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Abstract

We present some new representations for the generalized Drazin inverse of a block ma-
trix with generalized Schur complement being generalized Drazin invertible in a Banach
algebra under conditions weaker than those used in recent papers on the subject.
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1 Introduction

Let A be a complex unital Banach algebra with unit 1. For a ∈ A, the symbols σ(a) and
ρ(a) will denote the spectrum and the resolvent set of a, respectively. We use Anil and Aqnil,
respectively, to denote the sets of all nilpotent and quasinilpotent elements (σ(a) = {0}) of
A.

The concept of the generalized Drazin inverse in Banach algebras was introduced by
Koliha (see [16]). In [13], Harte presented an alternative definition of a generalized Drazin
inverse in a ring. For a ∈ A, if there exists an element b ∈ A which satisfies

bab = b, ab = ba, a− a2b ∈ Aqnil,

then b is called the generalized Drazin inverse of a (or Koliha–Drazin inverse of a), and a is
generalized Drazin invertible. If the generalized Drazin inverse of a exists, it is unique and
denoted by ad. The set of all generalized Drazin invertible elements of A is denoted by Ad. If
a ∈ Ad, the spectral idempotent aπ of a corresponding to the set {0} is given by aπ = 1−aad.
The Drazin inverse is a special case of the generalized Drazin inverse for which a−a2b ∈ Anil.
Obviously, if a is Drazin invertible, then it is generalized Drazin invertible. The group inverse
is the Drazin inverse for which the condition a− a2b ∈ Anil is replaced with a = aba. We use
a# to denote the group inverse of a, and we use A# to denote the set of all group invertible
elements of A.

We need the following important result from [3].

Lemma 1.1. [3, Lemma 2.4] Let b, q ∈ Aqnil and let qb = 0. Then q + b ∈ Aqnil.
∗The author are supported by the Ministry of Education and Science, Republic of Serbia, grant no. 174007.
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The next result is proved for matrices [15, Theorem 2.1], for bounded linear operators
[12, Theorem 2.3] and for elements of Banach algebra [3].

Lemma 1.2. [3, Example 4.5] Let a, b ∈ Ad and let ab = 0. Then

(a + b)d =
∞∑

n=0

(bd)n+1anaπ +
∞∑

n=0

bπbn(ad)n+1.

If a ∈ Aqnil, then ad exists and ad = 0. Consequently, by Lemma 1.2, the following lemma,
which the part (i) is proved by Castro–González and Koliha [3] and part (ii) for bounded
linear operators in [12, Theorem 2.2], holds.

Lemma 1.3. Let b ∈ Ad and a ∈ Aqnil.

(i) [3, Corollary 3.4] If ab = 0, then a + b ∈ Ad and (a + b)d =
∞∑

n=0
(bd)n+1an.

(ii) If ba = 0, then a + b ∈ Ad and (a + b)d =
∞∑

n=0
an(bd)n+1.

Recall that, if p = p2 ∈ A is an idempotent, we can represent element a ∈ A as

a =
[

a11 a12

a21 a22

]
,

where a11 = pap, a12 = pa(1− p), a21 = (1− p)ap, a22 = (1− p)a(1− p).
Let

x =
[

a b
c d

]
∈ A (1)

relative to the idempotent p ∈ A, a ∈ (pAp)d and let the generalized Schur complement
xs = d− cadb ∈ ((1− p)A(1− p))d.

The Drazin inverse is very useful, and has various applications in singular differential or
difference equations, Markov chains, cryptography, iterative method and numerical analysis
(see [6, 7]).

The problem of finding an explicit representation for the Drazin inverse of a complex block
matrix in terms of its blocks was first proposed by Campbell and Meyer [5]. This problem is
quite complicated, and there was no explicit formula for the Drazin inverse of a block matrix.
Some special cases have been considered in [4, 9, 14, 18, 22, 23, 24].

The generalized Schur complement plays an important role in the representations for the
Drazin inverse of a block matrix. Miao [18] and Wei [23] have been studied the Drazin inverse
of a block matrix with the generalized Schur complement being nonsingular or it is equal to
zero.

The following result is well-known for complex matrices (see [18]) and it is proved for
elements of Banach algebra [19].
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Lemma 1.4. [19, Lemma 2.2] Let x =
[

a b
c d

]
∈ A relative to the idempotent p ∈ A,

a ∈ (pAp)d and let w = aad + adbcad be such that aw ∈ (pAp)d. If caπ = 0, aπb = 0 and the
generalized Schur complement xs = d− cadb is equal to 0, then x ∈ Ad and xd = m, where

m =
[

p 0
cad 0

] [
[(aw)d]2a 0

0 0

] [
p adb
0 0

]
=

[
[(aw)d]2a [(aw)d]2b

cad[(aw)d]2a cad[(aw)d]2b

]
. (2)

We use the next lemma which is proved in [20]. The expression (3) is called the generalized
Banachiewicz–Schur form of xd. For more details see [1, 2, 4, 8, 14, 21].

Lemma 1.5. [20, Lemma 2.1] Let x be defined as in (1). Then the following statements are
equivalent:

(i) x ∈ Ad and xd = r, where

r =
[

ad + adb(xs)dcad −adb(xs)d

−(xs)dcad (xs)d

]
; (3)

(ii) aπb = b(xs)π, (xs)πc = caπ and y =
[

aaπ b(xs)π

caπ xs(xs)π

]
∈ Aqnil.

Hartwig et al. [14] presented formulae for the Drazin inverse of a 2×2 block matrix which
involve a matrix in the form (3) when the generalized Schur complement is nonsingular, and
a matrix in the form (2) when it is equal to zero, under the assumptions CAπB = 0 and
AAπB = 0. Under different conditions and the hypothesis the Schur complement is either
nonsingular or zero, these results are generalized in [17, 24].

Deng et al. [11] obtained the explicit representations for the generalized Drazin inverse of
operator matrix under the cases that the generalized Schur complement is either nonsingular
or zero and

(i) AπBC = 0, CAπB = 0, AπAB = AπBD, or
(ii) BCAπ = 0, CAπB = 0, CAπA = DCAπ.

Castro-González and Mart́ınez-Serrano [4] investigated conditions under which the Drazin
inverse of a block matrix having generalized Schur complement group invertible, can be
expressed in terms of a matrix in the Banachiewicz-Schur form and its powers.

In [9], Deng and Wei introduced several explicit representations for the Drazin inverse of
block-operator matrix with Drazin invertible Schur complement under certain circumstances.

We introduce new explicit expressions for the generalized Drazin inverse of a block matrix
x defined in (1) when the generalized Schur complement is generalized Drazin invertible.
Expressions presented in Section 2 contains a matrix in the form (2) under the conditions
aπbc = 0 and xsc = 0 (or bcaπ = 0 and bxs = 0). In Section 3 we derive formulae for the
generalized Drazin inverse xd which involve the generalized Banachiewicz-Schur form (3).
Thus, we extend some results in [11, 19, 23] to more general settings.
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2 Expressions for the generalized Drazin inverse

In the following theorem we derive a formula for the generalized Drazin inverse of block
matrix x in (1) under some conditions. This formula is rather cumbersome and complicated
but the theorem itself will have a number of useful consequences.

Theorem 2.1. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d−cadb ∈ ((1−p)A(1−p))d, m be defined as in (2) and let w = aad+adbcad

be such that aw ∈ (pAp)d. If
aπbc = 0 and xsc = 0, (4)

then x ∈ Ad and

xd =
∞∑

n=0

mn+1

([
p 0
0 (xs)π

]
−

∞∑

n=0

[
0 0
0 canaπb[(xs)d]n+2

])[
aaπ aπb
caπ xs

]n

+
[

0 aπb[(xs)d]2 − (aw)db(xs)d

0 (xs)d − cad(aw)db(xs)d

]

+
∞∑

n=1

[
0 (a− (aw)dbc)an−1aπb[(xs)d]n+2

0 ((1− p)− cad(aw)db)can−1aπb[(xs)d]n+2

]

+
∞∑

n=1

([
0 aad(aw)n−1(aw)πb[(xs)d]n+1

0 cad(aw)n−1(aw)πb[(xs)d]n+1

]

+
∞∑

k=1

[
0 aad(aw)n−1(aw)πbcak−1aπb[(xs)d]k+n+2

0 cad(aw)n−1(aw)πbcak−1aπb[(xs)d]k+n+2

])
. (5)

Proof. Suppose that x = y + z, where

y =
[

a2ad aadb
caad cadb

]
and z =

[
aaπ aπb
caπ xs

]
. (6)

Then zy = 0, by aπad = 0 and (4).
In order to show that y ∈ Ad, let Ay ≡ a2ad, By ≡ aadb, Cy ≡ caad and Dy ≡ cadb.

Since (a2ad)# = ad, then Ay ∈ (pAp)#, Aπ
yBy = aπaadb = 0, CyA

π
y = caadaπ = 0, ys =

Dy − CyA
#
y By = 0 and Wy = AyA

#
y + A#

y ByCyA
#
y = w. Using Lemma 1.4, we deduce that

y ∈ Ad and yd = m.
If

z1 =
[

0 0
0 xs

]
, z2 =

[
0 aπb
0 0

]
and z3 =

[
aaπ 0
caπ 0

]
,

we have z = z1+z2+z3, z2z3 = 0, z3z1 = 0, z2
2 = 0 and z1(z2+z3) = 0. From aaπ ∈ (pAp)qnil

and σ(z3) ⊆ σpAp(aaπ) ∪ σ(1−p)A(1−p)(0), we conclude that z3 ∈ Aqnil. By z2 ∈ Anil and
Lemma 1.1, z2 + z3 ∈ Aqnil. Observe that z1 ∈ Ad and Lemma 1.3(ii) imply z ∈ Ad and

zd = zd
1 +

∞∑

n=1

(z2 + z3)n(zd
1)n+1 = zd

1 +
∞∑

n=1

zn−1
3 (z2 + z3)(zd

1)n+1 = zd
1 +

∞∑

n=0

zn
3 z2(zd

1)n+2.
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Now, by Lemma 1.2, x ∈ Ad and xd = x1 + x2, where

x1 =
∞∑

n=0

(yd)n+1znzπ and x2 =
∞∑

n=0

yπyn(zd)n+1.

The equality

zzd = (z1 + z2)zd
1 +

∞∑

n=0

zn+1
3 z2(zd

1)n+2 =
[

0 aπb(xs)d

0 xs(xs)d

]
+

∞∑

n=0

[
0 an+1aπb[(xs)d]n+2

0 canaπb[(xs)d]n+2

]

gives

x1 =
∞∑

n=0

(yd)n+1

([
p −aπb(xs)d

0 (xs)π

]
−

∞∑

n=0

[
0 an+1aπb[(xs)d]n+2

0 canaπb[(xs)d]n+2

])
zn

=
∞∑

n=0

(yd)n+1

([
p 0
0 (xs)π

]
−

∞∑

n=0

[
0 0
0 canaπb[(xs)d]n+2

])
zn. (7)

From yz2 = 0, we obtain

x2 = yπzd +
∞∑

n=1

yπyn

(
(zd

1)n+1 +
∞∑

k=0

zk
3z2(zd

1)k+n+2

)

= yπzd
1 + z2(zd

1)2 + yπ
∞∑

n=1

zn
3 z2(zd

1)n+2 +
∞∑

n=1

yπyn

(
(zd

1)n+1 +
∞∑

k=1

zk
3z2(zd

1)k+n+2

)
.(8)

Applying aad(aw) = aw = (aw)aad, we get

yπ = 1− yyd =
[

p− (aw)da −(aw)db
−cad(aw)da (1− p)− cad(aw)db

]

and

ynyπ =
[

aad(aw)n−1(aw)πa aad(aw)n−1(aw)πb
cad(aw)n−1(aw)πa cad(aw)n−1(aw)πb

]
(n = 1, 2, . . . ).

Hence, by (8), observe that

x2 =
[

0 aπb[(xs)d]2 − (aw)db(xs)d

0 (xs)d − cad(aw)db(xs)d

]
+ yπ

∞∑

n=1

[
anaπ 0

can−1aπ 0

] [
0 aπb[(xs)d]n+2

0 0

]

+
∞∑

n=1

ynyπ

([
0 0
0 [(xs)d]n+1

]
+

∞∑

k=1

[
0 akaπb[(xs)d]k+n+2

0 cak−1aπb[(xs)d]k+n+2

])
. (9)

Therefore, (7) and (9) imply (5).
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We can see that the conditions aπbc = 0 and xsc = 0 are equivalent with the following
geometrical conditions:

bcA ⊂ aA and cA ⊂ (xs)◦,

where x◦ = {y ∈ A : xy = 0}.

We give an example to illustrate our results.

Example 2.1. Let A be a Banach algebra, p ∈ A be an idempotent, and let x =
[

p b
0 0

]
∈

A relative to the idempotent p. Since ad = a = p, aπ = 0, xs = 0 = (xs)d, (xs)π = 1− p and

w = p = aw = (aw)d, by Theorem 2.1, it follows that x ∈ Ad and xd =
[

p b
0 0

]
.

The following result is a straightforward application of Theorem 2.1.

Corollary 2.1. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d−cadb ∈ ((1−p)A(1−p))d, m be defined as in (2) and let w = aad+adbcad

be such that aw ∈ (pAp)d.

(i) If aπbc = 0 and xs = 0, then x ∈ Ad and

xd = m + m2

[
0 0

caπ 0

]
+

∞∑

n=2

mn+1

[
0 0

can−1aπ can−2aπb

]
.

(ii) If aπbc = 0, caπb = 0, aaπb = aπbd and xs = 0, then x ∈ Ad and

xd = m

(
1 +

∞∑

n=0

mn+1

[
0 0

canaπ 0

])
.

Proof. The part (ii) follows from (i) and aaπb = aπb(xs + cadb) = 0.

Observe that the part (ii) of Corollary 2.1 recovers [11, Theorem 11], because the equality

m−
[

0 aπb
0 0

]
m2 = m holds.

Following the same strategy as in the proof of Theorem 2.1, we obtain a next representa-
tion for xd. For the sake of clarity of presentation, the short proof is given.

Theorem 2.2. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d−cadb ∈ ((1−p)A(1−p))d, m be defined as in (2) and let w = aad+adbcad

be such that aw ∈ (pAp)d. If
bcaπ = 0 and bxs = 0,
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then x ∈ Ad and

xd =

[
0 0[

(xs)d
]2

caπ − (xs)dcad(aw)da (xs)d − (xs)dcad(aw)db

]

+
∞∑

n=1

[
0 0[

(xs)d
]n+2

can−1aπ(a− bcad(aw)da)
[
(xs)d

]n+2
can−1aπb((1− p)− cad(aw)db)

]

+
∞∑

n=1

([
0 0[

(xs)d
]n+1

cad(aw)n−1(aw)πa
[
(xs)d

]n+1
cad(aw)n−1(aw)πb

]

+
∞∑

k=1

[
0 0[

(xs)d
]k+n+2

cak−1aπbcad(aw)n−1(aw)πa
[
(xs)d

]k+n+2
cak−1aπbcad(aw)n−1(aw)πb

])

+
∞∑

n=0

[
aaπ aπb
caπ xs

]n
([

p 0
0 (xs)π

]
−

∞∑

n=0

[
0 0
0

[
(xs)d

]n+2
canaπb

])
mn+1. (10)

Proof. Let y and z be defined as in (6). Therefore, x = y + z and yz = 0. By Lemma 1.4, we
get y ∈ Ad and yd = m.

Assume that

z1 =
[

0 0
0 xs

]
, z2 =

[
0 0

caπ 0

]
and z3 =

[
aaπ aπb
0 0

]
.

Now z = z1 + z2 + z3, z1 ∈ Ad, z2 ∈ Anil and z3 ∈ Aqnil. The equality z3z2 = 0 and Lemma
1.1 give z2 + z3 ∈ Aqnil. Because (z2 + z3)z1 = 0, by Lemma 1.3(i), z ∈ Ad and

zd = zd
1 +

∞∑

n=1

(zd
1)n+1(z2 + z3)zn−1

3 = zd
1 +

∞∑

n=0

(zd
1)n+2z2z

n
3 .

Applying Lemma 1.2, x ∈ Ad and xd = x1 + x2, where

x1 =
∞∑

n=0

(zd)n+1ynyπ and x2 =
∞∑

n=0

zπzn(yd)n+1.

Using z2y = 0, we have

x1 = zd
1yπ + (zd

1)2z2 +
∞∑

n=1

(zd
1)n+2z2z

n
3 yπ +

∞∑

n=1

(
(zd

1)n+1 +
∞∑

k=1

(zd
1)k+n+2z2z

k
3

)
ynyπ

=

[
0 0[

(xs)d
]2

caπ − (xs)dcad(aw)da (xs)d − (xs)dcad(aw)db

]

+
∞∑

n=1

[
0 0[

(xs)d
]n+2

canaπ
[
(xs)d

]n+2
can−1aπb

]
yπ +

∞∑

n=1

([
0 0
0

[
(xs)d

]n+1

]

+
∞∑

k=1

[
0 0[

(xs)d
]k+n+2

cakaπ
[
(xs)d

]k+n+2
cak−1aπb

])
ynyπ. (11)
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From (11) and

x2 =
∞∑

n=0

zn

([
p 0
0 (xs)π

]
−

∞∑

n=0

[
0 0
0

[
(xs)d

]n+2
canaπb

])
(yd)n+1,

we conclude that (10) hold.

If we assume that c = 0 in Theorem 2.1 and b = 0 Theorem 2.2, then xs = d and we can
obtain [3, Theorem 2.3(i)] as a consequence. Recall that [3, Theorem 2.3(i)] is an extension
in Banach algebras of results [15, Lemma 2.2] for matrices and [10, Theorem 5.3] for bounded
linear operators.

Using Theorem 2.2, we can verify the following corollary.

Corollary 2.2. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d−cadb ∈ ((1−p)A(1−p))d, m be defined as in (2) and let w = aad+adbcad

be such that aw ∈ (pAp)d.

(i) If bcaπ = 0 and xs = 0, then x ∈ Ad and

xd = m +
[

0 aπb
0 0

]
m2 +

∞∑

n=2

[
0 an−1aπb
0 can−2aπb

]
mn+1.

(ii) If bcaπ = 0, caπb = 0, caπa = dcaπ and xs = 0, then x ∈ Ad and

xd =

(
1 +

∞∑

n=0

[
0 anaπb
0 0

]
mn+1

)
m.

The item (ii) of Corollary 2.2 covers [11, Theorem 12], by canaπb = 0 for n = 0, 1, 2, . . . .
Also remark that Corollary 2.1(i) and Corollary 2.2(i) recover [17, Corollary 3.5] and

Lemma 1.4.

Now we state the special cases of Theorem 2.1 and Theorem 2.2. Note that, if w = aad,
then aw = a2ad ∈ (pAp)# and (a2ad)# = ad.

Corollary 2.3. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d− cadb ∈ ((1− p)A(1− p))d, and let bc = 0. If

(1) xsc = 0, then x ∈ Ad and

xd =
∞∑

n=0

mn+1
1

[
p 0
0 (xs)π

] [
aaπ aπb
caπ xs

]n

+
[

0 aπb[(xs)d]2 − adb(xs)d

0 (xs)d − c(ad)2b(xs)d

]

+
∞∑

n=1

[
0 anaπb[(xs)d]n+2

0 can−1aπb[(xs)d]n+2

]
;
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(2) xsc = 0 and a ∈ (pAp)−1, then x ∈ Ad and

xd =
∞∑

n=0

mn+1
2

[
0 0
0 (xs)π(xs)n

]
+

[
0 −a−1b(xs)d

0 (xs)d − a−2b(xs)d

]
;

(3) bxs = 0, then x ∈ Ad and

xd =

[
0 0[

(xs)d
]2

caπ − (xs)dcad (xs)d − (xs)dc(ad)2b

]

+
∞∑

n=1

[
0 0[

(xs)d
]n+2

canaπ
[
(xs)d

]n+2
can−1aπb

]

+
∞∑

n=0

[
aaπ aπb
caπ xs

]n [
p 0
0 (xs)π

]
mn+1

1 ;

(4) bxs = 0 and a ∈ (pAp)−1, then x ∈ Ad and

xd =
[

0 0
−(xs)dca−1 (xs)d − (xs)dca−2b

]
+

∞∑

n=0

[
p 0
0 (xs)n(xs)π

]
mn+1

2 ;

(5) bxs = 0 and xsc = 0, then x ∈ Ad and

xd = m1 +
[

0 0
0 (xs)d

]
;

(6) xs = 0, then x ∈ Ad and xd = m1;

where

m1 =
[

ad (ad)2b
c(ad)2 c(ad)3b

]
and m2 =

[
a−1 a−2b
ca−2 ca−3b

]
.

3 Expressions with the generalized Banachiewicz–Schur form

In this section, we give new expressions for xd in terms of the generalized Drazin inverse of
generalized Schur complement, the generalized Banachiewicz-Schur form (3) and its powers.

Theorem 3.1. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d− cadb ∈ ((1− p)A(1− p))d, and let r be defined as in (3). If

aπbc = 0, aπbd = 0, (xs)πca = 0 and ab(xs)π = 0, (12)

then x ∈ Ad and

xd = r

(
1 + r

[
0 0

caπ 0

]
+

∞∑

n=2

rn

[
0 0

can−1aπ can−2aπb

])
. (13)
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Proof. For

y =
[

a2ad aadb
caad d

]
and z =

[
aaπ aπb
caπ 0

]
, (14)

we have x = y + z and, by (12), zy = 0.
Set Ay ≡ a2ad, By ≡ aadb, Cy ≡ caad and Dy ≡ d. Then Ay ∈ (pAp)#, A#

y = ad,
ys = Dy − CyA

#
y By = xs, Aπ

yBy = CyA
π
y = 0, By(ys)π = ad(ab(xs)π) = 0, (ys)πCy =

((xs)πca)ad = 0 and Yy =
[

0 0
0 xs(xs)π

]
∈ Aqnil implying y ∈ Ad and yd = r, by Lemma

1.5.
Assume that

z1 =
[

aaπ aπb
0 0

]
and z2 =

[
0 0

caπ 0

]
.

Now z1z2 = 0, z1 ∈ Aqnil and z2
2 = 0. Using Lemma 1.1, we deduce that z = z1 + z2 ∈ Aqnil.

Applying Lemma 1.3(i), x ∈ Ad and xd =
∞∑

n=0
rn+1zn = r + r2z +

∞∑
n=2

rn+1zn. Since, for

n = 2, 3, . . . ,

zn = zzn−1
1 = z

[
an−1aπ an−2aπb

0 0

]
=

[
anaπ an−1aπb

can−1aπ can−2aπb

]
,

rz = rz1 and rzn = r

[
0 0

can−1aπ can−2aπb

]
, we get (13).

A geometrical reformulation of conditions (12) is as follows:

bcA ⊂ aA, bdA ⊂ aA, caA ⊂ xsA and (xs)◦ ⊂ (ab)◦.

By Theorem 3.1, we can verify the following corollary.

Corollary 3.1. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d− cadb ∈ ((1− p)A(1− p))d, and let r be defined as in (3).

(i) If equalities (12), aaπb = 0 and caπb = 0 hold, then x ∈ Ad and

xd = r

(
1 +

∞∑

n=0

rn+1

[
0 0

canaπ 0

])
;

(ii) If aπb = 0 and xs is invertible, then x ∈ Ad and

xd = r1

(
1 +

∞∑

n=0

rn+1
1

[
0 0

canaπ 0

])
;

(iii) If a is invertible, (xs)πc = 0 and b(xs)π = 0, then x ∈ Ad and x = r2;

(iv) If a and xs are invertible, then x ∈ Ad and x = r2;
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where

r1 =
[

ad + adb(xs)−1cad −adb(xs)−1

−(xs)−1cad (xs)−1

]
and r2 =

[
a−1 + a−1b(xs)−1ca−1 −a−1b(xs)−1

−(xs)−1ca−1 (xs)−1

]
.

Similarly to Theorem 3.1, we can show the following theorem.

Theorem 3.2. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d− cadb ∈ ((1− p)A(1− p))d, and let r be defined as in (3). If

bcaπ = 0, dcaπ = 0, (xs)πca = 0 and ab(xs)π = 0, (15)

then x ∈ Ad and

xd =

(
1 +

[
0 aπb
0 0

]
r +

∞∑

n=2

[
0 an−1aπb
0 can−2aπb

]
rn

)
r. (16)

Proof. Define y and z as in (14). Then yz = 0 and, in the analogy way as in the proof of
Theorem 3.1, we prove the formula (16).

Also we can check the next result using Theorem 3.2.

Corollary 3.2. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d− cadb ∈ ((1− p)A(1− p))d, r be defined as in (3), and let r1 be defined
as in Corollary 3.1.

(i) If equalities (15), caaπ = 0 and caπb = 0 hold, then x ∈ Ad and

xd =

(
1 +

∞∑

n=0

[
0 anaπb
0 0

]
rn+1

)
r.

(ii) If caπ = 0 and xs is invertible, then x ∈ Ad and

xd =

(
1 +

∞∑

n=0

[
0 anaπb
0 0

]
rn+1
1

)
r1.

From Corollary 3.1(ii) or Corollary 3.2(ii), we get an extension of result for the Drazin
inverse of a block matrix by Wei [23].

Corollary 3.3. Let x be defined as in (1) where a ∈ (pAp)d and the generalized Schur
complement xs = d− cadb ∈ ((1− p)A(1− p))d, and let r1 be defined as in Corollary 3.1. If
aπb = 0, caπ = 0 and xs is invertible, then x ∈ Ad and x = r1.

11
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