Hartwig’s triple reverse order law revisited

Nebojša Ć. Dinčić and Dragan S. Djordjević

Abstract

We extend the classical Hartwig’s triple reverse order law for the Moore-Penrose inverse to closed-range bounded linear operators on infinite dimensional Hilbert spaces.

2000 Mathematics Subject Classification: 47A05, 15A09.

Keywords and phrases: Moore-Penrose inverse; reverse order law; triple reverse order law.

1 Introduction

If S is a semigroup with the unit 1, and if $a, b \in S$ are invertible, then the equality $(ab)^{-1} = b^{-1}a^{-1}$ is called the reverse order law for the ordinary inverse. It is well-known that the reverse order law does not hold for various classes of generalized inverses.

In this paper we specialize our investigations to the Moore-Penrose inverse of a triple product of closed range bounded linear operators on Hilbert spaces.

Let X, Y, Z be Hilbert spaces, and let $\mathcal{L}(X,Y)$ denote the set of all bounded linear operators from X to Y. We abbreviate $\mathcal{L}(X) = \mathcal{L}(X,X)$. For $A \in \mathcal{L}(X,Y)$ we denote by $\mathcal{N}(A)$ and $\mathcal{R}(A)$, respectively, the null-space and the range of A. An operator $B \in \mathcal{L}(Y,X)$ is an inner inverse of A, if $ABA = A$ holds. In this case A is inner invertible, or relatively regular. It is well-known that A is inner invertible if and only if $\mathcal{R}(A)$ is closed in Y. The Moore-Penrose inverse of $A \in \mathcal{L}(X,Y)$ is the operator $X \in \mathcal{L}(Y,X)$ which satisfies the Penrose equations

$$AXA = A, \quad XAX = X, \quad (AX)^* = AX, \quad (XA)^* = XA.$$

The Moore-Penrose inverse of A exists if and only if $\mathcal{R}(A)$ is closed in Y. If the Moore-Penrose inverse of A exists, then it is unique, and it is denoted by A^\dagger.

The rule $(AB)^\dagger = B^\dagger A^\dagger$ (in the case when A, B, AB have closed ranges) does not hold in general. The equivalence conditions can be found in [7] for complex matrices; see [8], [2] and [3] for closed range bounded linear

1The authors are supported by the Ministry of Science, Republic of Serbia, grant No. 174007.
operators on Hilbert spaces; see [9] for Moore-Penrose invertible elements in rings and C^*-algebras.

Notice that the reverse order rule attracts a significant attention (see [1], [4], [6], [10], [11] and [13]).

The classical result of Hartwig [12] deals with the triple reverse order law of the form

$$(ABC)^\dagger = C^\dagger B^\dagger A^\dagger,$$

where A, B, C are matrices. Hartwig establishes several equivalent conditions such that (1) holds, offering a very general proof of the main result. However, one implication in [12] is not valid in infinite dimensional Hilbert spaces, and thus we find it interesting to extend Hartwig’s proof in this direction.

We start with some auxiliary results.

Lemma 1.1. Let $A \in \mathcal{L}(X, Y)$ have a closed range. Then A has the matrix decomposition with respect to the orthogonal decompositions of spaces $X = \mathcal{R}(A^*) \oplus \mathcal{N}(A)$ and $Y = \mathcal{R}(A) \oplus \mathcal{N}(A^*)$:

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$$

where A_1 is invertible. Moreover,

$$A^\dagger = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix}.$$

The proof of the previous result is straightforward.

Lemma 1.2. [6] Let $A \in \mathcal{L}(X, Y)$ have a closed range. Let X_1 and X_2 be closed and mutually orthogonal subspaces of X, such that $X = X_1 \oplus X_2$. Let Y_1 and Y_2 be closed and mutually orthogonal subspaces of Y, such that $Y = Y_1 \oplus Y_2$. Then the operator A has the following matrix representations with respect to the orthogonal sums of subspaces $X = X_1 \oplus X_2 = \mathcal{R}(A^*) \oplus \mathcal{N}(A)$, and $Y = \mathcal{R}(A) \oplus \mathcal{N}(A^*) = Y_1 \oplus Y_2$:

(a)

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$$

where $D = A_1 A_1^* + A_2 A_2^*$ maps $\mathcal{R}(A)$ into itself and $D > 0$. Also,

$$A^\dagger = \begin{bmatrix} A_1^* D^{-1} & 0 \\ A_2^* D^{-1} & 0 \end{bmatrix}.$$
(b) \[
A = \begin{bmatrix} A_1 & 0 \\ A_2 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix},
\]
where \(D = A_1^*A_1 + A_2^*A_2 \) maps \(\mathcal{R}(A^*) \) into itself and \(D > 0 \). Also,
\[
A^1 = \begin{bmatrix} D^{-1}A_1^* & D^{-1}A_2^* \\ 0 & 0 \end{bmatrix}.
\]

Here \(A_i \) denotes different operators in any of these two cases.

Lemma 1.3. Let \(A \in \mathcal{L}(X,Y) \) be closed range operator and let \(P_M \) be orthogonal projection from \(Y \) to closed subspace \(\mathcal{R}(M) \subset \mathcal{R}(A) \). Then \(A^*P_MA \) has a closed range.

Proof. According to Lemma 1.1 and Lemma 1.2, operators \(A \) and \(P_M \) have the following forms:
\[
A = \begin{bmatrix} A_1 & 0 \\ A_2 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(M) \\ \mathcal{N}(M) \end{bmatrix},
\]
\[
P_M = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(M) \\ \mathcal{N}(M) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(M) \\ \mathcal{N}(M) \end{bmatrix}.
\]

It is obvious that \(A^*P_MA = (P_MA)^*P_MA \), and by using well-known fact that for any bounded linear operator \(T \) holds: \(T^*T \) has closed range if and only if \(T \) has closed range, it is enough to prove that \(P_M A \) is closed range operator. From the form of \(P_M A \):
\[
P_M A = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_1 & 0 \\ A_2 & 0 \end{bmatrix} = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(M) \\ \mathcal{N}(M) \end{bmatrix},
\]
we have \(\mathcal{R}(P_M A) = \mathcal{R}(A_1) = A_1(\mathcal{R}(A^*)) \), which is closed because \(A_1 \) is onto. Indeed, let us suppose \(A_1 \) is not onto; this means there is some \(y \in \mathcal{R}(M) \setminus \mathcal{R}(A_1) \). Because of \(\mathcal{R}(M) \subset \mathcal{R}(A) \), there is some \(x \in \mathcal{R}(A^*) \) such that \(y = A_1x + A_2x \), provided that \(A_2x \neq 0 \). Therefore, \(\mathcal{R}(M) \ni y - A_1x = A_2x \in \mathcal{N}(M) \), and sum \(\mathcal{R}(M) \oplus \mathcal{N}(M) \) is direct, so \(A_2x = 0 \), which is contradiction. Therefore, \(A_1 \) is onto. \(\Box \)
2 Main result

In this section we extend results due to Hartwig [12] concerning the triple reverse order law for the Moore-Penrose inverse from complex matrices to infinite dimensional settings.

In this section, let X_i, $i = 1, 2, 3, 4$, be arbitrary Hilbert spaces, and let $A \in \mathcal{L}(X_3, X_4)$, $B \in \mathcal{L}(X_2, X_3)$ and $C \in \mathcal{L}(X_1, X_2)$ be bounded linear operators with closed ranges. We use notations in the same way as in [12]:

$$
 M = ABC, \\
 E = A^\dagger A, \\
 P = EBF,
$$

$$
 X = C^\dagger B^\dagger A^\dagger, \\
 F = CC^\dagger, \\
 Q = FB^\dagger E.
$$

Recall that $K \in \mathcal{L}(X)$ is EP, if K has a closed range, and $KK^\dagger = K^\dagger K$.

The main result is the following theorem.

Theorem 2.1. Let A, B, C be closed-range operators such that ABC also has a closed range. The following statements are equivalent:

(a) $(ABC)^\dagger = C^\dagger B^\dagger A^\dagger$;

(b) $PQP = P$, $QPQ = Q$, and both of A^*AP, and $QPCC^*$ are Hermitian;

(c) $PQP = P$, $QPQ = Q$, and both of A^*AP, and $QPCC^*$ are EP;

(d) $PQP = P$, $\mathcal{R}(A^*AP) = \mathcal{R}(Q^*)$, $\mathcal{R}(CC^*P^*) = \mathcal{R}(Q)$;

(e) $(PQ)^2 = PQ$, $\mathcal{R}(A^*AP) = \mathcal{R}(Q^*)$, $\mathcal{R}(CC^*P^*) = \mathcal{R}(Q)$.

Proof. The proof given by Hartwig stays valid for $(a) \iff (b)$, $(b) \Rightarrow (c)$, $(c) \Rightarrow (d)$ and $(d) \Rightarrow (e)$. The only case which does not hold in general, is actually the implication $(e) \Rightarrow (b)$, which involves properties of the matrix rank. Thus, this part of the proof is not applicable to operators on infinite dimensional Hilbert space.

To complete the proof, we will prove $(e) \Rightarrow (a)$ in a different way, using properties of operator matrices.

Using Lemma 1.1 we conclude that the operator C has the following matrix form:

$$
 C = \begin{bmatrix}
 C_1 & 0 \\
 0 & 0
 \end{bmatrix}, \quad \begin{bmatrix}
 \mathcal{R}(C^*) \\
 \mathcal{N}(C)
 \end{bmatrix} \to \begin{bmatrix}
 \mathcal{R}(C) \\
 \mathcal{N}(C^*)
 \end{bmatrix},
$$
where C_1 is invertible. Then

$$C^\dagger = \begin{bmatrix} C_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(C) \\ \mathcal{N}(C^*) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(C^*) \\ \mathcal{N}(C) \end{bmatrix}.$$

From Lemma 1.2 it follows that the operator B has the following matrix form:

$$B = \begin{bmatrix} B_1 & B_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(C) \\ \mathcal{N}(C^*) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix},$$

where $G = B_1B_1^* + B_2B_2^*$ is invertible and positive in $\mathcal{L}(\mathcal{R}(B))$. Then

$$B^\dagger = \begin{bmatrix} B_1^*G^{-1} & 0 \\ B_2^*G^{-1} & 0 \end{bmatrix}.$$

From Lemma 1.2 it also follows that the operator A has the following matrix form:

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$$

where $D = A_1A_1^* + A_2A_2^*$ is invertible and positive in $\mathcal{L}(\mathcal{R}(A))$. Then

$$A^\dagger = \begin{bmatrix} A_1^*D^{-1} & 0 \\ A_2^*D^{-1} & 0 \end{bmatrix}.$$

Let us find the expressions for the operators M, X, E, F, P and Q. It is easy to find that:

$$M = ABC = \begin{bmatrix} A_1B_1C_1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} M_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad M_1 = A_1B_1C_1;$$

$$X = C^\dagger B^\dagger A^\dagger = \begin{bmatrix} C_1^{-1}B_1^*G^{-1}A_1^*D^{-1} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad X_1 = C_1^{-1}B_1^*G^{-1}A_1^*D^{-1};$$

$$E = A^\dagger A = \begin{bmatrix} A_1^*D^{-1}A_1 & A_1^*D^{-1}A_2 \\ A_2^*D^{-1}A_1 & A_2^*D^{-1}A_2 \end{bmatrix}; \quad F = CC^\dagger = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix};$$

$$P = EBF = \begin{bmatrix} A_1^*D^{-1}A_1B_1 & 0 \\ A_2^*D^{-1}A_1B_1 & 0 \end{bmatrix} = \begin{bmatrix} A_1^*D^{-1}M_1C_1^{-1} & 0 \\ A_2^*D^{-1}M_1C_1^{-1} & 0 \end{bmatrix};$$
\[Q = FB^1E = \begin{bmatrix} B_1^*G^{-1}A_1^*D^{-1}A_1 & B_1^*G^{-1}A_1^*D^{-1}A_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} C_1X_1A_1 & C_1X_1A_2 \end{bmatrix}. \]

It will be convinient to compute here matrix forms for some expressions appearing in the rest of the proof:

\[PQ = \begin{bmatrix} A_1^*D^{-1}M_1X_1A_1 & A_1^*D^{-1}M_1X_1A_2 \\ A_2^*D^{-1}M_1X_1A_1 & A_2^*D^{-1}M_1X_1A_2 \end{bmatrix}; \]

\[QP = \begin{bmatrix} C_1X_1M_1C_1^{-1} & 0 \\ 0 & 0 \end{bmatrix}; \]

\[A^*AP = \begin{bmatrix} A_1^*M_1C_1^{-1} & 0 \\ A_2^*M_1C_1^{-1} & 0 \end{bmatrix}; \]

\[CC^*P = \begin{bmatrix} C_1M_1^*D^{-1}A_1 & C_1M_1^*D^{-1}A_2 \\ 0 & 0 \end{bmatrix}; \]

\[(PQ)^2 = \begin{bmatrix} A_1^*D^{-1}M_1X_1M_1X_1A_1 & A_1^*D^{-1}M_1X_1M_1X_1A_2 \\ A_2^*D^{-1}M_1X_1M_1X_1A_1 & A_2^*D^{-1}M_1X_1M_1X_1A_2 \end{bmatrix}. \]

Now, we will find equivalent expressions for the conditions \((a)\) and \((e)\) in the terms of the components of the operators \(A, B\) and \(C\).

\((a)\) : This is equivalent to \((A_1B_1C_1)^\dagger = C_1^{-1}B_1^*G^{-1}A_1^*D^{-1}\), or \(M_1^\dagger = X_1\).

\((e)\) : This is equivalent to the following three expressions:

\((e.1)\) \iff \(A_i^*D^{-1}(M_iX_i)^2A_j = A_i^*D^{-1}M_iX_1A_j\), for all \(i, j \in \{1, 2\}\);

\((e.2)\) \iff \(\mathcal{R}\left(\begin{bmatrix} A_1^*M_1C_1^{-1} & 0 \\ A_2^*M_1C_1^{-1} & 0 \end{bmatrix}\right) = \mathcal{R}\left(\begin{bmatrix} A_1^*X_1C_1^{-1} & 0 \\ A_2^*X_1C_1^{-1} & 0 \end{bmatrix}\right); \)

\((e.3)\) \iff \(\mathcal{R}\left(\begin{bmatrix} C_1M_1^*D^{-1}A_1 & C_1M_1^*D^{-1}A_2 \\ 0 & 0 \end{bmatrix}\right) = \mathcal{R}\left(\begin{bmatrix} C_1X_1A_1 & C_1X_1A_2 \\ 0 & 0 \end{bmatrix}\right). \)

Recall that we prove the implication \((e) \implies (a)\).

Now, if we premultiply \((e.1)\) by \(A_i\), and use summation over \(i = 1, 2\) we yield \((M_1X_1)^2A_j = M_1X_1A_j\), for \(j = 1, 2\). If we now postmultiply last expression by \(A_j^\dagger\) and add them, we have \((M_1X_1)^2 = M_1X_1\). Therefore:

\((e.1) \implies (M_1X_1)^2 = M_1X_1\). \hspace{1cm} (2)
On the other hand, (e.2) is equivalent to:
\[\mathcal{R}(A_i^* M_1 C_1^{-1}) = \mathcal{R}(A_i^* X_1^* C_1^*), \quad i = 1, 2. \]

Again, if \(A_i \) acts on both sides, and we add them, we obtain:
\[\mathcal{R}(M_1 C_1^{-1}) = \mathcal{R}(X_1^* C_1^*). \]

Hence, we have
\[\mathcal{R}(M_1) = \mathcal{R}(X_1^*), \]
which implies \(M_1 M_1^\dagger = X_1^\dagger X_1 \). Therefore,
\[(e.2) \Rightarrow M_1 M_1^\dagger = X_1^\dagger X_1. \]

Let us now write (e.3) as:
\[\mathcal{N}\left(\begin{bmatrix} A_1^* D_1^{-1} M_1 C_1^* & 0 \\ A_2^* D_1^{-1} M_1 C_1^* & 0 \end{bmatrix} \right) = \mathcal{N}\left(\begin{bmatrix} A_1^* X_1^* C_1^* & 0 \\ A_2^* X_1^* C_1^* & 0 \end{bmatrix} \right). \]

Notice that
\[\mathcal{N}\left(\begin{bmatrix} A_1^* D_1^{-1} M_1 C_1^* & 0 \\ A_2^* D_1^{-1} M_1 C_1^* & 0 \end{bmatrix} \right) = \left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} : \begin{bmatrix} A_1^* D_1^{-1} M_1 C_1^* & 0 \\ A_2^* D_1^{-1} M_1 C_1^* & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}, \]
and we conclude:
\[\mathcal{N}\left(\begin{bmatrix} A_1^* D_1^{-1} M_1 C_1^* & 0 \\ A_2^* D_1^{-1} M_1 C_1^* & 0 \end{bmatrix} \right) = \left(\mathcal{N}(A_1^* D_1^{-1} M_1 C_1^*) \cap \mathcal{N}(A_2^* D_1^{-1} M_1 C_1^*) \right) \oplus \mathcal{N}(C^*), \]
which is further equal (easy to see) to
\[\mathcal{N}(M_1 C_1^*) \oplus \mathcal{N}(C^*). \]

With a little effort we find
\[\mathcal{N}\left(\begin{bmatrix} A_1^* X_1^* C_1^* & 0 \\ A_2^* X_1^* C_1^* & 0 \end{bmatrix} \right) = \left(\mathcal{N}(A_1^* X_1^* C_1^*) \cap \mathcal{N}(A_2^* X_1^* C_1^*) \right) \oplus \mathcal{N}(C^*) = \mathcal{N}(X_1^* C_1^*) \oplus \mathcal{N}(C^*). \]

Hence, the condition (e.3) implies:
\[\mathcal{N}(M_1 C_1^*) = \mathcal{N}(X_1^* C_1^*), \]

7
which is the same as $R(C_1M_1^*) = R(C_1X_1)$, or $R(M_1^*) = R(X_1)$, or even further: $M_1^*M_1 = X_1X_1^\dagger$.

Since we intend to prove $(e) \Rightarrow (a)$, it is enough to prove the following implication:

$$\left((M_1X_1)^2 = M_1X_1, \quad M_1M_1^\dagger = X_1^\dagger X_1, \quad M_1^\dagger M_1 = X_1X_1^\dagger \right) \Rightarrow M_1^\dagger = X_1.$$

The following completes the proof:

\[
M_1 = M_1X_1X_1^\dagger = M_1X_1X_1^\dagger X_1X_1^\dagger = M_1X_1M_1^\dagger X_1^\dagger = \\
= M_1X_1M_1X_1^\dagger M_1^\dagger X_1^\dagger = M_1X_1X_1^\dagger M_1^\dagger X_1^\dagger = \\
= M_1M_1^\dagger X_1^\dagger = X_1^\dagger X_1X_1^\dagger = X_1^\dagger.
\]

For the sake of completeness, we remark that operators A^*APQ and $QPCC^*$ from part (c) of our Theorem have closed ranges. It immediately follows from Lemma 1.3 because:

$$A^*APQ = A^*MM^\dagger A = A^*PR(M)A, \quad QPCC^* = CM^\dagger MC^* = CP_R(M)C^*.$$

Acknowledgement: The authors are grateful to the referee for a valuable comment which improved the paper.

References

Nebojša Č. Dinčić
Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia
E-mail: ndincic@hotmail.com

Dragan S. Djordjević
Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia
E-mail: dragandjordjevic70@gmail.com dragan@pmf.ni.ac.rs