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Abstract

In this paper we investigate perturbation of left (right) Fredholm,
Weyl and Browder operators by polynomially Riesz operators. We
show how Baklouti’s idea of ”communication” enhances the perturba-
tion properties of polynomially Riesz operators.
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1 Introduction

Let C be the set of all complex numbers and let X denote an infinite dimen-
sional complex Banach space. We use B(X) to denote the set of all linear
bounded operators on X and K(X) to denote the set of all compact oper-
ators on X. For A ∈ B(X) we use N(A) and R(A), respectively, to denote
the null-space and the range of A. Let α(A) = dimN(A) if N(A) is finite
dimensional, and let α(A) = ∞ if N(A) is infinite dimensional. Similarly, let
β(A) = dimX/R(A) = codimR(A) if X/R(A) is finite dimensional, and let
β(A) = ∞ if X/R(A) is infinite dimensional. Sets of upper and lower semi-
Fredholm operators, respectively, are defined as Φ+(X) = {A ∈ B(X) :
α(A) < ∞ and R(A) is closed}, and Φ−(X) = {A ∈ B(X) : β(A) < ∞}.
Operators in Φ±(X) = Φ+(X)∪Φ−(X) are called semi-Fredholm operators.
For such operators the index is defined by i(A) = α(A)− β(A). The set of
Fredholm operators is defined as Φ(X) = Φ+(X) ∩ Φ−(X).

1The authors are supported by the Ministry of Education and Science, Republic of
Serbia, grant no. 174007.
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The perturbation class of the set of Fredholm operators, denoted by
Ptrb (Φ(X)), is the set

Ptrb (Φ(X)) = {P ∈ B(X) : P +A ∈ Φ(X) for every A ∈ Φ(X)}.

An operator A ∈ B(X) is relatively regular (or g-invertible) if there exists
B ∈ B(X) such that ABA = A. It is well-known that A is relatively regular
if and only if R(A) and N(A) are closed and complemented subspaces of X.
We say that an operator A ∈ B(X) is left Fredholm, and write A ∈ Φl(X),
if A is a relatively regular upper semi-Fredholm operator, while we say that
A is right Fredholm, and write A ∈ Φr(X), if A is a relatively regular lower
semi-Fredholm operator. In other words, A is left Fredholm if R(A) is a
closed and complemented subspace of X and α(A) < ∞, while A is right
Fredholm if N(A) is a complemented subspace of X and β(A)<∞. In [15]
(p. 160) left (right) Fredholm operators are called left (right) essentially
invertible. An operator A ∈ B(X) is left (right) Weyl if A is left (right)
Fredholm with i(A) ≤ 0 (i(A) ≥ 0). If A ∈ Φ(X) and i(A) = 0, then A is
called Weyl.

The ascent of A ∈ B(X), denoted by asc(A), is the smallest n ∈ N
such that N(An) = N(An+1). If such n does not exist, then asc(A) = ∞.
The descent of A, denoted by dsc(A), is the smallest n ∈ N such that
R(An) = R(An+1). If such n does not exist, then dsc(A) = ∞. An operator
A ∈ B(X) is Browder if it is Fredholm, asc(A) < ∞ and dsc(A) < ∞. An
operator A ∈ B(X) is left Browder if it is left Fredholm of finite ascent, and
A is right Browder if it is right Fredholm of finite descent [18]. It is well
known that every Browder operator is Weyl ([12], Proposition 38.6(a)).

The left and right Fredholm spectrum of A ∈ B(X), respectively, are
defined by:

σleft
f (A) = {λ ∈ C : A− λ /∈ Φl(X)},

σright
f (A) = {λ ∈ C : A− λ /∈ Φr(X)}.

The Fredholm spectrum of A ∈ B(X) is given by:

σf (A) = {λ ∈ C : A− λ /∈ Φ(X)} = σleft
f (A) ∪ σright

f (A) (1.1)

and the Browder spectrum of A is defined by:

σb(A) = {λ ∈ C : A− λ is not Browder}.

An operator A ∈ B(X) is Riesz, A ∈ R(X), if {λ ∈ C : A−λ ∈ Φ(X)} =
C\{0}, i.e. σf (A) = {0}. Immediately from definitions it follows (see also
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[6], Theorem 5.5.9 and Lemma 5.6.1)

Ptrb (Φ(X)) ⊂ R(X). (1.2)

In [3], Definition 2.1 (and earlier in [1], Definition 3.1) the concept of
communicating operators is introduced. Precisely, let T , S ∈ B(X), and let
there exists a nonzero complex polynomial p such that p(T ) ∈ Ptrb (Φ(X));
then there exists a unique nonzero complex polynomial mT with leading
coefficient 1 and of the minimal degree such that mT (T ) ∈ Ptrb(Φ(X)). It is
said that T and S communicate if there exists a continuous map φ : [0, 1] →
C such that φ(0) = 0, φ(1) = 1 and for all λ zero of mT , φ(t)λ does not
belong to the Fredholm spectrum of S. Baklouti proved ([3], Theorem 2.2)
that if T, S ∈ B(X) communicate and TS−TS ∈ Ptrb (Φ(X)), then T −S
is Fredholm with the same index as S. Moreover, if T and S commute and
communicate, then asc(S) < ∞ implies asc(T−S) < ∞, as well dsc(S) < ∞
implies dsc(T − S) < ∞ ([3] Theorem 2.4).

In this paper we continue our discussion [19] of the perturbation of (one
sided) Fredholm, Weyl and Browder elements by “polynomially Riesz” ele-
ments of a Banach algebra, but we focus on the Banach algebra B(X). In
Definition 3.1 we generalize Baklouti’s concept of communicating operators,
among others supposing that T belongs to the larger set of polynomially
Riesz operators, i.e. that there exists a nonzero complex polynomial p such
that p(T ) is a Riesz operator (then also there exists a unique nonzero com-
plex polynomial πT with leading coefficient 1 and of the minimal degree such
that πT (T ) ∈ R(X)). Precisely, if T is polynomially Riesz and if there exists
a continuous map φ : [0, 1] → C such that φ(0) = 0, φ(1) = 1 and for all
λ zero of πT , φ(t)λ does not belong to the left (right) Fredholm spectrum
of S, then we shall say that S is in left (right) communication with T . We
consider perturbations of left (right) Fredholm, Weyl and Browder operators
by polynomially Riesz operators and pay particular attention to the advan-
tage to be gained when perturbed operator is “in left (right) communication
with” perturbing operator. Our main results are Theorem 3.2, for Fredholm
and Weyl operators, and Theorem 3.4, for Browder operators, which extend
(the second part of) Theorem 2.2 and Theorem 2.4 in [3], respectively. In
Theorem 3.2 we show that if A, B ∈ B(X), AB − BA ∈ Ptrb(Φ(X)), B
is polynomially Riesz and A is in left (right) communication with B, then
A − B is left (right) Fredholm with the same index as A. In Theorem 3.4
we show that if A and B commute, B is polynomially Riesz, A is left (right)
Browder and A is in left (right) communication with B, then A− B is left
(right) Browder.
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This paper is divided into four sections. In the next section we recall
some preliminary definitions and results from [19] concerning polynomially
Riesz elements relative to a Banach algebra homomorphism and give The-
orem 2.3 which generalizes the first part of Theorem 2.2 in [3]. Section
3 is devoted to perturbations of left (right) Fredholm, Weyl and Browder
operators by polynomially Riesz operators and contains our main results
already mentioned above. Throughout Section 4 we apply the results ob-
tained in Section 3 in order to get results about perturbations of some shifts
by polynomially Riesz operators.

2 Polynomially Riesz elements relative to
a Banach algebra homomorphism

Let A and B be complex Banach algebras, with identities denoted in both
cases with 1, and invertible groups A−1 and B−1, respectively. The semi-
group of left (right) invertible elements in A is denoted by A−1

left (A
−1
right).

The left and right spectrum of a ∈ A, respectively, are defined by

σleft(a) ≡ σleft
A (a) = {λ ∈ C : a− λ ̸∈ A−1

left} ,

σright(a) ≡ σright
A (a) = {λ ∈ C : a− λ ̸∈ A−1

right} .

The spectrum of a ∈ A is

σ(a) ≡ σA(a) = σleft(a)∪σ
right(a) .

The radical of A is the set

Rad(A) = {a ∈ A : 1−Aa ⊂ A−1} = {a ∈ A : 1− aA ⊂ A−1}.

The set of quasinilpotents of A is

QN(A) = {a ∈ A : σ(a) = {0}} = {a ∈ A : 1− Ca ⊂ A−1}.

It is well known that

a, b ∈ QN(A), ab = ba =⇒ a+ b ∈ QN(A), (2.1)

a ∈ A, b ∈ QN(A), ab = ba =⇒ ab ∈ QN(A). (2.2)

A map T : A → B is a homomorphism if T is linear and satisfies T (xy) =
TxTy, x, y ∈ A, and T1 = 1.
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An element a ∈ A is left T Fredholm if it has a left invertible image,

a ∈ T−1(B−1
left).

Right and two-sided T Fredholm elements are defined analogously.
An element a ∈ A is T Browder if:

a = c+ d with c ∈ A−1, Td = 0, cd = dc.

The classes of two-sided T Fredholm and T Browder elements were in-
troduced by R. Harte [10]. Fredholm theory relative to arbitrary Banach
algebra homomorphism is recently discussed in [3], [14], [20], [19].

The induced left, right and two-sided T Fredholm spectra are given by

σleft
T (a) = σleft

B (Ta) ; σright
T (a) = σright

B (Ta);

σT (a) = σB(Ta).

The T Browder spectrum of a is given by

βT (a) = {λ ∈ C : a− λ is not T Browder}.

We shall describe d ∈ A as T Riesz if

T (d) ∈ QN(B) .

We shall write Poly = C[z] for the algebra of complex polynomials.
We recall the following result ([19], Theorem 11.2):

Theorem 2.1. If a ∈ A and d ∈ A, if H(B) is one of B−1
left, B−1

right and

B−1, and if p ∈ Poly, then

ad− da ∈ T−1Rad(B) and p(d) ∈ T−1QN(B) ,

implies
p(a) ∈ T−1H(B) =⇒ a− d ∈ T−1H(B) .

We shall say that S ⊆ A is a commutative ideal if

S +comm S ⊆ S , A ·comm S ⊆ S .

where we write

H +comm K = {c+ d : (c, d) ∈ H ×K , cd = dc}
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for the commuting sum and

H ·comm K = {c · d : (c, d) ∈ H ×K , cd = dc}

for the commuting product of subsets H,K ⊆ A .
Clearly, every left or right ideal is a commutative ideal. From (2.1) and

(2.2) it follows that the set QN(A) is a commutative ideal, as well the set
T−1QN(B).

If S ⊆ A is an arbitrary set we shall write that a ∈ Poly−1(S) if there
exists a nonzero complex polynomial p(z) such that p(a) ∈ S. If S ⊆ A is a
commutative ideal, the set

PS
a = {p ∈ Poly : p(a) ∈ S}

of polynomials p for which p(a) ∈ S is an ideal of the algebra Poly. Since
the natural numbers are well ordered there exists a unique polynomial p of
minimal degree with leading coefficient 1 contained in PS

a which we call the
minimal polynomial of a; we shall write p = πa ≡ πS

a . Then PS
a is generated

by p = πa, i.e. PS
a = πa · Poly. Hence, for every q ∈ PS

a , π
−1
a (0) ⊂ q−1(0).

We say that the homomorphism T has the strong Riesz property if

∀ a ∈ A : ∂σ(a) ⊂ σ(Ta) ∪ isoσ(a),

where isoσ(a) denotes the set of the isolated points of σ(a).
We recall the following result proved in [19] (see [19], Theorem 11.1):

Theorem 2.2. Let T : A → B be a homomorphism and let
a ∈ Poly−1T−1QN(B). Then

σT (a) = π−1
a (0),

where πa is the minimal polynomial of a.
If in particular T has the strong Riesz property, then

σT (a) = βT (a) = π−1
a (0).

From [19], Theorem 10.1 it follows that if a is left (right) T Fredholm,
d ∈ T−1QN(B) and ad − da ∈ T−1Rad(B), then a − d is left (right) T
Fredholm.

The following theorem shows that it holds more generally.
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Theorem 2.3. Let T : A → B be a homomorphism and let a, d ∈ A
such that ad − da ∈ T−1Rad(B), d ∈ Poly−1T−1QN(B) with the minimal
polynomial πd. Then

π−1
d (0) ∩ σleft

T (a) = ∅ =⇒ a− d is left Fredholm,

and
π−1
d (0) ∩ σright

T (a) = ∅ =⇒ a− d is right Fredholm.

Proof. Suppose that ad − da ∈ T−1Rad(B), d ∈ Poly−1T−1QN(B) and

suppose that any zero of the polynomial πd does not belong to σleft
T (a).

Then 0 /∈ πd(σ
left
T (a)) = σleft

T (πd(a)) and hence πd(a) is left T Fredholm.
From Theorem 2.1 it follows that a− d is left T Fredholm.

3 Polynomially Riesz operators

The Calkin algebra over X is the quotient algebra C(X) = B(X)/K(X),
and let Π : B(X) → C(X) denote the natural homomorphism. Let us re-
mark that the Fredholm operators are the Fredholm elements relative to the
homomorphism Π ([6], Theorem 3.2.8), the left (right) Fredholm operators
are the left (right) Fredholm elements relative to Π ([5], Chapter 5.1, The-
orem 5). Also, the Browder operators are the Browder elements relative to
the homomorphism Π ([6], Theorem 1.4.5; [15], Theorem 20.21; [2], Theorem
3.48).

Since Π is an onto homomorphism, then Π−1(Rad(C(X))) = Ptrb (Φ(X))
([6], Theorem 5.5.9). Recall that A ∈ R(X) if and only if Π(A) is quasinilpo-
tent in C(X) ([2], p. 179 and 180). In other words the Riesz opera-
tors are the Riesz elements relative to the homomorphism Π, i.e. R(X) =
Π−1(QN(C(X))).

From the punctured neighbourhood theorem ([15], Theorem 18.7, [11],
Theorem 7.8.5) for A ∈ B(X) it follows that

∂σ(A) ⊂ σf (A) ∪ isoσ(A), (3.1)

i.e. the homomorphism Π has the strong Riesz property.
Riesz operator perturbations were studied by Rakočević in [16] and re-

cently in [18]. Baklouti [3] investigated perturbation by operators that be-
long to Poly−1Ptrb (Φ(X)). In this section we study polynomially Riesz
operator perturbations.

7



Theorem 3.1. Let A, B ∈ B(X) such that AB − BA ∈ Ptrb (Φ(X)) and
B ∈ Poly−1R(X) with the minimal polynomial πB. Then

π−1
B (0) ∩ σleft

f (A) = ∅ =⇒ A−B is left Fredholm,

and
π−1
B (0) ∩ σright

f (A) = ∅ =⇒ A−B is right Fredholm.

Proof. Theorem 2.3, applied to the Calkin homomorphism Π : B(X) →
C(X).

Because of (1.2) and (1.1), we remark that Theorem 3.1 is an improve-
ment of the first part of Theorem 2.2 in [3].

Now we define when an operator A ∈ B(X) is in (left, right) commu-
nication with another operator B ∈ B(X). This is a generalization of the
concept of communicating operators introduced in [1] (Definition 3.1) and
considered also in [3] (Definition 2.1).

Definition 3.1. Let A, B ∈ B(X) and B ∈ Poly−1R(X) with the minimal
polynomial πB. If there is a continuous map φ : [0, 1] → C for which

φ(0) = 0, φ(1) = 1

and
φ([0, 1])π−1

B (0) ∩ σf (A) = ∅, (3.2)

we shall say that A is in communication with B.
If (3.2) holds for σleft

f (A) (σright
f (A)) instead of σf (A), then we shall say

that A is in left (right) communication with B.

Clearly, if A is in communication with B, then A is in left and right
communication with B.

We remark that this is in some sense a curious notation: we are insisting
that B is special, namely polynomially Riesz, and also that A is (left, right)
Fredholm.

Notice that if B ∈ R(X) and A is left Fredholm, then πB(z) = z, 0 /∈
σleft
f (A) and hence A is in left communication with B .

We remark that if B ∈ Poly−1R(X) with the minimal polynomial πB
and σleft

f (A) is a finite set such that σleft
f (A) ∩ ({0} ∪ π−1

B (0)) = ∅, then A
is in left communication with B.

Therefore, if p(B) ∈ R(X) for some polynomial p, A = λI with λ ̸= 0
and p(λ) ̸= 0, then σf (A) = {λ}, and so A is in communication with B.

The following theorem is an improvement of the second part of Theorem
2.2 in [3].
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Theorem 3.2. For A, B ∈ B(X), if AB − BA ∈ Ptrb (Φ(X)), B ∈
Poly−1R(X) and if A is in left (right) communication with B, then A − B
is left (right) Fredholm and i(A−B) = i(A).

Proof. Suppose that AB − BA ∈ Ptrb (Φ(X)), B ∈ Poly−1R(X) and A is
in left communication with B. Let πB(z) = Πn

i=1(z − λi) be the minimal
polynomial of B. Then there exists a continuous map φ : [0, 1] → C such

that φ(0) = 0, φ(1) = 1 and for all i = 1, . . . , n, φ(t)λi /∈ σleft
f (A) for every

t ∈ [0, 1]. For t ∈ [0, 1] and pt(z) = Πn
i=1(z − φ(t)λi) we have pt(φ(t)B) =

(φ(t))nπB(B) ∈ R(X) and hence φ(t)B ∈ Poly−1R(X). Since any zero

of the polynomial pt does not belong to σleft
f (A) and since A(φ(t)B) −

(φ(t)B)A ∈ Ptrb (Φ(X)), by Theorem 3.1 we obtain that A − φ(t)B is left
Fredholm for every t ∈ [0, 1]. Thus A − B is left Fredholm and from the
local constancy of the index we get i(A−B) = i(A).

From Theorem 8 in [18] it follows that for A, B ∈ B(X), if A is left
(right) Weyl, B is Riesz and AB − BA ∈ Ptrb (Φ(X)), then A − B is left
(right) Weyl. The following theorem is an extension of this result.

Theorem 3.3. For A, B ∈ B(X), let AB − BA ∈ Ptrb (Φ(X)), B ∈
Poly−1R(X) and let A be in left (right) communication with B. If A is left
(right) Weyl, then A−B is left (right) Weyl and i(A−B) = i(A).

Proof. From Theorem 3.2.

For A ∈ B(X) set N∞(A) = ∪nN(An) for the hyper-kernel of A and
R∞(A) = ∩nR(An) for the hyper-range of A. We shall write N

∞
(A) for the

closure of the hyper-kernel of A.

Theorem 3.4. Let A, B ∈ B(X) such that AB = BA and B ∈ Poly−1R(X).

(3.4.1) If A is in left communication with B and asc(A) < ∞, then A and
A−B are left Browder and i(A−B) = i(A).

(3.4.2) If A is in right communication with B and dsc(A) < ∞, then A and
A−B are right Browder and i(A−B) = i(A).

Proof. (3.4.1): Let AB = BA, asc(A) < ∞, B ∈ Poly−1R(X) and let
A be in left communication with B. Then there exists a continuous map
φ : [0, 1] → C such that φ(0) = 0, φ(1) = 1 and for all λ zero of πB, φ(t)λ /∈
σleft
f (A) for every t ∈ [0, 1]. By the proof of Theorem 3.2, A− φ(t)B is left

Fredholm for every t ∈ [0, 1] and i(A−B) = i(A). Since A and B commute
and φ : [0, 1] → C is a continuous map, from [8], Theorem 3 it follows that
the function t → N

∞
(A − φ(t)B) ∩ R∞(A − φ(t)B) is a locally constant
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function on the set [0, 1] and therefore, this function is constant on [0, 1].
As asc(A) < ∞, from [17], Proposition 1.6(i) it follows N

∞
(A) ∩ R∞(A) =

N∞(A) ∩ R∞(A) = {0} and hence N
∞
(A − B) ∩ R∞(A − B) = {0}. It

implies N∞(A − B) ∩ R∞(A − B) = {0}, and again by [17], Proposition
1.6(i), we get asc(A−B) < ∞. Thus, A and A−B are left Browder.

(3.4.2): Suppose that AB = BA, dsc(A) < ∞, B ∈ Poly−1R(X) and A
is in right communication with B. Then A and A−B are right Fredholm by
Theorem 3.2, A′B′ = B′A′, asc(A′) = dsc(A) < ∞ and B′ ∈ Poly−1R(X ′)

by [2], Corollary 3.114. Since σleft
f (A′) ⊂ σright

f (A), A′ is in left commu-
nication with B′. From (3.4.1) we get dsc(A − B) = asc(A′ − B′) < ∞.
Therefore, A and A−B are right Browder.

Baklouti proved ([3] Theorem 2.4) that if T, S ∈ B(X) commute, T ∈
Poly−1Ptrb (Φ(X)), and if S is in communication with T , then asc(S) < ∞
implies asc(T − S) < ∞, as well dsc(S) < ∞ implies dsc(T − S) < ∞. We
remark that Theorem 3.4 extend the result of Baklouti.

The well known result about the stability of the Browder operators under
commuting Riesz operator perturbations ([16], Corollary 2) is extended in
the following theorem.

Theorem 3.5. Let A, B ∈ B(X) such that AB = BA and B ∈ Poly−1R(X).
If A is Browder and A is in communication with B, then A−B is Browder.

Proof. Follows from Theorem 3.4.

We give a new proof for the stability of the left (right) Browder operators
under commuting Riesz operator perturbations. This assertion is also proved
in [18]. However, the proof of this result in [18] is based on the punctured
neighbourhood theorem ([15], Theorem 18.7).

Theorem 3.6. Let A, B ∈ B(X). If A is left (right) Browder and B Riesz
such that AB = BA, then A+B is left (right) Browder and i(A+B) = i(A).

Proof. Suppose that A is left Browder, B ∈ R(X) and AB = BA. Then
P = −B ∈ R(X) and hence P ∈ Poly−1R(X) with the minimal polynomial

πP (z) = z. Since 0 /∈ σleft
f (A), we conclude that A is in left communication

with P . Now from Theorem 3.4 it follows that A−P = A+B is left Browder
and i(A+B) = i(B).

The approximate point spectrum and the surjectivity spectrum of A ∈
B(X), respectively, are given by

σa(A) = {λ ∈ C : A− λ is not bounded below},
σs(A) = {λ ∈ C : A− λ is not surjective}.
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We shall say that an operator A ∈ B(X) is almost bounded below (almost
surjective) if there exists ϵ > 0 such that A−λ is bounded below (surjective)
for every λ ∈ C, 0 < |λ| < ϵ. In other words, A is almost bounded below
(surjective) if and only if 0 is not an accumulation point of the approximate
point (surjectivity) spectrum of A.

Corollary 3.1. Let A, B ∈ B(X) such that AB = BA and B ∈ Poly−1R(X).

(3.1.1) If A is in left communication with B and if A is almost bounded
below, then A and A−B are left Browder and i(A−B) = i(A).

(3.1.2) If A is in right communication with B and if A is almost surjective,
then A and A−B are right Browder and i(A−B) = i(A).

Proof. (3.1.1): Suppose that AB = BA, B ∈ Poly−1R(X) and A is in left

communication with B. From Definition 3.1 it follows that 0 /∈ σleft
f (A), i.e.

A is left Fredholm. Since A is almost bounded below, from [15], Corollary
20.20, or also from [18], Theorem 5, we have that ascA < ∞. Now the
conclusion follows from Theorem 3.4.

(3.1.2) can be proved similarly.

Theorem 3.7. Let A, B ∈ B(X). Then

A, B ∈ Poly−1R(X) and π−1
A (0) ∩ (π−1

B (0) ∪ {0}) = ∅

implies

AB −BA ∈ Ptrb (Φ(X)) =⇒ A is Browder and A−B is Weyl,

and
AB = BA =⇒ A, A−B are Browder.

Proof. Let A, B ∈ Poly−1R(X), and let π−1
A (0)∩ (π−1

B (0)∪ {0}) = ∅. From
A ∈ Poly−1R(X), according to Theorem 2.2, it follows that

σf (A) = σb(A) = π−1
A (0). (3.3)

Since 0 /∈ π−1
A (0), from (3.3) it follows that A is Browder. Now, since σf (A)

is finite and does not contain 0 and also does not contain any zero of the
minimal polynomial of B, we conclude that A is in communication with B.

Suppose now that AB − BA ∈ Ptrb (Φ(X)). From Theorem 3.3 we get
that A−B is Weyl.

If in particular A and B commute, from Theorem 3.5 it follows that
A−B is Browder.
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Theorem 3.8. Let X be a Hilbert space and let A ∈ B(X) be semi-Fredholm
and self-adjoint. Then for B ∈ B(X),

B ∈ Poly−1R(X) and π−1
B (0) ∩ R = ∅

implies
AB −BA ∈ Ptrb (Φ(X)) =⇒ A−B is Weyl,

and
AB = BA =⇒ A−B is Browder.

Proof. Since A is self-adjoint it follows that α(A) = β(A) and so, A is
Fredholm and 0 /∈ σf (A). Because of N(A) = N(A∗A) = N(A2) we have
ascA < ∞ and since R(A) is closed, then X = N(A) ⊕ R(A) and hence,
R(A) = R(A2), i.e. dscA < ∞. Therefore, A is Browder. From selfad-
jointness of A it follows that σ(A) ⊂ R and hence, σf (A) ⊂ R\{0}. If
B ∈ Poly−1R(X) and π−1

B (0) ∩ R = ∅, then defining φ : [0, 1] → C with
φ(t) = t, t ∈ [0, 1], we have that φ(t)λ /∈ σf (A) for every λ ∈ π−1

B (0) and
every t ∈ [0, 1]. Thus A is in communication with B and the assertions
follow from Theorem 3.3 and Theorem 3.5.

4 Shifts

Let N0 = N∪{0} and let CN0 be the linear space of all complex sequences x =
(xk)

∞
k=0. Let ℓ∞, c and c0 denote the set of bounded, convergent and conver-

gent sequences with null limit. We write ℓp = {x ∈ CN0 :
∑∞

k=0 |xk|p < ∞}
for 1 ≤ p < ∞. For n = 0, 1, 2, . . . , let e(n) denote the sequences such that

e
(n)
n = 1 and e

(n)
k = 0 for k ̸= n. The forward and the backward unilateral

shifts U and V are linear operators on CN0 defined by

Ue(n) = e(n+1) and V e(n+1) = e(n), n = 0, 1, 2, . . . .

Invariant subspaces for U and V include c0, c, ℓ∞ and ℓp, p ≥ 1. Recall that
for every 1 ≤ p < ∞,

ℓ1 ⊂ ℓp ⊂ c0 ⊂ c ⊂ ℓ∞,

and for each X ∈ {c0, c, ℓ∞, ℓp}, U, V ∈ B(X) and ∥U∥ = ∥V ∥ = 1. On the
Hilbert space ℓ2 we also have that V is the Hilbert conjugate operator of U ,
V = U∗.

Let D = {λ ∈ C : |λ| ≤ 1} and S = ∂D = {λ ∈ C : |λ| = 1}. It is well
known that, for X = ℓ2, σ(U) = σ(V ) = D ([9], Solution 67; [7], Proposition
27.7 (b)), while from [13], Proposition 1.6.15, it follows that σ(U) = D for
X = ℓp, p ≥ 1.
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Theorem 4.1. For each X ∈ {c0, c, ℓ∞, ℓp}, p ≥ 1, and the forward and
backward unilateral shifts U , V ∈ B(X) there are equalities

σ(U) = σ(V ) = D. (4.1)

Proof. Since
∥U∥ = ∥V ∥ = 1 (4.2)

it is clear that
σ(U) ∪ σ(V ) ⊂ D. (4.3)

Observe
V (1− UV ) = 0 ̸= I − UV ;

also
N(V ) = (I − UV )X ̸= {0}. (4.4)

From (4.2) it is clear that

|λ| < 1 =⇒ I − λU ∈ B(X)−1. (4.5)

Since V − λ = V (I − λU), from (4.4) and (4.5) it follows

N(V − λ) = (V − λ)−1(0) = (I − λU)−1V −1(0) ̸= {0}, (4.6)

and hence, {λ ∈ C : |λ| < 1} ⊂ σ(V ). Now, since σ(V ) is closed we obtain

D ⊂ σ(V ). (4.7)

Since U is not surjective, it follows that 0 ∈ σ(U). Suppose that λ ∈ C and
0 < |λ| < 1. We show that e0 /∈ R(λ− U). If there exists x = (xk)

∞
k=0 such

that (λ− U)x = e0, then

(λx0, λx1 − x0, λx2 − x1, . . . ) = (1, 0, 0, . . . )

and hence

x = (
1

λ
,
1

λ2
,
1

λ3
, . . . ),

which is not a bounded sequence and so, it is not in X. Therefore, λ ∈ σ(U)
and hence, {λ ∈ C : |λ| < 1} ⊂ σ(U). Consequently,

D ⊂ σ(U). (4.8)

From (4.3), (4.7) and (4.8) it follows (4.1).
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For the case X = ℓ2, it is known that σf (U) = S ([4], Example 1.2; [7],
Proposition 27.7(b)). In [1], Remark 2.9 it was shown that σf (V ) = S for
X = ℓp, p ≥ 1.

Theorem 4.2. For each X ∈ {c0, c, ℓ∞, ℓp}, p ≥ 1, and the forward and
backward unilateral shifts U , V ∈ B(X) there are equalities

σf (U) = σf (V ) = S. (4.9)

Proof. From (4.1) we have

σf (U) ∪ σf (V ) ⊂ D. (4.10)

Observe
V U = I and UV = I − P0,

where P0 is the projector defined by P0(x0, x1, x2, . . . ) = (x0, 0, 0, . . . ).
Clearly, P0 ∈ K(X) and we have that Π(U) is invertible in the Calkin
algebra C(X) and Π(V ) is its inverse. Hence U and V are Fredholm. Let

λ ∈ C such that 0 < |λ| < 1. Since
1

|λ|
> 1 ≥ ∥Π(V )∥, it follows that

1

λ
/∈ σ(Π(V )) and therefore, λ /∈ σ((Π(V ))−1) = σ(Π(U)). Analogously we

conclude that λ /∈ σ(Π(V )). Hence {λ ∈ C : |λ| < 1} ∩ σf (U) = ∅ and
{λ ∈ C : |λ| < 1} ∩ σf (V ) = ∅, which togeather with (4.10) gives

σf (U) ∪ σf (V ) ⊂ S. (4.11)

From the strong Riesz property (3.1) and (4.1) we obtain

S ⊂ σf (U) and S ⊂ σf (V ). (4.12)

From (4.11) and (4.12) we get (4.9).

We remark that U and V are Fredholm with i(U) = −1 and i(V ) = 1.
Since ascU = 0, dscU = +∞, ascV = ∞ and dscV = 0 it follows that U is
left Browder but not right Browder, while V is right Browder but not left
Browder.

Theorem 4.3. Let X ∈ {c0, c, ℓ∞, ℓp}, p ≥ 1, and let U ∈ B(X) be the
forward unilateral shift. Then for T ∈ B(X),

T ∈ Poly−1R(X) and π−1
T (0) ⊂ {λ ∈ C : |λ| < 1}
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implies

UT − TU ∈ Ptrb (Φ(X)) =⇒ U − T is Fredholm and i(U − T ) = −1,

and

UT = TU =⇒ U − T is Fredholm, left Browder and i(U − T ) = −1.

Proof. Suppose that T ∈ Poly−1R(X) and π−1
T (0) ⊂ {λ ∈ C : |λ| < 1}.

Then defining φ : [0, 1] → C with φ(t) = t, t ∈ [0, 1], we have that φ(t)λ /∈
{λ ∈ C : |λ| = 1} = σf (U) for every λ ∈ π−1

T (0) and every t ∈ [0, 1] and so,
we conclude that the unilateral shift U is in communication with T .

If UT − TU ∈ Ptrb (Φ(X)), from Theorem 3.2 it follows that U − T is
Fredholm and i(U − T ) = i(U) = −1.

Moreover, if UT = TU , then, since U is left Browder, from Theorem 3.4
it follows that U − T is left Browder.

Theorem 4.4. Let X ∈ {c0, c, ℓ∞, ℓp}, p ≥ 1, and let V ∈ B(X) be the
backward unilateral shift. Then for T ∈ B(X),

T ∈ Poly−1R(X) and π−1
T (0) ⊂ {λ ∈ C : |λ| < 1}

implies

V T − TV ∈ Ptrb (Φ(X)) =⇒ V − T is Fredholm and i(V − T ) = 1,

and

V T = TV =⇒ V − T is Fredholm, right Browder and i(V − T ) = 1.

Proof. Analogously to the proof of Theorem 4.3.

Let CZ be the linear space of all complex sequences x = (xk)
∞
k=−∞. Let

c0(Z) be the set of all sequences x = (xk)
∞
k=−∞ such that limk→∞ xk =

limk→∞ x−k = 0, i.e. xk → 0 when |k| → ∞. For x = (xk)
∞
k=−∞ ∈ c0(Z)

set ∥x∥ = supk |xk|. We write ℓp(Z) = {x ∈ CZ :
∑∞

k=−∞ |xk|p < ∞} for

1 ≤ p < ∞, and for x = (xk)
∞
k=−∞ ∈ ℓp(Z), ∥x∥ =

(∑∞
k=−∞ |xk|p

)1/p
.

Remark that c0(Z) and ℓp(Z) are Banach spaces.
For k = . . . ,−2,−1, 0, 1, 2, . . . , let δ(k) denote the sequences such that

δ
(k)
k = 1 and δ

(k)
i = 0 for i ̸= k. The forward and the backward bilateral

shifts W1 and W2 are linear operators on CZ defined by

W1δ
(k) = δ(k+1) and W2δ

(k+1) = δ(k), k = . . . ,−2,−1, 0, 1, 2, . . . .
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Obviously, c0(Z) and ℓp(Z), p ≥ 1 are invariant subspaces forW1 andW2,
and W−1

1 = W2. For each X ∈ {c0(Z), ℓp(Z)}, W1 and W2 are isometries.
On the Hilbert space ℓ2(Z) we have thatW2 is the Hilbert conjugate operator
of W1, that is W1 and W2 are unitary.

For X = ℓ2(Z) it is known that σ(W1) = σ(W2) = S and σf (W1) = S
([9], Solution 68; [7], Proposition 27.7 (c)).

Theorem 4.5. If X is one of c0(Z) and ℓp(Z), p ≥ 1, then for the forward
and backward bilateral shifts W1, W2 ∈ B(X) there are equalities

σ(W1) = σ(W2) = S. (4.13)

Proof. Since

∥W1∥ = ∥W2∥ = 1 (4.14)

it follows that
σ(W1) ∪ σ(W2) ⊂ D. (4.15)

Let λ ∈ C such that 0 < |λ| < 1. Then 1/|λ| > 1 and from (4.14) it follows
that 1/λ /∈ σ(W2) and hence λ /∈ σ(W−1

2 ) = σ(W1). From (4.15) it follows
that

σ(W1) ⊂ S.

Suppose that λ ∈ S. We prove that R(λ − W1) does not contain δ0. For
x = (xk)

∞
k=−∞ ∈ X, from (λ−W1)x = δ0 we get

. . . , λx−2−x−3=0, λx−1−x−2=0, λx0−x−1=1, λx1−x0=0, λx2−x1=0, ...,

and hence

x1 =
1
λx0, x2 =

1
λ2x0, x3 =

1
λ3x0, . . .

x−2 = λx−1, x−3 = λ2x−1, . . . .

From limk→∞ xk = 0, limk→∞ x−k = 0 and |λ| = 1 we conclude that x0 = 0
and x−1 = 0 which contradict the fact that λx0−x−1=1.

Consequently, σ(W1) = S. Hence σ(W2) = σ(W−1
1 ) = {λ−1 : λ ∈

σ(W1)} = S.

Theorem 4.6. If X is one of c0(Z) and ℓp(Z), p ≥ 1, then for the forward
and backward bilateral shifts W1, W2 ∈ B(X) there are equalities

σf (W1) = σf (W2) = S. (4.16)
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Proof. From (4.13) it follows that

∂σ(W1) = accσ(W1) = S, (4.17)

where accσ(W1) denotes the set of the accumulation points of σ(W1). From
(3.1) and (4.17) it follows that

S ⊂ σf (W1). (4.18)

Since σf (W1) ⊂ σ(W1), from (4.13) and (4.18) we get σf (W1) = S. Analo-
gously, σf (W2) = S.

Theorem 4.7. Let X be one of c0(Z) and ℓp(Z), p ≥ 1 and let W1 ∈ B(X)
be the forward bilateral shift. Then for T ∈ B(X),

T ∈ Poly−1R(X) and π−1
T (0) ⊂ {λ ∈ C : |λ| < 1}

implies
W1T − TW1 ∈ Ptrb (Φ(X)) =⇒ W1 − T is Weyl,

and
W1T = TW1 =⇒ W1 − T is Browder.

Proof. Suppose that T ∈ Poly−1R(X) and π−1
T (0) ⊂ {λ ∈ C : |λ| < 1}.

From (4.16), as in the proof of Theorem 4.3, we conclude that the bilateral
shift W1 is in communication with T .

If W1T − TW1 ∈ Ptrb (Φ(X)), from Theorem 3.3 we get that W1 − T is
Weyl.

Suppose that W1T = TW1. Since W1 is invertible, it is Browder and
from Theorem 3.5 it follows that W1 − T is Browder.

Theorem 4.8. Let X be one of c0(Z) and ℓp(Z), p ≥ 1 and let W2 ∈ B(X)
be the backward bilateral shift. Then for T ∈ B(X),

T ∈ Poly−1R(X) and π−1
T (0) ⊂ {λ ∈ C : |λ| < 1}

implies
W2T − TW2 ∈ Ptrb (Φ(X)) =⇒ W2 − T is Weyl,

and
W2T = TW2 =⇒ W2 − T is Browder.

Proof. Analogously to the proof of Theorem 4.7.
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