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Abstract

We extend the classical Hartwig’s triple reverse order law for the
Moore-Penrose inverse to closed-range bounded linear operators on
infinite dimensional Hilbert spaces.
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1 Introduction

If S is a semigroup with the unit 1, and if a,b € S are invertible, then the
equality (ab)~! = b~1a~! is called the reverse order law for the ordinary
inverse. It is well-known that the reverse order law does not hold for various
classes of generalized inverses.

In this paper we specialize our investigations to the Moore-Penrose in-
verse of a triple product of closed range bounded linear operators on Hilbert
spaces.

Let X,Y,Z be Hilbert spaces, and let £(X,Y) denote the set of all
bounded linear operators from X to Y. We abbreviate £(X) = L(X, X).
For A € L(X,Y) we denote by N(A) and R(A), respectively, the null-space
and the range of A. An operator B € L(Y, X) is an inner inverse of A, if
ABA = A holds. In this case A is inner invertible, or relatively regular. It is
well-known that A is inner invertible if and only if R(A) is closed in Y. The
Moore-Penrose inverse of A € £(X,Y) is the operator X € L(Y, X) which
satisfies the Penrose equations

AXA=A, XAX =X, (AX)"=AX, (XA)*=XA.

The Moore-Penrose inverse of A exists if and only if R(A) is closed in Y. If
the Moore-Penrose inverse of A exists, then it is unique, and it is denoted
by Af.

The rule (AB)" = BT AT (in the case when A, B, AB have closed ranges)
does not hold in general. The equivalence conditions can be found in [7]
for complex matrices; see [8], [2] and [3] for closed range bounded linear
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operators on Hilbert spaces; see [9] for Moore-Penrose invertible elements in
rings and C*-algebras.
Notice that the reverse order rule attracts a significant attention (see [1],
[4], [6], [10], [11] and [13]).
The classical result of Hartwig [12] deals with the triple reverse order
law of the form
(ABC)T = C'BTAT, (1)

where A, B,C' are matrices. Hartwig establishes several equivalent condi-
tions such that (1) holds, offering a very general proof of the main result.
However, one implication in [12] is not valid in infinite dimensional Hilbert
spaces, and thus we find it interesting to extend Hartwig’s proof in this
direction.

We start with some auxiliary results.

Lemma 1.1. Let A € L(X,Y) have a closed range. Then A has the matriz
decomposition with respect to the orthogonal decompositions of spaces X =
R(A*) @N(A) and Y = R(A) & N(A*):

=[5 ol LN - LA |

where A1 is invertible. Moreover,

AT:[Agl 8}:[175((243)]%[%&))]'

The proof of the previous result is straightforward.

Lemma 1.2. [6] Let A € L(X,Y) have a closed range. Let X1 and Xy be
closed and mutually orthogonal subspaces of X, such that X = X1 ® Xo. Let
Y1 and Yy be closed and mutually orthogonal subspaces of Y, such that'Y =
Y1 ®Ys. Then the operator A has the following matriz representations with
respect to the orthogonal sums of subspaces X = X1 & X9 = R(A*) &N (A),
andY = R(A) dN(A*) =YY :

(a) n
A Ay XY R(A
a=[5 v el
where D = A1 AT + A2 A% maps R(A) into itself and D > 0. Also,

A;D7L 0
T _ 1
A _[A;D—l o]'
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where D = ATA; + A5 As maps R(A*) into itself and D > 0. Also,

D—lA* D—lA*
T — 1 2
A { A } .

Here A; denotes different operators in any of these two cases.

Lemma 1.3. Let A € L(X,Y) be closed range operator and let Py; be or-
thogonal projection from'Y to closed subspace R(M) C R(A). Then A* Py A
has a closed range.

Proof. According to Lemma 1.1 and Lemma 1.2, operators A and Py have
the following forms:

[ (3] (2]

=4 4)-[ 58] [ 30 )

It is obvious that A*PyA = (PyA)* Py A, and by using well-known fact
that for any bounded linear operator 7" holds: T*T has closed range if and
only if T" has closed range, it is enough to prove that PysA is closed range
operator. From the form of Py A :

P A:[I o] [Al O]Z[Al 0].[R(A*)]_>[R(M)]

M 00| Ay 0 0 0] | NA N(M) |
we have R(PpyA) = R(A1) = A1(R(A*)), which is closed because A is
onto. Indeed, let us suppose A is not onto; this means there is some y €
R(M) \ R(A1). Because of R(M) C R(A), there is some z € R(A*) such
that y = Ajz + Agx, provided that Asxz # 0. Therefore, R(M) >y — Az =
Agz € N(M), and sum R(M) @& N(M) is direct, so Asx = 0, which is
contradiction. Therefore, A is onto. O



2 Main result

In this section we extend results due to Hartwig [12] concerning the triple
reverse order law for the Moore-Penrose inverse from complex matrices to
infinite dimensional settings.

In this section, let X;, ¢« = 1,2,3,4, be arbitrary Hilbert spaces, and
let A€ L(X3,X4), B € L(X2,X3) and C € L(X1, X2) be bounded linear
operators with closed ranges. We use notations in the same way as in [12]:

M = ABC, X =CtBtAT,
E = A'4, F=cct,
P = EBF, Q = FB'E.

Recall that K € L(X) is EP, if K has a closed range, and KK = KTK.
The main result is the following theorem.

Theorem 2.1. Let A, B,C be closed-range operators such that ABC' also
has a closed range. The following statements are equivalent:

(a) (ABC)t = Ct Bt Af;

(b) PQP =P, QPQ = Q, and both of A*APQ, and QPCC* are Hermi-
tian;

(¢c) PQP =P, QPQ = @, and both of A*APQ, and QPCC* are EP;
(d) PQP = P, R(A*AP) = R(Q"), R(CC*P*) = R(Q);
(e) (PQ)* =PQ, R(A*AP) = R(Q*), R(CC*P*) = R(Q).

Proof. The proof given by Hartwig stays valid for (a) < (b), (b) = (¢),
(¢) = (d) and (d) = (e). The only case which does not hold in general, is
actually the implication (e) = (b), which involves properties of the matrix
rank. Thus, this part of the proof is not applicable to operators on infinite
dimensional Hilbert space.

To complete the proof, we will prove (¢) = (a) in a different way, using
properties of operator matrices.

Using Lemma 1.1 we conclude that the operator C' has the following
matrix form:

=[5 o[ Mo |- [ ey |



where (7 is invertible. Then
ct_[Cit 0] [ RO | [RECH]
0 0 N(C*) N(C)
From Lemma 1.2 it follows that the operator B has the following matrix
form:
B_ By Bs : R(C) . R(B) 7
0 0 N(C*) N (B*)
where G = BB} + By Bj is invertible and positive in £(R(B)). Then

BiG™' 0
P | D1
B [ B;G™t 0 ]

From Lemma 1.2 it also follows that the operator A has the following

matrix form:
a=[ 5 S M ] LA |

where D = A; AT + A2 A% is invertible and positive in L(R(A)). Then

A*D-L 0
T 1
=4 o]

Let us find the expressions for the operators M, X, E, F, P and Q. It is
easy to find that:

AB1C; 0 My O
M:ABC’:[ 101 ! 0]2[ 01 0}, My = A1 BCy;

—1 pxv—1 pgx—1
ipigt [ CU'BIGTIAIDTY 0] [ Xy 0
X_C’BA_[ 0 ol =17 ol
X, =C;'BfG7 A DY

B atA [ A*D"1A; AiD 14,

I o
. _ T .
AD 1A, A;D_IAQ]’ F=ctt= [ 0 o]’

B [ AsD'A41B; 0 ArD7'mort 0]
P_EBF_[A§D—1A1B1 0] | AD'mcyt o]’

b}



BiGl'AiD 1A, B:G'AiD7'A C1X1A1 C1XHA
_ T 1 1 1 1 1 2 14141 C1A1A2
Q=FB'E = [ 0 0 } = { 0 0

It will be convinient to compute here matrix forms for some expressions
appearing in the rest of the proof:

PQ_ ATDilMleAl ATDilMleAQ .
T | AADTIM X Ay ASDTIMAX Ay |0

_[oximet o]

A AP — [ AMLCTE 0 ] _

ASMCTE 0

CleDilAl CleDilAQ :| )

CC’P:{ 0 0

(PQ)2: ATD_IMleMleAl ATD_1M1X1M1X1A2
AgD_lMleMleAl ASD_lMleMleAZ ’

Now, we will find equivalent expressions for the conditions (a) and (e)
in the terms of the components of the operators A, B and C.

(a) : This is equivalent to (4; B;C1)t = CT1B;G~1A{D™!, or M = X;.

(e) : This is equivalent to the following three expressions:
(el) & AID N MX1)*A; = AfD M1 X1A;, foralli,je {1,2};
Asvport 0]\ AzXior 0\
(e2) < R([A;Mlq_l o) =R\ asxicr o)
@3 o m([OMIPTA CMPTAT) g ([ORA CNAT),

Recall that we prove the implication (e) = (a).

Now, if we premultiply (e.1) by A;, and use summation over i = 1,2
we yield (M1X1)2A; = M1X1A;, for j = 1,2. If we now postmultiply last
expression by A% and add them, we have (M1 X 1)? = M1 X1. Therefore:

(6.1) — (M1X1)2 = M1X1. (2)



On the other hand, (e.2) is equivalent to:
R(AIMCTY) = R(AIXTCY), i=1,2.
Again, if A; acts on both sides, and we add them, we obtain:
ROMLCTY) = R(XGCY).

Hence, we have

which implies M7 M f =X I Xi. Therefore,

(e.2) = MM = X[ X,.

Let us now write (e.3) as:

N AsDIM O 0 Y AIXCr 0
AsDIMLCF 0 AzXyCr 0] )

Notice that
N AIDTIMOY 0\ _ f[w | [ADTIMICY 0] [w ] _[O
AsD7IMLCT 0 up | | ASD7IMLCY 0 | | ue 0lf’
and we conclude:

ATD_lMICT 0 . * y—1 * * y—1 * *
N<[A§D1M10{ OD_(N’(AlD MLCHAN (43D M,C1) ) N (),

which is further equal (easy to see) to
N (M, CY) @ N(C™).
With a little effort we find
N q e o D = (N(ATXIOD NN(ASXTOD)) @ N (C) =
= N(X{Cy) e N(CY).
Hence, the condition (e.3) implies:

N(MCT) = N(X1CY),



which is the same as R(C1M7) = R(C1X1), or R(M;) = R(X1), or even
further: MfMl = XlXir.

Since we intend to prove (e) = (a), it is enough to prove the following

implication:

((M1X1)2 = MiX1, MM|=X[x1, MM = XleT) = M = X.
The following completes the proof:

M, = M X\ X]=MX XX\ X] =MX,MMX =
= MixiMy X XMixT = o x o xTufx) =
= mMixT = x{x xT = x].

For the sake of completeness, we remark that operators A*AP(Q and

QPCC* from part (c¢) of our Theorem have closed ranges. It immediately
follows from Lemma 1.3 because:

A*APQ = A*MM'A = A*Prpn A, QPCC* = CMTMC* = CPr(p)C*.

O]
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