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Abstract

We use the idea of two-point stepsize gradient methods, developed to solve unconstrained
minimization problems on Rn, for computing least-squares solutions of a given linear operator
equation on Hilbert spaces. Among them we especially pay attention to corresponding modifi-
cation of the scalar correction method. An application of this approach is presented related to
computation of {1, 3} inverses and the Moore-Penrose inverse of a given complex matrix. Conver-
gence properties of the general gradient iterative scheme for computation of various pseudoinverses
are investigated. The efficiency of the presented algorithm is theoretically verified and approved
by selected test matrices.
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1 Introduction

Solving the system of linear operator equations or finding a generalized inverse of a given operator
A ∈ L(H,K), where L(H,K) denotes the space of linear bounded operators between Hilbert spaces
H and K, is an interesting problem. Many different techniques are developed to solve these problems.
One of the most interesting investigation fields is the usage of optimization methods in order to find
some generalized inverses. This approach includes methods based on the first or on the second order
optimization, at first introduced for functions on Rn and later extended to some more general spaces.
Many algorithms of this type can be found in [4, 12, 15, 21, 22, 28].

The equation Ax = b, b ∈ K may or may not have a solution, depending on whether b is in
the range R(A) of A or not. Even if b ∈ R(A) the solution need not to be unique. In cases where
b /∈ R(A) or the solution is not unique, it is possible to compute least-squares solutions which minimize
the quadratic functional q(x) = 1

2‖Ax− b‖2.
Nashed in [22] minimized the functional q(x) in order to find a solution of the operator equation

Ax = b, where A ∈ L(H,H) is such that R(A) is closed. The minimization of the functional q(x) is
accomplished by using the iterative scheme

xk+1 = xk − αkrk, (1.1)
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where

rk = A∗Axk −A∗b and αk =
‖rk‖2
‖Ark‖2 .

Since this method is actually the steepest descent method, the stepsize αk is chosen according to
the strategy that guarantees the most rapid decrease of ‖Axk+1 − b‖. The linear convergence of the
method to least-squares solutions of the equation Ax = b is established in [22], for an arbitrary initial
approximation x0 ∈ H. Additionally, it is shown that the steepest descent method converges to the
minimum-norm least-squares solution, i.e. limk→∞ xk = A†b, if and only if x0 ∈ R(A∗).

Inspired by the Nashed steepest descent method, the authors in [12] considered the iterative scheme
of the same form in more general spaces, C∗ algebras. The established proof for the linear convergence
of the method differs from the one from [22], not only with respect to the observed spaces but also
with respect to the used norms. Namely, the presented convergence theorem in [12] is given in terms
of an operator norm while the convergence of the Nashed steepest descent scheme is given in terms
of the Frobenius norm.

Despite the optimal property, the steepest descent method behaves poorly, except for very well
conditioned functions and converges slowly (see [1, 14]). In some particular cases, such as quadratic
functions, it is possible to compute the steplength γk analytically. Even for these functions the steepest
descent method behaves increasingly badly when the condition number of the matrix deteriorates.
The authors in [26] stressed out that the poor behavior of the steepest descent method is due to the
optimal Cauchy choice of the steplength γk and not to the choice of the search direction (direction
of the negative gradient). For this purpose we, especially, pay attention to the steplength calculation
algorithm which searches along the direction of the negative gradient.

The two-point stepsize gradient method introduced in [2] is proved to be more effective and thus,
preferable over the classical steepest descent method both in theoretical investigations and in real
computations. This method proposed by Barzilai and Borwein (called BB method) is also gradient
method which uses a different strategy for choosing the steplength αk. The stepsize along the negative
gradient direction, in BB method, is computed from a two-point approximation to the secant equation
required in quasi-Newton methods. There are a number of papers dealing with the convergence
properties of the two-point stepsize methods as well as some advantages of these methods with respect
to some other optimization methods (see [8, 9, 10, 13, 25]).

Additionally, some other optimization methods, such as the conjugate gradient methods as well as
variable metric methods have been used in the minimization of the functional q(x) and in solving the
matrix equations AX = Im, XA = In, where Im and In are appropriate identity matrices (see, for
example [15, 16, 21, 28]). Also, interesting methods for computing the Moore-Penrose inverses and
Drazin inverses of Toeplitz matrices are proposed in [6, 29]. These methods belongs to the group of
Newton’s and modified Newton’s iteration. Toeplitz matrices, by itself, are very interesting and have
been studied much, recently. These special type of structured matrices will be covered later in section
Numerical results.

Main idea used in [20, 27] is approximation of the Hessian by an appropriate scalar matrix, accord-
ing to the classification of the quasi-Newton methods from [5]. Following this approach, the iterative
scheme

xk+1 = xk − γk∇q(xk), k ≥ 0, (1.2)

can be considered as a variant of the quasi-Newton method, where the symmetric positive definite
matrix Bk is defined as a scalar matrix. In the paper [20] the authors introduced an algorithm of
this type, called the the scalar correction method (SC method). Very useful characteristics of SC
algorithm, aimed to solve unconstrained nonlinear optimization problems, such as the simplicity, the
efficiency and very low memory space requirements are verified in [20] through a set of large scale test
examples. Therefore, it seems realistic to expect that the characteristics of the SC method, observed
in [20], will remain in minimization of the functional q(x).

In order to obtain an algorithm with better performances, the main goal in the present paper will
be the usage of two-point step size gradient methods introduced in [2, 20] for obtaining a least-squares
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solution of a given operator equation Ax = b. Special attention will be dedicated to SC method
from [20]. Later, similarly as in [12], the Moore-Penrose inverse of a given matrix will be determined,
observing the iterative process

Xk+1 = Xk − γkA∗(AXk − I), k ≥ 0, (1.3)

The paper is organized as follows. In the next section we state some known definitions and results
related to a Frèchet derivative of an operator on a Hilbert space. The extension of SC method from [20]
with regard to Hilbert spaces is presented in the third section. Besides, we introduse an algorithm
for finding least-squares solutions of an operator equation Ax = b, where A ∈ L(H,K) is chosen
such that R(A) is closed. Also, in this section we establish the linear convergence of the algorithm.
An iterative process for computing {1, 3}-inverses, and particularly the Moore-Penrose inverse, of an
arbitrary complex matrix, is derived as an application of the given algorithm in the section four. We
also consider the correspondent modification of BB method. In Section 5 convergence properties of
general gradient methods for computing least-squares solutions and the minimum-norm least-squares
solution of the operator equation Ax = b are presented. In addition, the convergence result of the
iterative process for computing {1, 3}-inverses (including the Moore-Penrose inverse) is considered.
Appropriate numerical results can be found in the last section.

2 Preliminaries

For the sake of completeness, we restate main known facts about the Fréchet derivative from [7, 17].

Definition 2.1. Let H and K be Hilbert spaces and U ⊂ H is an open set. Let f : U → K be an
operator and x ∈ U . If there is a bounded linear operator g : H → K such that

lim
‖h‖→0

‖f(x + h)− f(x)− g(h)‖
‖h‖ = 0,

h ∈ H, we say that f is Fréchet differentiable at x, or simply differentiable at x; g is called the
(Fréchet) derivative of f at x and we will denote it by Df(x) ∈ L(H,K).

Definition 2.2. An operator f is (n + 1)-times differentiable on U if it is n times differentiable on
U and for each x in U there exists a continuous multilinear map g of (n + 1) arguments such that the
limit

lim
‖hn+1‖→0

‖Dnf(x + hn+1)(h1, . . . , hn)−Dnf(x)(h1, . . . , hn)− g(h1, . . . , hn+1)‖
‖hn+1‖ = 0 (2.1)

exists uniformly for h1, h2, . . . , hn in bounded sets in H. In this case, g is the (n + 1)st derivative of
f at x.

Proposition 2.1. Let D be a convex subset of H and f is (n+1)-times Frechet differentiable operator
on D. Then if x and x + p are given elements in D we have

f(x + p) =
n∑

k=0

1
k!

D(k)f(x) (p, p, . . . , p)︸ ︷︷ ︸
k times

+w(x, p)

where
‖w(x, p)‖ ≤ 1

(n + 1)
sup

t∈[0,1]

‖D(n+1)f(x + tp)‖‖p‖n+1.

Definition 2.3. [18] Let H be Hilbert space, U ⊂ H is an open set and f : U → R is a given
differentiable functional. The gradient of the functional f is the linear map

∇f : U → H such that 〈∇f(x), h〉 = Df(x)(h),

where Df(x)(h) means the linear map Df(x) applied to the vector h ∈ H.
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The existence and uniqueness of such linear map follows straight from the application of the Riesz
representation theorem of the linear bounded operator Df(x) : H → R.

Definition 2.4. Let H be Hilbert space, U ⊂ H is an open set and f : U → R is a given twice
differentiable functional. The Hessian of the functional f is the linear operator

∇2f ∈ L(U ×H,H) such that 〈∇2f(x, p), h〉 = D2f(x)(p, h),

where D2f(x)(p, h) means the linear map D2f(x)(p) applied to the vector h ∈ H.

The existence and uniqueness of such linear map follows straight from the Riesz representation theorem
for the linear bounded operator D2f(x)(p) : H → R.

3 Scalar correction method for solving linear operator equa-
tions

Let H and K be given Hilbert spaces and A ∈ L(H,K) be given operator such that R(A) is closed.
We minimize the functional q : U → R defined by

q(x) =
1
2
‖Ax− b‖2 =

1
2
〈Ax− b, Ax− b〉. (3.1)

on an open set U ⊂ H. For that purpose we analyze the gradient iterative scheme (1.2) where γk > 0
is a stepsize. Taking into account that gk = ∇q(xk) = A∗(Axk − b), which is not difficult to show
from (3.1), we consider an iterative process given in the following general form

xk+1 = xk − γkA∗(Axk − b) (3.2)

for the purpose of finding least-squares solutions of the equation Ax = b. The importance in choosing
appropriate stepsize in order to obtain convergence as well as good computational performance is
obvious.

In the rest of this section we use the stepsize determined according to the idea of the scalar
correction method, introduced in [20]. For the sake of completeness we extend the basic ideas for
SC method with respect to Hilbert spaces. In order to obtain an appropriate stepsize we use the
information of the stepsize obtained in the previous step and try to correct it by adding some scalar.
To determine that scalar properly, the idea of a two-point approximation to the secant equation is
used, similarly as in BB method. The final choice for the stepsize is done by relaxing the stepsize
as much as it is possible in view of two additional steplengths which are also obtained from the first
order secant equation.

That is, first we have to obtain the analog to the secant equation for an operator on a Hilbert
space. Based on Proposition 2.1 we have that the first order Taylor series expansion for the operator
Dq is

Dq(x) = Dq(xk+1) + D2q(xk+1)(x− xk+1) + w(x, x− xk+1), (3.3)

which is equivalent to

Dq(x)(h) = Dq(xk+1)(h) + D2q(xk+1)(x− xk+1, h) + w(x, x− xk+1)(h) for all h ∈ H.

From Definition 2.3 and Definition 2.4 we have

〈∇q(x)−∇q(xk+1), h〉 − 〈∇2q(xk+1, x− xk+1), h〉 = w(x, x− xk+1)(h) for all h ∈ H.

Taking h = ∇q(x)−∇q(xk+1)−∇2q(xk+1, x− xk+1) and having in mind that w(x, x− xk+1) stands
for second order residual we get

∇q(x)−∇q(xk+1) ≈ ∇2q(xk+1)(x− xk+1).
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Setting x = xk, gk = ∇q(xk), Hk = ∇2q(xk), we get

Hk+1(sk) ≈ yk, (3.4)

where
sk = xk+1 − xk, and yk = gk+1 − gk.

Now, we want to approximate Hk+1 with some identical operator I : H → H multiplied by the
real parameter 1

γk+1
such that Hk+1(h) = 1

γk+1
h holds for all h ∈ H.

The main problem is to compute γk, k ≥ 0. Let us suppose that we have γ0 = 1. Since we have
the initial value γ0 we observe the following correction

γk+1 = γk + ak, k > 0. (3.5)

in order to find the stepsize γk+1 for the next iteration. The method of computing the scalar correction
ak in each iteration and therefore a new step-length γk+1 is presented in detail in the paper [20]. We
give here only the final expression

γSC
k+1 =

{ 〈sk,rk〉
〈yk,rk〉 , 〈yk, rk〉 > 0
‖sk‖
‖yk‖ , 〈yk, rk〉 ≤ 0

, k ≥ 0, (3.6)

where rk = sk − γkyk.
Corresponding algorithm is defined as follows.

Algorithm 3.1 SC method for computing least-squares solutions
Require: An operator A : H → K such that R(A) is closed, chosen initial point x0 ∈ H and real

positive constants 0 < ε ¿ 1, 0 < ξ1 ¿ 2(1−ε)
‖A‖2 .

1: Set k = 0, compute q(x0), g0 and use γ0 = 1.
2: If test criteria are fulfilled then go to Step 7; otherwise, go to the next step.
3: Compute xk+1 using (3.2), q(xk+1), gk+1, sk = xk+1 − xk, yk = gk+1 − gk.
4: Determine ξ

(k+1)
2 = 2(1− ε) ‖gk+1‖2

‖Agk+1‖2 .

5: Compute the stepsize γk+1 using (3.6). If γk+1 < ξ1 or γk+1 > ξ
(k+1)
2 , set γk+1 = ξ

(k+1)
2 .

6: Set k := k + 1 and go to Step 2.
7: Return xk+1 and q(xk+1).

Proposition 3.1. Algorithm 3.1 is well defined, i.e. the interval (ξ1, ξ
(k)
2 ), k ≥ 1 is non-empty, for a

chosen real constant ξ1. Additionally, the sequence of stepsizes (γk)k is positive and it is bounded by
real constants.

Proof. Since

ξ
(k)
2 = 2(1− ε)

‖gk‖2
‖Agk‖2 ≥

2(1− ε)
‖A‖2

one can always choose constant ξ1 such that

0 < ξ1 ¿ 2(1− ε)
‖A‖2 ≤ ξ

(k)
2 .

Thus, the interval (ξ1, ξ
(k)
2 ) is non empty in each iteration.

Taking into account that ‖Ax‖ ≥ j(A) · ‖x‖, where j(A) = inf‖x‖=1 ‖Ax‖, it is not difficult to
show that ξ

(k)
2 ≤ 2 · j(A)−2, k ≥ 1. Thus, the following sequence of inequalities holds

0 < ξ1 ≤ γk ≤ ξ
(k)
2 ≤ 2 · j(A)−2, k ≥ 1,

which is a verification of the second statement.
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The following theorem shows the convergence of the method given by Algorithm 3.1 and also
characterizes the set of least-squares solutions of the operator equation Ax = b. An auxiliary result
is used.

Proposition 3.2. [22, 23] If R(A) is closed then the set S of all least-squares solutions of the system
Ax = b is given by

S = A†b⊕N (A) = {A†b + (I −A†A)y| y ∈ H},
where N (A) denotes the null space of A.

Theorem 3.1. Let H and K be given Hilbert spaces and A ∈ L(H,K) be an operator such that R(A)
is closed. The sequence (xk)k determined by Algorithm 3.1 converges to a least-squares solution of the
equation Ax = b.

For an arbitrary initial approximation x0 ∈ H the limit limk→∞ xk satisfies

lim
k→∞

xk = A†b + (I −A†A)x0.

Additionally, x0 ∈ R(A∗) if and only if limk→∞ xk = A†b.

Proof. For xk+1 = xk − γkA∗(Axk − b), we compute

q(xk+1) =
1
2
‖Axk+1 − b‖2

=
1
2

(〈Axk − b, Axk − b〉 − 2〈Axk − b, γkAgk〉+ 〈γkAgk, γkAgk〉)

= q(xk)− γk‖gk‖2 +
1
2
γ2

k‖Agk‖2

= q(xk)− γk‖gk‖2
(

1− 1
2
γk
‖Agk‖2
‖gk‖2

)
.

(3.7)

Based on the steps 4 and 5 from Algorithm 3.1 immediately follows

γk ≤ 2(1− ε)
‖gk‖2
‖Agk‖2 , k ≥ 1,

and one can simply verify

1− 1
2
γk
‖Agk‖2
‖gk‖2 ≥ ε > 0, k ≥ 1. (3.8)

Therefore, it is clear that the functional q is strictly monotone decreasing and it is also bounded below
with zero. Thus, it follows that the sequence q(xk) converges to its minimum.

Taking into account that

0 = lim
k→∞

| q(xk+1)− q(xk) |

= lim
k→∞

γk‖gk‖2
(

1− 1
2
γk
‖Agk‖2
‖gk‖2

)
,

as well as the fact that the sequences (γk) and
(
1− 1

2γk
‖Agk‖2
‖gk‖2

)
are bounded by real constants, one

can conclude that
lim

k→∞
‖gk‖2 = 0.

Now, from limk→∞ ‖gk‖ = 0 we have

lim
k→∞

A∗Axk = A∗b.

Using known fact that u is a least-squares solution of Ax = b if and only if u is a solution of the
”normal” equation A∗Axk = A∗b (see [19]), we conclude that the sequence xk converges to a least-
squares solution of the operator equation Ax = b.

For the second part of the proof see the convergence theorem for steepest descent from [22].
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4 SC method for computing matrix pseudoinverses

Our motivation in this section is the following result from [4] which establishes a relation between the
{1, 3}-inverses and the least-squares solutions of Ax = b.

Proposition 4.1. [4] Let A ∈ Cm×n, b ∈ Cm. The norm ‖Ax − b‖ is smallest when x = A(1,3)b,
where A(1,3) ∈ A{1, 3}. Conversely, if X ∈ Cn×m has the property that ‖Ax− b‖ is smallest for all b,
when x = Xb, then X ∈ A{1, 3}.
Furthermore, our additional motivation is the next result (see, for example [4]): X ∈ A{1, 3} if and
only if X is a least-squares solution of AX = Im, i.e., X minimizes the norm ‖AX − I‖F .

Let H = Cn×m and K = Cm×m be regarded as Hilbert spaces. Here, on the space of complex
matrices we consider the Frobenius scalar product, 〈A,B〉 = Tr(A∗B), and the Frobenious norm
‖A‖F =

√
〈A, A〉, where Tr(A) denotes the trace of the matrix A. Any matrix A ∈ Cm×n defines a

mapping from H to K by A(X) = AX.
In this way, we can establish an analogy to the results of the previous sections regarding the

functional Q(X) = 1
2‖AX − I‖2F . Consequently, we obtain the iterations

Xk+1 = Xk − γkGk = Xk − γkA∗(AXk − I), k ≥ 0, (4.1)

which are of the form (3.2) and the corresponding stepsizes for SC method given by

γSC
k+1 =

{ 〈Sk,Rk〉
〈Yk,Rk〉 , 〈Yk, Rk〉 > 0
‖Sk‖
‖Yk‖ , 〈Yk, Rk〉 ≤ 0

, k ≥ 0, (4.2)

where Sk = Xk+1 −Xk, Yk = Gk+1 −Gk and Rk = Sk − γkYk.
Finally, we define the following algorithm for computing {1, 3}-inverses (and particularly the

Moore-Penrose inverse) of complex matrices.
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Algorithm 4.1 SC method for computing {1, 3}-inverses of a matrix
Require: Complex matrix A ∈ Cm×n, initial approximation matrix X0 ∈ Cn×m and real positive

constants 0 < ε ¿ 1, 0 < ξ1 ¿ 2(1−ε)
‖A‖2 .

1: Set k = 0, compute Q(X0), G0 and use γ0 = 1.
2: If test criteria are fulfilled then go to Step 7; otherwise, go to the next step.
3: Compute Xk+1 using (4.1), Q(Xk+1), Gk+1, Sk = Xk+1 −Xk, Yk = Gk+1 −Gk.
4: Determine ξ

(k+1)
2 = 2(1− ε) ‖Gk+1‖2

‖AGk+1‖2 .

5: Compute the stepsize γk+1 using (4.2). If γk+1 < ξ1 or γk+1 > ξ
(k+1)
2 , set γk+1 = ξ

(k+1)
2 .

6: Set k := k + 1 and go to Step 2.
7: Return Xk+1 and Q(Xk+1).

It is clear that the iterations (4.1) can be considered as a general gradient method for computing
{1, 3}-inverses of a given matrix. Taking into account the equation (3.4), we can also consider BB
method as a kind of a two-point stepsize gradient method and additionally we observe the steepest
descent method which is a gradient descent method. The stepsizes for these methods are computed
according to the following formulae respectively

γBB
k+1 =

〈Yk, Sk〉
〈Yk, Yk〉 and γSD

k =
‖Gk‖2
‖AGk‖2 k ≥ 0. (4.3)

It is known that BB method for any dimensional quadratic function is R-linearly convergent [8] as
well as that the steepest descent method converges to a least-squares solution of the matrix equation
AX = I [22].

The algorithms (BB and steepest descent) for computing {1, 3}-inverses and the Moore-Penrose
inverse of a matrix would be almost the same as Algorithm 4.1. The only difference is that SC method
is implemented using the restrictions imposed in Step 5 of the algorithm on the parameter γk, while
BB and the steepest descent methods do not make use of these restrictions. Let us indicate to a sig-
nificant difference between the Algorithm 4.1 and the corresponding BB method for the pseudoinverse
computation. The BB method considered here is actually nonmonotone gradient method (the posi-
tiveness of the stepsize is not mandatory). On the other hand, the SC method is a strictly monotone
gradient descent method (similarly as the steepest descent method).

5 Convergence properties of gradient methods

The following proposition gives a characterization of least-squares solutions of the operator equation
Ax = b obtained by an arbitrary gradient method given by (3.2) which converges to the minimum of
the functional defined by (3.1).

Proposition 5.1. [22] Let H and K be given Hilbert spaces and A ∈ L(H,K) is chosen operator such
that R(A) is closed. Let the iterative process defined by (3.2) converges to a least-squares solution of
the operator equation Ax = b. Then the obtained least-squares solution is completely determined by
an arbitrary chosen initial approximation x0 ∈ H and has the following representation

lim
k→∞

xk = A†b + (I −A†A)x0, (5.1)

where I ∈ L(H) is the identity operator. Consequently, x0 ∈ R(A∗) if and only if

lim
k→∞

xk = A†b. (5.2)

Similar representation of least-squares solutions in C∗ algebras obtained by the process (3.2) is
established in [12].
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Problem 5.1. It seems interesting to find explicit solution of the following problem: for an arbitrary
chosen least-squares solution of the equation Ax = b, find corresponding vector x0 ∈ H such that the
limit L(x0) of the iterative process (3.2) is just equal to this lss. The solution of the problem is given
in the rest of this section.

Let us denote the limiting value of the iterative process (3.2) which starts with the initial vector
x0 by

L(x0) ≡ lim
k→∞

xk = A†b + (I −A†A)x0.

The following auxiliary results will be used to get the answer to the stated problem.

Lemma 5.1. Let A ∈ L(H,K) have a closed range, where H,K are Hilbert spaces. Then

a) A†AA(1,3) = A†.

b) Let b ∈ K. Then ‖Ax − b‖ is smallest when x = A(1,3)b. Conversely, if X ∈ L(K,H) has the
property that for all b the norm ‖Ax− b‖ is smallest for x = Xb, then X ∈ A{1, 3}.

Proof. A has the following matrix form:

A =
[
A1 0
0 0

]
:
[R(A∗)
N (A)

]
→

[ R(A)
N (A∗)

]
,

where A1 is invertible. Hence,

A† =
[
A−1

1 0
0 0

]
, A(1,3) =

[
A−1

1 0
U V

]
,

where U, V are arbitrary linear and bounded.

a) An easy computation shows that A†AA(1,3) = A† holds.

b) Let

x =
[
x1

x2

]
∈

[R(A∗)
N (A)

]
and b =

[
b1

b2

]
∈

[ R(A)
N (A∗)

]

be arbitrary elements from H and K respectively. We see that

min ‖Ax− b‖2 = min ‖A1x1 − b1‖2 + ‖b2‖2 = ‖b2‖2

is attained for x1 = A−1
1 b1. Hence, all least-squares solutions of the equation Ax = b have the

form
[
A−1

1 b1

x2

]
, which is the result proved in [11]. Let

x = A(1,3)b =
[

A−1
1 b1

Ub1 + V b2

]
,

whence x is a least-squares solution. Conversely, for all b,

x = Xb =
[
X1 X2

X3 X4

] [
b1

b2

]
=

[
X1b1 + X2b2

X3b1 + X4b2

]
=

[
A−1

1 b1

x2

]

since x is a least-squares solution, from which follows that X1 = A−1
1 and X2 = 0, we get

X ∈ A{1, 3}.

Lemma 5.2. Let H,K,M be Hilbert spaces. If A ∈ L(H,K) has a closed range and F ∈ L(M,H)
satisfies R(F ) = N (A), then there exists some G ∈ L(H,M) such that FG = I −A†A.
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Proof. We keep the notations from Lemma 5.1. Since R(F ) = N (A), we conclude that F has the
following form:

F =
[

0
F1

]
: M→

[R(A∗)
N (A)

]
,

where F1 : M→N (A) is onto, hence it is right invertible. There exists some G1 : N (A) →M, such
that F1G1 = I. Now, let us consider the operator

G =
[
0 G1

]
:
[R(A∗)
N (A)

]
→M.

Then

FG =
[
0 0
0 I

]
= I −A†A,

which was our original attention.

We firstly derive a particular solution to Problem 5.1.

Theorem 5.1. For an arbitrary given operator A ∈ L(H,K) with closed range and an arbitrary
chosen least-squares solution s of the operator equation Ax = b the following holds

s = L(s−A†b). (5.3)

Proof. According to Lemma 5.1, part b), we can characterize the set of all least-squares solutions of
the operator equation Ax = b by {A(1,3)b + (I − A(1,3)A)y| y ∈ H}, where A(1,3) is arbitrary but
fixed element. For example, it is possible to choose A(1,3) = A†. Let F ∈ L(H,H) be such that
R(F ) = N (A) (for example we can take F = IH|N (A)). Since R(I −A†A) = N (A) from Lemma 5.2
we have that there exists an operator G ∈ L(H,H) such that FG = I −A†A. Now it is clear that we
can reduce the characterization set to the following one

{A†b + Fy| y = Gz, z ∈ H},

Now we obtain
s = A†b + FGz = A†b + (I −A†A)z.

One can verify the following
s = A†b + (I −A†A)(s−A†b),

taking into account that s = Sb where S is some {1, 3} inverse of A. Therefore, it is possible to choose
z = s−A†b, which implies

x0 = s−A†b,

and completes the proof.

In the next theorem we get a general solution to the stated problem.

Theorem 5.2. For an arbitrary given linear operator A ∈ L(H,K) and an arbitrary least-squares
solution s of the equation Ax = b the following holds

s = L(s−A†b + A†Ay), y ∈ H. (5.4)

Proof. Let us start with the least-squares solution s of the equation Ax = b, obtained by (3.2)

s = A†b + (I −A†A)x0.

In order to find the vector x0 in terms of the vector s we consider the following operator equation

Cx0 = d, (5.5)
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where C = I−A†A, d = s−A†b. Since C is idempotent and Hermitian (thus the orthogonal projector),
it follows C = C†C. According to Theorem 5.1 we conclude that the equation Cx0 = d has a solution.
Following the general form of the least-squares solution (which is a solution) of the equation Cx0 = d
(see [23]), we obtain

x0 = C†d + (I − C†C)y, y ∈ H. (5.6)

After applying the equality A†As = A†b which is not difficult to check and I −C†C = A†A we obtain

x0 = (I −A†A)(s−A†b) + A†Ay

= s−A†b−A†As + A†b + A†Ay

= s−A†b + A†Ay,

(5.7)

which completes the proof.

Remark 5.1. Let us consider SC method, BB method and the steepest descent methods as gradient
methods for computing a least-squares solution of the matrix equation AX = I and the iterative
methods introduced in [12]. For any initial approximation X0 these methods converge to the A(1,3)

inverse, given by A†+(I−A†A)X0. Particularly, in the case X0 ∈ R(A∗) we have that these methods
converge to A†.

For this purpose, it is realistic to expect that the general iterative scheme (4.1) possesses the same
convergence properties.

Corollary 5.1. Let the matrix X0 ∈ Cn×m be any initial approximation, A ∈ Cm×n be a given
matrix and I ∈ Cm×m be the identity matrix. If the sequence (Xk)k given by the gradient method
(4.1) converges to a least-squares solution of the matrix equation AX = I, then this solution is given
by

lim
k→∞

Xk = A† + (I −A†A)X0. (5.8)

Particularly, X0 ∈ R(A∗) if and only if

lim
k→∞

Xk = A†. (5.9)

Proof. Follows straight from Proposition 5.1.

Remark 5.2. According to Corollary 5.1, we conclude that the {1, 3}-inverse which is achieved by
the iterative process (4.1) (as a least-squares solution) is completely determined by the initial ap-
proximation X0, and it is given by A† + (I − A†A)X0. At this point, we denote the limit of the
iterative process (4.1) determined by X0 as L(X0). Now we consider algebraic properties of the set
{L(X0) | X0 ∈ Cn×m}.

Corollary 5.2. Let A ∈ Cm×n be given complex matrix. The following statement holds

L =
{
L(X0) | X0 ∈ Cn×m

}
= A{1, 3}. (5.10)

Proof. We use the following characterization of the set A{1, 3} from [4]:

A{1, 3} =
{

A(1,3) + (I −A(1,3)A)Z : Z ∈ Cn×m
}

,

for arbitrary but fixed A(1,3) ∈ A{1, 3}. For example, it is possible to use A(1,3) = A†. In this case,
the inclusion L ⊆ A{1, 3} is evident. To verify the opposite inclusion let us choose an arbitrary
A(1,3) ∈ A{1, 3}. It is of the form A(1,3) = A† + (I − A†A)Z, Z ∈ Cn×m. If the initial iteration in
(4.1) is chosen as X0 = Z we obtain A(1,3) = L(X0), which implies A{1, 3} ⊆ L.
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Let us consider the analogous problem with respect to Problem 5.1 considering the matrix equation
AX = I; for an arbitrary chosen {1, 3}-inverse A(1,3) find corresponding matrix X0 such that the limit
L(X0) of the iterative process (5.8) is just equal to A(1,3).

In the following corollary we present the general solution of the stated problem.

Corollary 5.3. For an arbitrary given matrix A ∈ Cm×n and an arbitrary chosen S ∈ A{1, 3} the
following holds

S = L(S −A† + A†AY ), Y ∈ Cn×m. (5.11)

It is possible to derive an alternative characterization for the convergence of (4.1) using main
principle from [24]. If L is the desired limit matrix and Xk is the k-th estimate of L, then the
convergence properties of the examined algorithm can be studied with the aid of the error matrix
Ek = Xk − L. If an iterative algorithm is expressible as a simple matrix formula, Ek+1 is a sum of
several terms:

- zero-order term consisting of a matrix which does not depend upon Ek,
- one or more first-order matrix terms in which Ek or its conjugate transpose E∗

k appears only
once,

- higher-order terms in which Ek or E∗
k appears at least twice.

All suitable algorithms have a zero-order term equal to 0. Hence the first-order terms determine
the terminal convergence properties [24]. The calculation of the first-order terms error1 begins by
substituting Xk = A†+E and expanding the resulting formula. Using this approach, in the following
statement we verify the linear convergence of our method (4.1).

Theorem 5.3. Iterative method (4.1) converges to the Moore-Penrose inverse X = A† linearly, where
the first-order and the second-order terms, corresponding to the error estimation of (4.1) are equal to:

error1 = (I − γkA∗A)Ek, error2 = 0, (5.12)

respectively.

Proof. Putting Xk = A† + Ek in (4.1) it is not difficult to verify that the error matrix Ek+1 is equal
to

Ek+1 = Ek − γkA∗AA† − γkA∗AEk + γkA∗,

which confirms the statements in (5.12).

6 Numerical Results

According to the convergence properties of gradient methods (which include the steepest descent
method, SC and BB method), investigated in Section 5, it seems reasonable to compare these methods
in computation of the ordinary inverse, the Moore-Penrose inverse and various {1, 3}-inverses. The
code for the three methods (the steepest descent, BB and SC method) is written in the MATLAB

programming package and tested on a Workstation Intel Core duo 1.6 GHz. We selected 5 different
types of matrices as test problems. For each test matrix we have considered five different dimensions
which are chosen according to the nature of the test problem. For each test problem we compared two
indicators: number of iterations and the accuracy of the obtained result, i.e., the difference between
the exact pseudoinverse and its approximation (obtained by the algorithm) given in terms of the
matrix norm. Stopping conditions are:

‖Xk+1 −Xk‖F ≤ ε = 10−8 and |fk+1 − fk| ≤ ε = 10−8.

Example 6.1. In this example the inverse of the nonsingular symmetric matrix Zn of order n =
2, 4, 6, . . ., taken from [30], which is given by

zi,j =





a− 1, i = j, i even
a + 1, i = j, i odd
a, otherwise

(6.1)
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is computed. For computing the ordinary inverse of the parametric matrix Zn we use a = 2.

Table 6.1. Numerical results for computing the inverse of the matrix Zn where a = 2

Number of iterations ‖Z−1 −X‖F

Dim SC BB Steepest SC BB Steepest

10 5 8 5 1.4e-11 6.9e-07 2.9e-09

20 5 13 5 4.6e-10 1.9e-09 3.4e-06

30 5 13 5 3.2e-09 6.6e-09 3.4e-05

40 5 13 5 6.6e-09 9.2e-08 2.7e-04

50 7 8 5 3.9e-08 3.5e-05 7.9e-04

Following the results from Table 6.1 it is evident that SC method as well as the steepest descent
method outperform BB method approximately twice, in the number of iterations. Also, according to
the accuracy, the SC method proves oneself as the best. It is important to say that the matrix Zn is
well conditioned matrix and therefore the steepest descent method is competitive with the two-point
stepsize methods.

Example 6.2. The structured (Toeplitz) test matrix

An = toeplitz[(1, 1/2, . . . , 1/(n− 1), 1/n)]

is taken from [3] and the numerical results for computing its inverse are presented.

Table 6.2. Numerical results for computing the inverse of the Toeplitz matrix An

Number of iterations ‖A−1 −X‖F

Dim SC BB Steepest SC BB Steepest

10 83 72 618 4.6e-07 2.2e-08 2.8e-07

20 117 108 903 2.4e-07 1.9e-08 5.1e-07

30 124 127 1237 4.1e-07 1.4e-07 7.1e-07

40 150 137 1533 5.6e-07 1.4e-06 8.5e-07

50 168 162 1789 6.9e-07 6.5e-07 9.8e-07

From the results for the computation of the inverse of the well conditioned matrix An we conclude
that the steepest descent method is not competitive with the two-point stepsize methods regarding
the number of iterations. Additionally, the BB method performs slightly better then SC method.
Also, there is no big difference between the accuracy for all three observed methods.

Example 6.3. In this example we consider the symmetric test matrix Sn of order n = 3, 5, 7, . . . and
of rank n− 1, taken from [30], which is given by

si,j =





a− 1, i = j, i even
a + 1, i = j, i odd
a + 1, |i− j| = n− 1
a, otherwise.

(6.2)

For this ill-conditioned matrix whose condition number is large condF (Sn) ≈ |a|2(n2−3n/2), |a| À 2,
the Moore-Penrose inverse is determined. The presented numerical results are obtained after we made
the choice a = 2.

Table 6.3. Numerical results for computing the Moore-Penrose inverse of the matrix Sn
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Number of iterations ‖S† −X‖F

Dim SC BB Steepest SC BB Steepest

9 12 17 216941 1.6e-04 1.8e-06 2.6e-04

11 12 17 315545 4.6e-05 2.9e-06 4.9e-04

13 9 17 449687 1.9e-05 3.0e-05 8.7e-04

15 9 17 629469 1.0e-05 1.2e-04 0.0014

17 9 17 863949 6.3e-06 4.1e-04 0.0022

According to the results from Table 6.3 it is clear that two-point stepsize methods behave signif-
icantly better with respect to the steepest descent method not only in the number of iterations but
also in the accuracy The enormous number of iterations corresponding to the steepest descent method
confirms the fact that the steepest descent is very badly affected by ill conditioning. Additionally, SC
method outperform BB method observing the number of iterations almost as twice.

Example 6.4. The tridiagonal square test matrix Bn of the order n and rank(Bn) = n − 1 taken
from [30]

Bn =




1 −1

−1 2 −1 0
−1 2 −1

. . . . . . . . .

0 −1 2 −1
−1 1




is considered. The numerical results for computing the Moore-Penrose inverse B†
n as well as the B

(1,3)
n

inverse are presented. The matrix Bn is ill-conditioned matrix with the spectral condition number equal
to cond2(Bn) = 4n2/π2.

Table 6.4. Numerical results for computing the Moore-Penrose inverse of the matrix Bn

Number of iterations ‖B† −X‖F

Dim SC BB Steepest SC BB Steepest

5 71 42 585 7.7e-07 4.6e-07 3.3e-07

10 340 170 11369 5.8e-06 1.8e-07 5.8e-06

15 924 671 55215 1.7e-05 1.5e-05 2.9e-05

20 2130 2058 168083 2.3e-04 8.6e-07 9.5e-05

30 3125 4669 801031 7.4e-04 2.1e-07 4.8e-04

To compute the B
(1,3)
n inverse we made the choice X0 = I for the initial approximation. Each of the

observed methods converges to B† + I −B†B, which is completely determined by X0 = I.

Table 6.5. Numerical results for computing B(1,3) inverse of the matrix Bn

Number of iterations ‖B(1,3) −X‖F

Dim SC BB Steepest SC BB Steepest

5 63 44 629 6.3e-08 3.5e-10 3.3e-07

10 365 413 11253 2.2e-06 1.1e-05 5.8e-06

15 847 517 54843 6.7e-05 3.4e-06 3.0e-05

20 2254 1813 167147 2.5e-04 2.3e-04 9.6e-05

30 4096 3716 797241 1.0e-03 1.3e-03 4.9e-04
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SC and BB method show significantly better results with respect to the steepest descent method for
computing the Moore-Penrose inverse as well as the {1, 3} inverse of the matrix Bn, as it is excepted.
Although BB method outperform SC method observing the number of iterations, in some cases such
as the case n = 30 from Table 6.4 we see a big difference in the number of iterations in favor of SC
method.

Example 6.5. The test matrix An is constructed by the Matrix Market generator. The matrix An

is nonsymmetric square sparse (40% zero elements) random matrix which is filled out by uniformly
distributed elements from the interval [0, 5].

Table 6.6. Numerical results for computing the Moore-Penrose inverse of the matrix An

Number of iterations ‖A† −X‖F

Dim SC BB Steepest SC BB Steepest

5 57 42 253 4.5e-07 1.5e-07 2.6e-07

10 478 485 23763 3.7e-05 1.5e-06 2.4e-05

15 445 419 13567 8.9e-06 3.0e-05 1.2e-05

20 384 300 8955 1.7e-05 1.4e-05 9.0e-06

30 1532 1305 137873 2.0e-04 1.4e-04 1.7e-04

For the random sparse matrix An, according to presented numerical results, again we see the
ascendancy of the two point stepsize methods over the steepest descent method. Also, we distinguish
the slightly better performance of BB method with respect to SC method.

7 Conclusion

The usage of the quasi-Newton methods for finding an optimal solution of a given function is a
natural continuation of the idea that can be described as an application of the nonlinear optimization
in computing least-squares solutions of the operator equation Ax = b. This strategy adapted for
functionals on Hilbert spaces can be also successfully used for computing {1, 3}-inverses, including the
Moore-Penrose inverse, of a given complex matrix.

In this paper we presented the previously mentioned adaptation, i.e. we did an extension of the
secant equation to Hilbert spaces. Furthermore, using the idea of the scalar correction method (SC
method) we established a new gradient method for computing least-squares solutions of the equation
Ax = b on Hilbert spaces, which in addition to good properties of the secant equation, also preserves
monotonicity.

The set of least-squares solutions of the operator equation Ax = b is identified with the set of limits
of the iterative process (3.2). Any limit value of the iterative process given by (3.2) is completely
described by the initial approximation, and it is a least-squares solution. Conversely for a given
least-squares solution we found the set of all initial approximations for the iterative process which
lead to that least-squares solution. As should be expected, respective results are presented regarding
the computation of {1, 3}-inverses as well as the Moore-Penrose inverse of a given complex matrix
A ∈ Cm×n.

The presented numerical results confirm the expectation relative to the bad convergence proper-
ties of the steepest descent method for ill-conditioned problems. And thus make favorable two point
stepsize methods with respect to the steepest descent method. Additionally, regarding the numerical
results we conclude that the scalar correction method is competitive with the favorable Barzilai Bor-
wein method, not only in the number of iterations but also in the accuracy. Also, the complexity of
the SC algorithm is very similar to the complexity of the BB method, which is known as a method
easy for the implementation.
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