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Abstract

We prove some identities related to the reverse order law for the
Moore-Penrose inverse of operators on Hilbert spaces, extending some
results from (Y. Tian and S. Cheng, Linear Multilinear Algebra 52
(2004)) and (R. E. Cline, SIAM Review, Vol. 6, No. 1 (1964)) to
infinite dimensional settings.
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1 Introduction

If S is a semigroup with the unit 1, and if a, b ∈ S are invertible, then the
equality (ab)−1 = b−1a−1 is called the reverse order law for the ordinary
inverse. It is well-known that the reverse order law does not hold for various
classes of generalized inverses. Notice that the classical result for the reverse
order law for the Moore-Penrose inverse is proved in [8] for complex matri-
ces, and in [1], [2] and [9] for bounded linear operators on Hilbert spaces
(meaning (AB)† = B†A† if and only if: A†A commutes with BB∗, and A∗A
commutes with BB†). Latter, the corresponding result for elements in a
ring with involution is proved in [10]. A significant number of papers treat
the sufficient or equivalent conditions such that the reverse order law holds
in some sense (see [4], [5], [6], [7], [11]).

The reverse order law has applications in the numerical computation
of the Moore-Penrose inverse of a product of operators. In this paper we
specialize our investigation to certain identities related to the Moore-Penrose
inverse of closed-range bounded linear operators on Hilbert spaces.

Let X and Y be Hilbert spaces, and let L(X,Y ) denote the set of all
linear bounded operators from X to Y . We abbreviate L(X) = L(X,X).
For A ∈ L(X,Y ) we denote by N (A) and R(A), respectively, the null-space
and the range of A. An operator B ∈ L(Y,X) is an inner inverse of A, if
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ABA = A holds. In this case A is inner invertible, or relatively regular. It
is well-known that A is inner invertible if and only if R(A) is closed in Y .
The Moore-Penrose inverse of A ∈ L(X,Y ) is the operator A† ∈ L(Y,X)
which satisfies the Penrose equations

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

The Moore-Penrose inverse of A exists if and only if R(A) is closed in Y ,
and in this case A† is unique.

Let M ∈ L(Y ) and N ∈ L(X) be positive and invertible operators, and
let A ∈ L(X,Y ) have a closed range. Then there exists the unique operator
B ∈ L(Y,X) such that the following equations are satisfied:

ABA = A, BAB = B, (MAB)∗ = MAB, (NBA)∗ = NBA.

Such B is denoted by A†
M,N and it is known as the weighted Moore-Penrose

inverse of A with respect to the weights M and N .
There is one very useful result linking the ordinary and the weighted

Moore-Penrose inverse ([10], Theorem 5):

A†
M,N = N− 1

2 (M
1
2AN− 1

2 )†M
1
2 .

The paper is organized as follows. In the rest of Introduction we formu-
late some auxiliary results. In Section 2 we prove some identities related
to various mixed-type reverse order rules for the Moore-Penrose inverse of
products of Hilbert space operators with closed ranges. We also consider
one classical identity proved by Cline in [3]. Present paper is an extension
of results from [11] and [3] to infinite dimensional settings. Recall that the
results in [11] are obtained mostly using the finite dimensional methods. In
this paper we use operator matrices on arbitrary Hilbert spaces.

Lemma 1.1. Let A ∈ L(X,Y ) have a closed range. Then A has a matrix
decomposition with respect to the orthogonal decompositions of spaces X =
R(A∗)⊕N (A) and Y = R(A)⊕N (A∗):

A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

where A1 is invertible. Moreover,

A† =

[
A−1

1 0
0 0

]
:

[
R(A)
N (A∗)

]
→

[
R(A∗)
N (A)

]
.
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The proof is straightforward.

Lemma 1.2. Let A ∈ L(X,Y ) be a closed range operator and let X =
X1⊕X2 and Y = Y1⊕Y2 be orthogonal decompositions with closed subspaces.
Then A has the following matrix representations:
(a)

A =

[
A1 A2

0 0

]
:

[
X1

X2

]
→

[
R(A)
N (A∗)

]
,

where D = A1A
∗
1 + A2A

∗
2 maps R(A) into itself and D > 0 (D is positive

and invertible). Also,

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
:

[
R(A)
N (A∗)

]
→

[
X1

X2

]
.

(b)

A =

[
A1 0
A2 0

]
:

[
R(A∗)
N (A)

]
→

[
Y1
Y2

]
,

where D = A∗
1A1 + A∗

2A2 maps R(A∗) into itself and D > 0 (D is positive
and invertible). Also,

A† =

[
D−1A∗

1 D−1A∗
2

0 0

]
:

[
Y1
Y2

]
→

[
R(A∗)
N (A)

]
.

Here A1, A2 may be different operators in (a) and (b).

The previous lemma is proved in [6]. The following result is well-known,
and it can be found in [9].

Lemma 1.3. Let A ∈ L(Y, Z) and B ∈ L(X,Y ) have closed ranges. Then
AB has a closed range if and only if A†ABB† has a closed range.

The following lemma appears to be useful later, when we deal with the
weighted Moore-Penrose inverses.

Lemma 1.4 ([6]). Let X and Y be Hilbert spaces, let C ∈ L(X,Y ) have a
closed range, and let D ∈ L(Y ) be Hermitian and invertible. Then R(DC) =
R(C) if and only if DCC† = CC†D.

Lemma 1.5. Let W,X, Y, Z be Hilbert spaces, let P ∈ L(X,Y ), Q ∈ L(Y,Z)
and R ∈ L(W,X) be operators such that P,Q,QP, PR have closed ranges.
If Q and R are invertible, then:

(a) (P (QP )†)† = QPP †;
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(b) ((PR)†P )† = P †PR.

Proof. For (a) we verify that the operators A = P (QP )† and B = QPP †

satisfy the Penrose equations. As a sample we check that ABA = A :

ABA = P (QP )†QPP †P (QP )† = Q−1QP (QP )†QP (QP )† =

= Q−1QP (QP )† = P (QP )† = A.

The remaining equations are checked analogously. Equation (b) is verified
in a similar manner. Notice that from (a) and (b) we conclude that P (QP )†

and (PR)†P have closed ranges.

2 Main results

In this section we prove the results concerning the mixed-type reverse-order
law for the Moore-Penrose inverse of a product of two and multiple Hilbert
space operators with close ranges.

Theorem 2.1. Let X,Y, Z,W be Hilbert spaces, and let A ∈ L(Z,W ),
B ∈ L(Y, Z) and C ∈ L(X,Y ) be the operators, such that A,B,C,AB,ABC
have closed ranges. Then the following hold:

(a) (AB)† = (A†AB)†(ABB†)†;

(b) (AB)† = [(A†)∗B]†(B†A†)∗[A(B†)∗]†;

(c) (ABC)† = (A†ABC)†B(ABCC†)†;

(d) (ABC)† = [(AB)†ABC]†B†[ABC(BC)†]†;

(e) (ABC)† = [(ABB†)†ABC]†B[ABC(B†BC)†]†;

(f) (ABC)† = [(A†)∗BC]†(A†)∗B(C†)∗[AB(C†)∗]†;

(g) (ABC)† = {[A(B†)∗]†ABC}†B∗BB∗{ABC[(B†)∗C]†}†;

(h) (ABC)† = {[(AB)†]∗C}†[(AB)†]∗B†[(BC)†]∗{A[(BC)†]∗}†.

Proof. According to lemmas from the previous section, it is easy to conclude
that operators A,B and C have the following matrix representations with
the respect to the appropriate decompositions of spaces:

A =

[
A1 A2

0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(A)
N (A∗)

]
,
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where D = A1A
∗
1 +A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =

[
A∗

1D
−1 0

A∗
2D

−1 0

]
:

[
R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

]
.

Moreover,

B =

[
B1 0
0 0

]
:

[
R(B∗)
N (B)

]
→

[
R(B)
N (B∗)

]
,

where B1 is invertible. Then

B† =

[
B−1

1 0
0 0

]
:

[
R(B)
N (B∗)

]
→

[
R(B∗)
N (B)

]
.

Finally,

C =

[
C1 0
C2 0

]
:

[
R(C∗)
N (C)

]
→

[
R(B∗)
N (B)

]
,

where E = C∗
1C1 + C∗

2C2 is invertible and positive in L(R(C∗)). Then

C† =

[
E−1C∗

1 E−1C∗
2

0 0

]
:

[
R(B∗)
N (B)

]
→

[
R(C∗)
N (C)

]
.

(a): Notice that R(A†AB) = A†A(R(B)) = A†A(R(BB†)) = R(A†ABB†)
is closed according to Lemma 1.3. Also, R(B∗A∗) is closed. Again, from
Lemma 1.3 and R((ABB†)∗) = R((B∗)†B∗A∗) = R((B∗)†B∗A∗(A∗)†) =
R((A†ABB†)∗), it follows thatR(ABB†) is closed. Now, using matrix forms
of A and B, we have:

ABB† =

[
A1 0
0 0

]
, (ABB†)† =

[
A†

1 0
0 0

]
; A†AB =

[
A∗

1D
−1A1B1 0

A∗
2D

−1A1B1 0

]
,

(A†AB)† = ((A†AB)∗(A†AB))†(A†AB)∗ =

=

[
(B∗

1A
∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A1 (B∗
1A

∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A2

0 0

]
.

Therefore, (AB)† = (A†AB)†(ABB†)† is equivalent to

(A1B1)
† = (B∗

1A
∗
1D

−1A1B1)
†B∗

1A
∗
1D

−1A1A
†
1,

which is further equivalent to

(A1B1)
† = (D−1/2A1B1)

†D−1/2A1A
†
1.
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The last equality follows by checking Penrose equations; as a sample we
check the second one:

(A1B1)
†A1B1(A1B1)

† =

= (D−1/2A1B1)
†D−1/2A1A

†
1A1B1(D

−1/2A1B1)
†D−1/2A1A

†
1 =

= (D−1/2A1B1)
†D−1/2A1A

†
1 = (A1B1)

†.

(b): Notice that R(((A†)∗B)∗) = R(B∗A†) = R(B∗A∗) = R((AB)∗) is
closed, so R((A†)∗B) is closed. Also, R(A(B†)∗) = R(A((B∗B)†B∗)∗) =
R(AB(B∗B)†) = AB(R((B∗B)†)) = AB(R(B∗)) = A(R(B)) = R(AB)
is closed. Again, using matrix forms of A and B, we have that (AB)† =
[(A†)∗B]†(B†A†)∗[A(B†)∗]† is equivalent to the following:

(A1B1)
† = (D−1A1B1)

†D−1A1(B
−1
1 )∗(A1(B

−1
1 )∗)†.

The last equality can easily be proved by checking the Penrose equations.
(c): Notice that R((A†ABC)∗) = (BC)∗(R(A†A)) = (BC)∗(R(A∗)) =
R((ABC)∗) is closed. Also, R(ABCC†) = AB(R(CC†) = AB(R(C)) =
R(ABC) is closed. Now we show that (ABC)† = (A†ABC)†B(ABCC†)†.
First we compute factors appearing on the right side. Denote:

T = A†ABC =

(
A∗

1D
−1A1B1C1 0

A∗
2D

−1A1B1C1 0

)
.

Now,

T † = (T ∗T )†T ∗ =

(
XA1 XA2

0 0

)
,

where
X = (C∗

1B
∗
1A

∗
1D

−1A1B1C1)
†C∗

1B
∗
1A

∗
1D

−1.

Let S be the following:

S = ABCC† =

(
A1B1C1E

−1C∗
1 A1B1C1E

−1C∗
2

0 0

)
.

It is easy to find:

S† = S∗(SS∗)† =

(
C1E

−1C∗
1B

∗
1A

∗
1(A1B1C1E

−1C∗
1B

∗
1A

∗
1)

† 0
C2E

−1C∗
1B

∗
1A

∗
1(A1B1C1E

−1C∗
1B

∗
1A

∗
1)

† 0

)
.
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Therefore, the statement (c) is equivalent to:

(A1B1C1)
† = (C∗

1B
∗
1A

∗
1D

−1A1B1C1)
†C∗

1B
∗
1A

∗
1D

−1A1 ×
× B1C1E

−1C∗
1B

∗
1A

∗
1(A1B1C1E

−1C∗
1B

∗
1A

∗
1)

†,

i.e.

(A1B1C1)
† = (D−1/2A1B1C1)

†D−1/2A1B1C1E
−1/2(A1B1C1E

−1/2)†.

This formula can be proved on analogous way as in (a).
(f): Notice that R(((A†)∗BC)∗) = (BC)∗(R(A†)) = (BC)∗(R(A∗)) =
R((ABC)∗) is closed, so R((A†)∗BC) is closed. Also, R(AB(C†)∗) =
AB(R((C†)∗)) = AB(R(C)) = R(ABC) is closed. An easy computation
shows that

(ABC)† = [(A†)∗BC]†(A†)∗B(C†)∗[AB(C†)∗]†

is equivalent to:

(A1B1C1)
† = (D−1A1B1C1)

†D−1A1B1C1E
−1(A1B1C1E

−1)†.

This equality follows a standard argument.

So far we have proved four identities. Now we use (c), to show that (d),
(e) and (g) are satisfied. Also, we use (f) to prove that (h) holds.

(d): An easy computation shows that (d) is equivalent to the following:

(A1B1C1)
† = [(A1B1)

†A1B1C1]
†B−1

1 [A1B1C1(B1C1)
†]†.

If we put: A′ = A1B1, B′ = B−1
1 , C ′ = B1C1, then (d) becomes already

proven identity (c) for operators A′, B′, C ′. For the completeness, notice
that the following operator ranges are closed:

R(A′) = R(AB), R(B′) = R(B∗), R(C ′) = R(BC),

R(A′B′) = R(A), R(B′C ′) = R(C), R(A′B′C ′) = R(ABC).

(e): An easy computation shows that (e) is equivalent to the following:

(A1B1C1)
† = [A†

1A1B1C1]
†B1[A1B1C1C

†
1]

†.

The last identity is proved in (c).
(g): An easy computation shows that

(ABC)† = {[A(B†)∗]†ABC}†B∗BB∗{ABC[(B†)∗C]†}†
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is equivalent to the following:

(A1B1C1)
† = {[A1(B

∗
1)

−1]†A1B1C1}†B∗
1B1B

∗
1{A1B1C1[(B

∗
1)

−1C1]
†}†.

We put: A′′ := A1(B
∗
1)

−1, B′′ := B∗
1B1B

∗
1 , C ′′ := (B∗

1)
−1C1. Now we have

that the following operator ranges are closed:

R(A′′) = A1(R((B∗
1)

−1)) = R(AB), R(B′′) = R(B∗),

R(C ′′) = R(BC), R(A′′B′′) = R(A1B1B
∗
1) = R(AB),

R((B′′C ′′)∗) = R((B∗BC)∗) = C∗(R(B∗B)) = R((BC)∗),

R(A′′B′′C ′′) = R(ABC).

So, conditions of the identity (c) are satisfied. Hence, (g) follows from (c).
(h): An easy computation shows that (h) is equivalent to the following:

(A1B1C1)
† = {[(A1B1)

†]∗C1}†[(A1B1)
†]∗B−1

1 [(B1C1)
†]∗{A1[(B1C1)

†]∗}†.

If we put: A′′′ := A1B1, B′′′ := B−1
1 , C ′′′ := B1C1, then (h) becomes

already proven identity (f). For the completeness, notice that the following
operator ranges are closed:

R(A′′′) = R(AB), R(B′′′) = R(B∗), R(C ′′′) = R(BC),

R(A′′′B′′′) = R(A), R(B′′′C ′′′) = R(C), R(A′′′B′′′C ′′′) = R(ABC).

Remark 2.1. The existence of the Moore-Penrose inverses of various oper-
ators in the previous theorem, follows from the closedness of operator ranges
R(A),R(B),R(C),R(AB),R(BC),R(ABC). This fact is important, and
it is explained in details. The same is true for the rest of theorems.

The next two corollaries are immediate consequences of Theorem 2.1.(a).

Corollary 2.1. Let X,Y, Z be Hilbert spaces, and let A ∈ L(Y, Z), B ∈
L(X,Y ) be operators, such that A,B,AB have closed ranges. If A†AB = B
and ABB† = A, then (AB)† = B†A†.

Corollary 2.2. Let P and Q be two orthogonal projectors, i.e. P 2 = P =
P ∗ and Q2 = Q = Q∗. Then (PQ)† is an idempotent.

Moreover, all other corollaries from [11] are also true with some slight
changes in their formulations.

If U, V are operators acting on the same space, then [U, V ] = UV − V U
is the usual notation for their commutator.
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Theorem 2.2. Let X,Y, Z be Hilbert spaces, and let A ∈ L(Y, Z), B ∈
L(X,Y ) be operators, such that A,B,AB have closed ranges. Let M ∈ L(Z)
and N ∈ L(X) be positive and invertible operators. Then the weighted
Moore-Penrose inverse of AB with respect to M and N satisfies the following
two identities:

(a) (AB)†M,N = (A†AB)†I,N (ABB†)†M,I ;

(b) (AB)†M,N = [(A†
M,I)

∗B]†
M−1,N

(B†
I,NA†

M,I)
∗[A(B†

I,N )∗]†
M,N−1 .

Proof. By using well-known relation A†
M,N = N− 1

2 (M
1
2AN− 1

2 )†M
1
2 , it is

easy to obtain that (a) is equivalent to:

(M
1
2ABN− 1

2 )† = (A†ABN− 1
2 )†(M

1
2ABB†)†. (1)

Let us denote: Ã = M
1
2A, B̃ = BN− 1

2 . We prove the following:

(M− 1
2 Ã)† = Ã†M

1
2 .

The last statement holds if and only if M− 1
2 ÃÃ†M

1
2 is Hermitian, which

is equivalent to [M, ÃÃ†] = 0. Using Lemma 1.4, the last expression is
equivalent to R(MÃ) = R(Ã), which is valid, because of the invertibility of
the Hermitian operator M . Analogously we prove that:

(B̃N
1
2 )† = N− 1

2 B̃†.

Now, (1) becomes:
(ÃB̃)† = (Ã†ÃB̃)†(ÃB̃B̃†)†,

which is already proven identity in Theorem 2.1.(a).
Analogously, we prove the statement (b).

Theorem 2.3. Let X,Y, Z,W be Hilbert spaces, and let A ∈ L(Z,W ),
B ∈ L(Y, Z), C ∈ L(X,Y ) be operators, such that A,B,C,AB,BC,ABC
have closed ranges. Let M ∈ L(W ) and N ∈ L(X) be positive and invertible
operators. Then the weighted Moore-Penrose inverse of ABC with respect
to M and N satisfies the following identities:

(a) (ABC)†M,N = (A†ABC)†I,NB(ABCC†)†M,I ;

(b) (ABC)†M,N = ((AB)†ABC)†I,NB†(ABC(BC)†)†M,I ;

(c) (ABC)†M,N = ((ABB†)†ABC)†I,NB(ABC(B†BC)†)†M,I ;
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(d) (ABC)†M,N = [(A†
M,I)

∗BC]†
M−1,N

(A†
M,I)

∗B(C†
I,N )∗[AB(C†

I,N )∗]†
M,N−1 ;

(e) (ABC)†M,N = {[A(B†)∗]†ABC}†I,NB∗BB∗{ABC[(B†)∗C]†}†M,I ;

(f) (ABC)†M,N = {[(AB)†M,I ]
∗C}†

M−1,N
[(AB)†M,I ]

∗B†[(BC)†I,N ]∗ ×
× {A[(BC)†I,N ]∗}†

M,N−1 .

Proof. The proof in all cases is similar to the proof of Theorem 2.2. First,
we transform all weighted Moore-Penrose inverses to the ordinary ones, then
we put: Ã = M

1
2A, B̃ = B, C̃ = CN− 1

2 , and apply Lemma 1.4. After that,
all cases reduce to already-proven identities from Theorem 2.1.

Some more general identities can also be derived from previous theorems.

Theorem 2.4. Let X,Y, Z be Hilbert spaces, and let A ∈ L(Y, Z), B ∈
L(X,Y ) be operators, such that A,B,AB have closed ranges. Let M ∈
L(Z), N ∈ L(X) and P ∈ L(Y ) be positive and invertible operators. Then
the weighted Moore-Penrose inverse of AB with respect to M and N satisfies
the following identity:

(AB)†M,N = (A†
I,PAB)†P,N (ABB†

P,I)
†
M,P .

Proof. The proof is similar to the proof of Theorem 2.2. First, we transform
all weighted Moore-Penrose inverses to the ordinary ones, which gives:

(M
1
2ABN− 1

2 )† = [(AP− 1
2 )†ABN− 1

2 ]†[M
1
2AB(P

1
2B)†]†.

If we put: Ã = M
1
2AP− 1

2 , B̃ = P
1
2BN− 1

2 , and then apply Lemma 1.4, this
statement reduces to the already-proven identity from Theorem 2.1.(a).

The following theorem can be proven similarly.

Theorem 2.5. Let X,Y, Z,W be Hilbert spaces, and let A ∈ L(Z,W ), B ∈
L(Y,Z), C ∈ L(X,Y ) be operators, such that A,B,C,AB,BC,ABC have
closed ranges. Let M ∈ L(W ), N ∈ L(X), P ∈ L(Y ), Q ∈ L(Z) be positive
and invertible operators. Then the weighted Moore-Penrose inverse of ABC
with respect to M and N satisfies the following identities:

(a) (ABC)†M,N = (A†
I,PABC)†P,NB(ABCC†

Q,I)
†
M,Q;

(b) (ABC)†M,N = ((AB)†I,QABC)†Q,NB†
P,Q(ABC(BC)†P,I)

†
M,P ;

(c) (ABC)†M,N = ((ABB†
P,I)

†
M,PABC)†P,NB(ABC(B†

I,QBC)†Q,N )†M,Q.
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Now, we return to one classical matrix identity from [3]. Our next the-
orem shows that the result from [3] holds for bounded linear Hilbert space
operators.

Theorem 2.6. Let X,Y, Z be Hilbert spaces, let A ∈ L(Y, Z), B ∈ L(X,Y )
be operators such that A,B,AB have closed ranges. Then:

(AB)† = (A†AB)†(AB(A†AB)†)†.

Proof. Using a method described in Theorem 2.1 (and decompositions and
matrix forms forA andB) we conclude that (AB)† = (A†AB)†(AB(A†AB)†)†

is equivalent to the following (D is positive and invertible as in Lemma 1.2):

(A1B1)
† = (D− 1

2A1B1)
†(A1B1(D

− 1
2A1B1)

†)†,

which is, by Lemma 1.5, further equivalent to:

(A1B1)
† = (D− 1

2A1B1)
†D− 1

2A1B1(A1B1)
†.

We check directly all four Penrose equations, so we have the proof.

3 Conclusion remarks

We proved several identities related to the reverse order law for the Moore-
Penrose inverse of bounded linear operators on Hilbert spaces. The assump-
tion of closed-range operator is essential for the existence of the Moore-
Penrose inverse. We used operator matrices which follow naturally from
orthogonal decompositions of Hilbert spaces. This method seems to be ef-
fective in investigating the infinite dimensional case. On the other hand,
corresponding results for complex matrices were proved in [3] and [11] us-
ing finite dimensional methods, mostly properties of the rank of a complex
matrix. It will be challenging to examine whether similar/analogous state-
ments hold for some {i, j, k}−inverses ({i, j, k} ⊂ {1, 2, 3, 4}) instead of the
Moore-Penrose inverses.

Acknowledgement: We are grateful to the referee for valuable com-
ments and suggestions which improve readability of the paper.

References

[1] R. H. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math.
25 (1973), 489–495.

11



[2] R. H. Bouldin, Generalized inverses and factorizations, Recent applica-
tions of generalized inverses, Pitman Ser. Res. Notes in Math. No. 66
(1982), 233-248.

[3] R. E. Cline, Note on the generalized inverse of the product of matrices,
SIAM Review, Vol. 6, No. 1 (1964), 57-58.
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[7] D. S. Djordjević and J. J. Koliha, Characterizations of Hermitian, nor-
mal and EP operators, Filomat 21:1 (2007), 39-54.

[8] T. N. E. Greville, Note on the generalized inverse of a matrix product,
SIAM Rev. 8 (1966), 518–521.

[9] S. Izumino, The product of operators with closed range and an extension
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