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Abstract

We extend the classical Hartwig’s triple reverse order law for the
Moore-Penrose inverse to closed-range bounded linear operators on
infinite dimensional Hilbert spaces.
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1 Introduction

If S is a semigroup with the unit 1, and if a, b ∈ S are invertible, then the
equality (ab)−1 = b−1a−1 is called the reverse order law for the ordinary
inverse. It is well-known that the reverse order law does not hold for various
classes of generalized inverses.

In this paper we specialize our investigations to the Moore-Penrose in-
verse of a triple product of closed range bounded linear operators on Hilbert
spaces.

Let X,Y, Z be Hilbert spaces, and let L(X,Y ) denote the set of all
bounded linear operators from X to Y . We abbreviate L(X) = L(X,X).
For A ∈ L(X,Y ) we denote by N (A) and R(A), respectively, the null-space
and the range of A. An operator B ∈ L(Y,X) is an inner inverse of A, if
ABA = A holds. In this case A is inner invertible, or relatively regular. It is
well-known that A is inner invertible if and only if R(A) is closed in Y . The
Moore-Penrose inverse of A ∈ L(X,Y ) is the operator X ∈ L(Y,X) which
satisfies the Penrose equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

The Moore-Penrose inverse of A exists if and only if R(A) is closed in Y . If
the Moore-Penrose inverse of A exists, then it is unique, and it is denoted
by A†.

The rule (AB)† = B†A† (in the case when A,B,AB have closed ranges)
does not hold in general. The equivalence conditions can be found in [7]
for complex matrices; see [8], [2] and [3] for closed range bounded linear
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operators on Hilbert spaces; see [9] for Moore-Penrose invertible elements in
rings and C∗-algebras.

Notice that the reverse order rule attracts a significant attention (see [1],
[4], [6], [10], [11] and [13]).

The classical result of Hartwig [12] deals with the triple reverse order
law of the form

(ABC)† = C†B†A†, (1)

where A,B,C are matrices. Hartwig establishes several equivalent condi-
tions such that (1) holds, offering a very general proof of the main result.
However, one implication in [12] is not valid in infinite dimensional Hilbert
spaces, and thus we find it interesting to extend Hartwig’s proof in this
direction.

We start with some auxiliary results.

Lemma 1.1. Let A ∈ L(X,Y ) have a closed range. Then A has the matrix
decomposition with respect to the orthogonal decompositions of spaces X =
R(A∗)⊕N (A) and Y = R(A)⊕N (A∗):

A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

where A1 is invertible. Moreover,

A† =

[
A−1

1 0
0 0

]
:

[
R(A)
N (A∗)

]
→

[
R(A∗)
N (A)

]
.

The proof of the previous result is straightforward.

Lemma 1.2. [6] Let A ∈ L(X,Y ) have a closed range. Let X1 and X2 be
closed and mutually orthogonal subspaces of X, such that X = X1⊕X2. Let
Y1 and Y2 be closed and mutually orthogonal subspaces of Y , such that Y =
Y1 ⊕ Y2. Then the operator A has the following matrix representations with
respect to the orthogonal sums of subspaces X = X1⊕X2 = R(A∗)⊕N (A),
and Y = R(A)⊕N (A∗) = Y1 ⊕ Y2 :

(a)

A =

[
A1 A2

0 0

]
:

[
X1

X2

]
→

[
R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 maps R(A) into itself and D > 0. Also,

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
.
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(b)

A =

[
A1 0
A2 0

]
:

[
R(A∗)
N (A)

]
→

[
Y1
Y2

]
,

where D = A∗
1A1 +A∗

2A2 maps R(A∗) into itself and D > 0. Also,

A† =

[
D−1A∗

1 D−1A∗
2

0 0

]
.

Here Ai denotes different operators in any of these two cases.

Lemma 1.3. Let A ∈ L(X,Y ) be closed range operator and let PM be or-
thogonal projection from Y to closed subspace R(M) ⊂ R(A). Then A∗PMA
has a closed range.

Proof. According to Lemma 1.1 and Lemma 1.2, operators A and PM have
the following forms:

A =

[
A1 0
A2 0

]
:

[
R(A∗)
N (A)

]
→

[
R(M)
N (M)

]
,

PM =

[
I 0
0 0

]
:

[
R(M)
N (M)

]
→

[
R(M)
N (M)

]
.

It is obvious that A∗PMA = (PMA)∗PMA, and by using well-known fact
that for any bounded linear operator T holds: T ∗T has closed range if and
only if T has closed range, it is enough to prove that PMA is closed range
operator. From the form of PMA :

PMA =

[
I 0
0 0

] [
A1 0
A2 0

]
=

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(M)
N (M)

]
,

we have R(PMA) = R(A1) = A1(R(A∗)), which is closed because A1 is
onto. Indeed, let us suppose A1 is not onto; this means there is some y ∈
R(M) \ R(A1). Because of R(M) ⊂ R(A), there is some x ∈ R(A∗) such
that y = A1x+A2x, provided that A2x ̸= 0. Therefore, R(M) ∋ y−A1x =
A2x ∈ N (M), and sum R(M) ⊕ N (M) is direct, so A2x = 0, which is
contradiction. Therefore, A1 is onto.
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2 Main result

In this section we extend results due to Hartwig [12] concerning the triple
reverse order law for the Moore-Penrose inverse from complex matrices to
infinite dimensional settings.

In this section, let Xi, i = 1, 2, 3, 4, be arbitrary Hilbert spaces, and
let A ∈ L(X3, X4), B ∈ L(X2, X3) and C ∈ L(X1, X2) be bounded linear
operators with closed ranges. We use notations in the same way as in [12]:

M = ABC, X = C†B†A†,

E = A†A, F = CC†,

P = EBF, Q = FB†E.

Recall that K ∈ L(X) is EP, if K has a closed range, and KK† = K†K.
The main result is the following theorem.

Theorem 2.1. Let A,B,C be closed-range operators such that ABC also
has a closed range. The following statements are equivalent:

(a) (ABC)† = C†B†A†;

(b) PQP = P , QPQ = Q, and both of A∗APQ, and QPCC∗ are Hermi-
tian;

(c) PQP = P , QPQ = Q, and both of A∗APQ, and QPCC∗ are EP;

(d) PQP = P , R(A∗AP ) = R(Q∗), R(CC∗P ∗) = R(Q);

(e) (PQ)2 = PQ, R(A∗AP ) = R(Q∗), R(CC∗P ∗) = R(Q).

Proof. The proof given by Hartwig stays valid for (a) ⇔ (b), (b) ⇒ (c),
(c) ⇒ (d) and (d) ⇒ (e). The only case which does not hold in general, is
actually the implication (e) ⇒ (b), which involves properties of the matrix
rank. Thus, this part of the proof is not applicable to operators on infinite
dimensional Hilbert space.

To complete the proof, we will prove (e) ⇒ (a) in a different way, using
properties of operator matrices.

Using Lemma 1.1 we conclude that the operator C has the following
matrix form:

C =

[
C1 0
0 0

]
:

[
R(C∗)
N (C)

]
→

[
R(C)
N (C∗)

]
,
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where C1 is invertible. Then

C† =

[
C−1
1 0
0 0

]
:

[
R(C)
N (C∗)

]
→

[
R(C∗)
N (C)

]
.

From Lemma 1.2 it follows that the operator B has the following matrix
form:

B =

[
B1 B2

0 0

]
:

[
R(C)
N (C∗)

]
→

[
R(B)
N (B∗)

]
,

where G = B1B
∗
1 +B2B

∗
2 is invertible and positive in L(R(B)). Then

B† =

[
B∗

1G
−1 0

B∗
2G

−1 0

]
.

From Lemma 1.2 it also follows that the operator A has the following
matrix form:

A =

[
A1 A2

0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
.

Let us find the expressions for the operators M, X, E, F, P and Q. It is
easy to find that:

M = ABC =

[
A1B1C1 0

0 0

]
=

[
M1 0
0 0

]
, M1 = A1B1C1;

X = C†B†A† =

[
C−1
1 B∗

1G
−1A∗

1D
−1 0

0 0

]
=

[
X1 0
0 0

]
,

X1 = C−1
1 B∗

1G
−1A∗

1D
−1;

E = A†A =

[
A∗

1D
−1A1 A∗

1D
−1A2

A∗
2D

−1A1 A∗
2D

−1A2

]
; F = CC† =

[
I 0
0 0

]
;

P = EBF =

[
A∗

1D
−1A1B1 0

A∗
2D

−1A1B1 0

]
=

[
A∗

1D
−1M1C

−1
1 0

A∗
2D

−1M1C
−1
1 0

]
;
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Q = FB†E =

[
B∗

1G
−1A∗

1D
−1A1 B∗

1G
−1A∗

1D
−1A2

0 0

]
=

[
C1X1A1 C1X1A2

0 0

]
.

It will be convinient to compute here matrix forms for some expressions
appearing in the rest of the proof:

PQ =

[
A∗

1D
−1M1X1A1 A∗

1D
−1M1X1A2

A∗
2D

−1M1X1A1 A∗
2D

−1M1X1A2

]
;

QP =

[
C1X1M1C

−1
1 0

0 0

]
;

A∗AP =

[
A∗

1M1C
−1
1 0

A∗
2M1C

−1
1 0

]
;

CC∗P ∗ =

[
C1M

∗
1D

−1A1 C1M
∗
1D

−1A2

0 0

]
;

(PQ)2 =

[
A∗

1D
−1M1X1M1X1A1 A∗

1D
−1M1X1M1X1A2

A∗
2D

−1M1X1M1X1A1 A∗
2D

−1M1X1M1X1A2

]
.

Now, we will find equivalent expressions for the conditions (a) and (e)
in the terms of the components of the operators A,B and C.

(a) : This is equivalent to (A1B1C1)
† = C−1

1 B∗
1G

−1A∗
1D

−1, or M †
1 = X1.

(e) : This is equivalent to the following three expressions:

(e.1) ⇔ A∗
iD

−1(M1X1)
2Aj = A∗

iD
−1M1X1Aj , for all i, j ∈ {1, 2};

(e.2) ⇔ R
([

A∗
1M1C

−1
1 0

A∗
2M1C

−1
1 0

])
= R

([
A∗

1X
∗
1C

∗
1 0

A∗
2X

∗
1C

∗
1 0

])
;

(e.3) ⇔ R
([

C1M
∗
1D

−1A1 C1M
∗
1D

−1A2

0 0

])
= R

([
C1X1A1 C1X1A2

0 0

])
.

Recall that we prove the implication (e) =⇒ (a).
Now, if we premultiply (e.1) by Ai, and use summation over i = 1, 2

we yield (M1X1)
2Aj = M1X1Aj , for j = 1, 2. If we now postmultiply last

expression by A∗
j and add them, we have (M1X1)

2 = M1X1. Therefore:

(e.1) =⇒ (M1X1)
2 = M1X1. (2)
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On the other hand, (e.2) is equivalent to:

R(A∗
iM1C

−1
1 ) = R(A∗

iX
∗
1C

∗
1 ), i = 1, 2.

Again, if Ai acts on both sides, and we add them, we obtain:

R(M1C
−1
1 ) = R(X∗

1C
∗
1 ).

Hence, we have
R(M1) = R(X∗

1 ),

which implies M1M
†
1 = X†

1X1. Therefore,

(e.2) ⇒ M1M
†
1 = X†

1X1.

Let us now write (e.3) as:

N
([

A∗
1D

−1M1C
∗
1 0

A∗
2D

−1M1C
∗
1 0

])
= N

([
A∗

1X
∗
1C

∗
1 0

A∗
2X

∗
1C

∗
1 0

])
.

Notice that

N
([

A∗
1D

−1M1C
∗
1 0

A∗
2D

−1M1C
∗
1 0

])
=

{[
u1
u2

]
:

[
A∗

1D
−1M1C

∗
1 0

A∗
2D

−1M1C
∗
1 0

] [
u1
u2

]
=

[
0
0

]}
,

and we conclude:

N
([

A∗
1D

−1M1C
∗
1 0

A∗
2D

−1M1C
∗
1 0

])
=

(
N (A∗

1D
−1M1C

∗
1 )∩N (A∗

2D
−1M1C

∗
1 )
)
⊕N (C∗),

which is further equal (easy to see) to

N (M1C
∗
1 )⊕N (C∗).

With a little effort we find

N
([

A∗
1X

∗
1C

∗
1 0

A∗
2X

∗
1C

∗
1 0

])
=

(
N (A∗

1X
∗
1C

∗
1 ) ∩N (A∗

2X
∗
1C

∗
1 )
)
⊕N (C∗) =

= N (X∗
1C

∗
1 )⊕N (C∗).

Hence, the condition (e.3) implies:

N (M1C
∗
1 ) = N (X∗

1C
∗
1 ),
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which is the same as R(C1M
∗
1 ) = R(C1X1), or R(M∗

1 ) = R(X1), or even

further: M †
1M1 = X1X

†
1.

Since we intend to prove (e) ⇒ (a), it is enough to prove the following
implication:(

(M1X1)
2 = M1X1, M1M

†
1 = X†

1X1, M †
1M1 = X1X

†
1

)
⇒ M †

1 = X1.

The following completes the proof:

M1 = M1X1X
†
1 = M1X1X

†
1X1X

†
1 = M1X1M1M

†
1X

†
1 =

= M1X1M1X1X
†
1M

†
1X

†
1 = M1X1X

†
1M

†
1X

†
1 =

= M1M
†
1X

†
1 = X†

1X1X
†
1 = X†

1.

For the sake of completeness, we remark that operators A∗APQ and
QPCC∗ from part (c) of our Theorem have closed ranges. It immediately
follows from Lemma 1.3 because:

A∗APQ = A∗MM †A = A∗PR(M)A, QPCC∗ = CM †MC∗ = CPR(M)C
∗.
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inverse in rings with involution, Linear Algebra Appl. 426 (2007), 371–
381.

[10] W. Sun and Y. Wei, Inverse order rule for weighted generalized inverse,
SIAM J. Matrix Anal. Appl. 19 (1998), 772–775.

[11] Y. Tian, Using rank formulas to characterize equalities for Moore-
Penrose inverses of matrix products, Appl. Math. Comput. 147 (2004),
581–600.

[12] R. E. Hartwig, The reverse order law revisited, Linear Algebra App. 76
(1986), 241–246

[13] H. J. Werner, When is B−A− a generalized inverse of AB?, Linear
Algebra Appl. 210 (1994), 255–263.

9
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