,S) to show that M
depends on T and S. For given A and C, we are interested to find T and S,
such that M(T,S) is right or left Fredholm operator.

For this purpose we need to review some properties of right and left
Fredholm operators [9]. An operator A ∈ L(X,Y ) is right Fredholm, if
def(A) = dimY/R(A) < ∞, and N (A) is complemented in X. Notice that
if A is right Fredholm, then it follows that R(A) has to be a closed and
complemented subspace of Y . The set of all right Fredholm operators from
X to Y is denoted by Φr(X,Y ). It is well-known that A ∈ Φr(X,Y ) if and
only if there exist B ∈ L(Y,X) and F ∈ F(Y ) such that AB = IY + F
holds.

An operator A ∈ L(X,Y ) is left Fredholm, if nul(A) = dimN (A)
< ∞, and R(A) is closed and complemented in Y . The set of all left Fred-
holm operators from X to Y is denoted by Φl(X,Y ). It is well-known that
A ∈ Φl(X,Y ) if and only if there exist B ∈ L(Y,X) and F ∈ F(X) such
that BA = IX + F holds.

If A ∈ Φr(X,Y ) and B ∈ Φr(Y, Z), then BA ∈ Φr(X,Z). The similar
result holds for the class Φl. The set of Fredholm operators is defined as
Φ(X,Y ) = Φr(X,Y ) ∩ Φl(X,Y ).

We formulate the following well-known results.

Lemma 1.1. Let X,Y, Z be Banach spaces and let A ∈ L(X,Y ), B ∈
L(Y,Z). If BA ∈ Φ(X,Z), then the following holds: A ∈ Φ(X,Y ) if and
only if B ∈ Φ(Y,Z).

Lemma 1.2. Let X,Y be Banach spaces, and let A ∈ Φr(X,Y ), P ∈
F(X,Y ). Then A + P ∈ Φr(X,Y ). The analogous result holds for classes
Φl and Φ.

Lemma 1.3. Let M1,M2 and N be the vector subspaces of the vector space
X. If M1 ⊆ M2, then dimM1/(M1 ∩N) ≤ dimM2/(M2 ∩N).

Properties of right (left) Fredholm and related operators can be found
in [6] and [9]. For the importance and applications of operator matrices we
refer to [1], [2], [3], [4], [5], [7], [8] and [10]. Particularly, this paper is related
to the research in [4] and [7], where the left and right invertibility of M(T,S)

is considered.
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2 Right Fredholm operators

We consider right Fredholm properties of M(T,S).

Theorem 2.1. Let A ∈ L(X) and C ∈ L(Y,X) be given. The following
statements are equivalent:

(a) [A C] ∈ Φr(X ⊕ Y,X) \ Φ(X ⊕ Y,X), and there exists an operator
J ∈ Φl(Y,N ([A C]) \ Φ(Y,N ([A C])).

(b) M(T,S) ∈ Φr(X⊕Y )\Φ(X⊕Y ) for some T ∈ L(X,Y ) and S ∈ L(Y ).

Proof. (a) =⇒ (b): Suppose that [A C] ∈ Φr(X ⊕ Y,X) \ Φ(X ⊕ Y,X).
It follows that N ([A C]) is infinite dimensional. By the assumption, there
exists an operator J ∈ Φl(Y,N ([A C])\Φ(Y,N ([A C])), so N (J) is finite
dimensional and N ([A C])/R(J) is infinite dimensional. The operator J
has the form

J =

[
E
G

]
: Y →

[
X
Y

]
.

Since R(J) is closed and complemented in N ([A C]), and N ([A C])
is closed and complemented in X ⊕ Y , we obtain that there exist closed
subspaces V and W such that N [A C]) = R(J) ⊕ V and X ⊕ Y =
N ([A C])⊕W = R(J)⊕ V ⊕W . Notice that V is infinite dimensional.

There exists a closed subspace Y1 such that Y = N (J) ⊕ Y1. Now, the
reduction operator J : Y1 → R(J) is invertible, so let K1 : R(J) → Y1
denote its inverse. Define the operator K ∈ L(X ⊕ Y, Y ) in the following
way:

Kx =

{
K1x, x ∈ R(J),

0, x ∈ V ⊕W.

Then K ∈ L(X ⊕ Y, Y ) is a right Fredholm operator, such that N (K) =
V ⊕W . The operator K has the matrix form

K = [T S] :

[
X
Y

]
→ Y.

We also have

KJ = [T S]

[
E
G

]
= IY − P1, (1)

where P1 is the projection from Y onto the finite dimensional subspace
N (J), parallel to Y1.
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From R(J) ⊂ N ([A C]) we get that

[A C]

[
E
G

]
= 0. (2)

Since [A C] ∈ Φr(X ⊕ Y,X), we have the following decompositions of
spaces: X⊕Y = N ([A C])⊕W and X = R([A C])⊕U , where U is finite
dimensional. Since the reduction [A C] : W → R([A C]) is invertible,
define L1 : R([A C]) → W to be its inverse. Then consider the operator
L ∈ L(X,X ⊕ Y ), which is defined as follows:

Lx =

{
L1x, x ∈ R([A C])

0, x ∈ U.

The operator L has the matrix form

L =

[
D
F

]
: X →

[
X
Y

]
.

Then L ∈ Φl(X,X ⊕ Y ), R(L) = W , and

[A C]L = [A C]

[
D
F

]
= IX − P2, (3)

where P2 is the projection from X onto the finite dimensional subspace U ,
parallel to R([A C]). Since N ([T S]) = V ⊕W , we conclude that

[T S]

[
D
F

]
= 0. (4)

Finally, from (1), (2), (3) and (4), we get that for M =

[
A C
T S

]
i N =[

D E
F G

]
the following holds:

MN =

[
A C
T S

] [
D E
F G

]
=

[
IX 0
0 IY

]
+

[
−P2 0
0 −P1

]
. (5)

Since

[
−P2 0
0 −P1

]
is finite rank, we conclude that M is right Fredholm.

Moreover, we notice that

N (M) = N ([A C]) ∩N ([T S]) = V,
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R(N) = R
([

D
F

])
+R

([
E
G

])
= W ⊕R(J),

X ⊕ Y = R(J)⊕ V ⊕W.

Since V is infinite dimensional, we obtain that both M and N are not Fred-
holm operators.

(b) =⇒ (a): Suppose that there exist some T ∈ L(X,Y ) and S ∈ L(Y )
such that M(T,S) ∈ Φr(X ⊕ Y ) \ Φ(X,Y ). Then there exist operators N ∈
L(X ⊕ Y ) and P ∈ F(X ⊕ Y ) such that MN = I + P . The last equality
holds in the matrix form as follows:[

A C
T S

] [
D E
F G

]
=

[
IX 0
0 IY

]
+

[
P11 P12

P21 P22

]
,

where all Pij are finite rank operators. It also follows that N =

[
D E
F G

]
∈

Φl(X ⊕ Y ).
In particular, we obtain

[A C]

[
D
F

]
= IX + P11,

so [A C] is right Fredholm. The operator IX + P11 is Fredholm. If we

suppose that [A C] is Fredholm, by Lemma 1.1 it follows that

[
D
F

]
is

also Fredholm. Since

R
([

D E
F G

])
= R

([
D
F

])
+R

([
E
G

])
⊃ R

([
D
F

])
,

it follows that

[
D E
F G

]
belongs to Φr(X ⊕ Y ), so

[
D E
F G

]
is Fredholm.

By Lemma 1.1 again, we obtain that

[
A C
T S

]
is Fredholm (since I + P

is Fredholm from Lemma 1.2). The last statement is not possible, so we
obtain that [A C] ∈ Φr(X ⊕ Y,X) \ Φ(X ⊕ Y,X).

Denote with L =

[
E
G

]
∈ L(Y,X ⊕ Y ). We have [T S]L = IY + P22,

so L ∈ Φl(Y,X ⊕ Y ) \ Φ(Y,X ⊕ Y ). Otherwise, if L is Fredholm, then also[
D E
F G

]
is Fredholm, so

[
A C
T S

]
is Fredholm.
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Since we have the following decomposition of spaceX⊕Y = N ([A C])⊕
W , the operator L has the matrix form

L =

[
J
K

]
: Y →

[
N ([A C])

W

]
.

From the fact that R(P12) = R([A C]L) = R
(
[A C]

[
J
K

])
=

[A C](R(K)) is a finite space and the reduction [A C] : W → R([A C])
is a bijection, we obtain that R(K) is a finite dimensional subspace of W .

Since L ∈ Φl(Y,X⊕Y ) \Φ(Y,X⊕Y ), we have the following decomposi-
tions of spaces Y = N (L)⊕U andX⊕Y = R(L)⊕U1, where dimN (L) < ∞
and dimU1 = ∞. The reduction operator L : U → R(L) is invertible, so let
L1 : R(L) → U be its inverse.

As it was shown,R(K) is a finite dimensional subspace, so Y1 = L1(R(K))
have to be finite dimensional subspace of U and there exists a closed sub-
space Y2 such that U = Y1 ⊕ Y2.

Now, the operator L has the following matrix form

L =

[
J 0 0
0 K 0

]
:

 Y2
Y1

N (L)

 →
[
N ([A C])

W

]
,

where Y1 is finite dimensional. We obtain that N (J) = Y1 ⊕ N (L), so
dimN (J) < ∞.

From the fact that [T S]L = IY + P22 follows that

L1(N ([T S]) ∩R(L)) ⊆ N (IY + P22).

Since IY +P22 is Fredholm operator, we have that L1(N ([T S])∩R(L)) is
finite dimensional, so N ([T S])∩R(L) is also finite dimensional subspace.

Denote with V = N ([A C]) ∩N ([T S]) ∩R(J). Further,

V ⊆ N ([T S]) ∩R(J) ⊆ N ([T S]) ∩R(L),

so it follows that dimV < ∞. Then, there exists a closed subspace V1 such
that N (M(T,S)) = N ([A C]) ∩ N ([T S]) = V ⊕ V1. Since N (M(T,S)) is
infinite dimensional, then V1 is also infinite dimensional subspace.

Now, applying the Lemma 1.3 on the spaces N ([A C]) ∩ N ([T S]),
N ([A C]) and R(J), we obtain

dimV1 = dim(N ([A C]) ∩N ([T S]))/V ≤ dimN ([A C])/R(J).
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We conclude that dimN ([A C])/R(J) = ∞.

Lastly, we proved for the operator J : Y → N ([A C]) that dimN (J) <
∞ and dimN ([A C])/R(J) = ∞.
So, there exists the operator J ∈ Φl(Y,N ([A C]) \ Φ(Y,N ([A C])).

3 Left Fredholm operators

Now we investigate the left Fredholm properties of M(T,S). We consider two
separate cases according to the dimension of Y .

Theorem 3.1. Let X be infinite dimensional, and let Y be finite dimen-
sional. For given A ∈ L(X) and C ∈ L(Y,X), the following statements are
equivalent:

(a) M(T,S) ∈ Φl(X ⊕ Y ) \ Φ(X ⊕ Y ) for every T ∈ L(X,Y ) and every
operator S ∈ L(Y );

(b) A ∈ Φl(X) \ Φ(X).

Proof. Before the proof of the equivalence, note that

N
([

A 0
0 0

])
= N (A)⊕ Y, R

([
A 0
0 0

])
= R(A)⊕ {0}.

Since Y is finite dimensional, we have that A ∈ Φl(X) \Φ(X) if and only if[
A 0
0 0

]
∈ Φl(X ⊕ Y ) \ Φ(X ⊕ Y ).

(a) =⇒ (b): Suppose that M(T,S) is left Fredholm but not Fredholm,

for every T ∈ L(X,Y ) and every S ∈ L(Y ). We have that

[
A 0
0 0

]
=[

A C
T S

]
+

[
0 −C

−T −S

]
where

[
0 −C

−T −S

]
is finite rank operator. Ap-

plying Lemma 1.2, we obtain that

[
A 0
0 0

]
is left Fredholm operator.

Suppose that

[
A 0
0 0

]
is Fredholm. Applying Lemma 1.2 to

[
A 0
0 0

]
we conclude that M(T,S) has to be Fredholm, which does not hold. Hence,
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[
A 0
0 0

]
is left Fredholm but not Fredholm operator, so we have that

A ∈ Φl(X) \ Φ(X).

(b) =⇒ (a): Suppose that A is left Fredholm but not Fredholm, so the

operator

[
A 0
0 0

]
is also left Fredholm but not Fredholm.

Let T ∈ L(X,Y ) and S ∈ L(Y ) be arbitrary operators. Then the oper-

ator M(T,S) is a finite-rank perturbation of

[
A 0
0 0

]
. Indeed,

[
A C
T S

]
=[

A 0
0 0

]
+

[
0 C
T S

]
, where

[
0 C
T S

]
is a finite rank operator because Y

is finite dimensional space. Applying Lemma 1.2 to

[
A 0
0 0

]
we get that

M(T,S) is left Fredholm operator. If we suppose that M(T,S) is Fredholm,

from Lemma 1.2, we conclude that

[
A 0
0 0

]
have to be Fredholm, which

does not hold. We obtain that M(T,S) is left Fredholm but not Fredholm
operator.

Theorem 3.2. Let X and Y be infinite dimensional, such that Y is iso-
morphic to Z = X ⊕ Y . Let A ∈ L(X) and C ∈ L(Y,X) be arbitrary. Then
M(T,S) ∈ Φl(X ⊕ Y ) \ Φ(X ⊕ Y ) for some T ∈ L(X,Y ) and S ∈ L(Y ).

Proof. Since Y is isomorphic with Z, then Y = Y1 ⊕Y2, where X is isomor-
phic to Y1, and Y is isomorphic to Y2. Let T ∈ L(X,Y1) and S ∈ L(Y, Y2) be
those isomorphisms. Then T ∈ L(X,Y ) is left invertible with a left inverse
K ∈ L(Y,X) and N (K) = Y2. Also, S ∈ L(Y, Y2) is left invertible with a
left inverse L and N (L) = Y1. Then[

0 K
0 L

] [
A C
T S

]
=

[
IX 0
0 IY

]
,

so M(T,S) is left invertible. It follows that M(T,S) is left Fredholm for chosen

operators T and S. Suppose that M(T,S) is Fredholm. Since

[
IX 0
0 IY

]
is

Fredholm, from Lemma 1.1 it follows that N is also Fredholm. However, we
notice N (N) = X, which is infinite dimensional. Hence, N is not Fredholm.
Then M(T,S) is not Fredholm also, i.e. M(T,S) ∈ Φl(X ⊕ Y ) \Φ(X ⊕ Y ).
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We formulate a corollary for Hilbert space operators.

Corollary 3.1. Let X and Y be infinite dimensional and mutually orthogo-
nal subspaces of a Hilbert space Z = X⊕Y . Suppose that dimH Y = dimH Z.
Let A ∈ L(X) and C ∈ L(Y,X) be arbitrary. Then M(T,S) ∈ Φl(X ⊕ Y ) \
Φ(X ⊕ Y ) for some T ∈ L(X,Y ) and S ∈ L(Y ).
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