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Snežana Č. Živković Zlatanovića, Dragan S. Djordjevića, Robin E. Harteb, Bhagwati P. Duggalc
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Abstract. A bounded linear operator A on a Banach space X is said to be ”polynomially Riesz”, if there
exists a nonzero complex polynomial p such that the image p(A) is Riesz. In this paper we give some
characterizations of these operators.

1. Introduction

Let C denote the set of all complex numbers and let X and Y be infinite dimensional Banach spaces. We
denote by B(X) the set of all linear bounded operators on X and by K(X) the set of all compact operators on
X. We write σ(A) = {λ ∈ C : A − λ is not invertible} for the spectrum of A ∈ B(X).

For A ∈ B(X) let N(A) denote the null-space and R(A) the range of A. We set α(A) = dimN(A) and
β(A) = dimX/R(A) = codimR(A). Sets of upper and lower semi-Fredholm operators, respectively, are defined
as Φ+(X) = {A ∈ B(X) : α(A) < ∞ and R(A) is closed}, and Φ−(X) = {A ∈ B(X) : β(A) < ∞}. For upper
and lower semi-Fredholm operators the index is defined by i(A) = α(A) − β(A). If A ∈ Φ+(X)\Φ−(X),
then i(A) = −∞, and if A ∈ Φ−(X)\Φ+(X), then i(A) = +∞. The set of Fredholm operators is defined as
Φ(X) = Φ+(X) ∩Φ−(X).

An operator A ∈ B(X) is relatively regular (or 1-invertible) if there exists B ∈ B(X) such that ABA = A.
It is well-known that A is relatively regular if and only if R(A) and N(A) are closed and complemented
subspaces of X. We say that an operator A ∈ B(X) is left Fredholm, and write A ∈ Φl(X), if A is a relatively
regular upper semi-Fredholm operator, while we say that A is right Fredholm, and write A ∈ Φr(X), if A is a
relatively regular lower semi-Fredholm operator. In other words, A is left Fredholm if R(A) is a closed and
complemented subspace of X and α(A)<∞, while A is right Fredholm if N(A) is a complemented subspace
of X and β(A)<∞. An operator A ∈ B(X) is called a Weyl operator if it is Fredholm of index zero. We shall
say that A ∈ B(X) is upper semi-Weyl if it is upper semi-Fredholm and i(A) ≤ 0, while A is lower semi-Weyl if
it is lower semi-Fredholm and i(A) ≥ 0. An operator A ∈ B(X) is left (right) Weyl if A is left (right) Fredholm
and i(A) ≤ 0 (i(A) ≥ 0).

Denote by asc(A) (dsc(A)) the ascent (the descent) of A ∈ B(X), i.e. the smallest non-negative integer
n such that N(An) = N(An+1) (R(An) = R(An+1)). If such n does not exist, then asc(A) = ∞ (dsc(A) = ∞).

2010 Mathematics Subject Classification. Primary 47A53, 47A55.
Keywords. Riesz operator; polynomially Riesz operator; Browder operator.
Received: 22 July 2013; Accepted: 29 August 2013
Communicated by Vladimir Rakočević
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hartere@gmail.com (Robin E. Harte), bpduggal@yahoo.co.uk (Bhagwati P. Duggal)



S. Č. Živković Zlatanović et al. / Filomat 28:1 (2014), 197–205 198

An operator A ∈ B(X) is Browder if it is Fredholm and has finite ascent and finite descent. Let us mention
that Browder operators are known in the literature also as Riesz-Schauder operators [4]. It is well known
that every Browder operator is Weyl ([10], Proposition 38.6(a); [9], Theorem 7.9.3). An operator A ∈ B(X) is
called upper semi-Browder if it is upper semi-Fredholm of finite ascent, and lower semi-Browder if it is lower
semi-Fredholm of finite descent. We shall say that A ∈ B(X) is left Browder if it is left Fredholm of finite
ascent, and right Browder if it is right Fredholm of finite descent [17], [18].

The Calkin algebra over X is the quotient algebra C(X) = B(X)/K(X), and let Π : B(X) → C(X) denote
the natural homomorphism. An operator A ∈ B(X) is Riesz, A ∈ R(X), if {λ ∈ C : A − λ ∈ Φ(X)} = C\{0}.
Recall that A ∈ R(X) if and only ifΠ(A) is quasinilpotent in C(X) ([1], p. 179 and 180). Clearly, K(X) ⊂ R(X).
Recall that ([1], Theorem 3.112. (i), (ii))

A, B ∈ R(X), AB = BA =⇒ A + B ∈ R(X), (1.1)
A ∈ R(X), B ∈ B(X), AB = BA =⇒ AB ∈ R(X). (1.2)

Also, for A ∈ B(X), it is known ([1], Corollary 3.114)

A ∈ R(X)⇐⇒ A′ ∈ R(X′), (1.3)

where A′ ∈ B(X′) is the adjoint operator of A.
If we introduce Fredholm, Weyl and Browder spectraθ ∈ {σess, ωess, βess} in the obvious way: σess(A) = {λ ∈

C : A−λ is not Fredholm}, ωess(A) = {λ ∈ C : A−λ is not Weyl} and βess(A) = {λ ∈ C : A−λ is not Browder},
A ∈ B(X), we shall also write

θ+, θ−, θle f t, θri1ht

for the corresponding upper, lower, left and right versions.
We recall that for θ ∈ {σess, ωess, βess} ([1], Theorem 3.111)

A ∈ R(X)⇐⇒ θ(A) = {0}. (1.4)

For A ∈ B(X) it is well known that ([13], Corollary 19.20)

βess(A) = σess(A) ∪ acc σ(A), (1.5)

where acc σ(A) is the set of accumulation points of σ(A).
Also we recall the following result ([17], Theorem 10).

Theorem 1.1. If T ∈ B(X), then for each ∗ = +,−, le f t, ri1ht there is inclusion

∂βess(T) ⊂ ∂β∗ess(T) ⊂ ∂ω∗ess(T) ⊂ ∂σ∗ess(T) ⊂ β∗ess(T) ⊂ βess(T).

For A ∈ B(X) set N∞(A) = ∪nN(An) for the hyper-kernel of A and R∞(A) = ∩nR(An) for the hyper-range
of A. If λ ∈ C is an eigenvalue of A, the dim N∞(A − λ) is called the algebraic multiplicity and denoted by
mult(A, λ).

We recall the following result which was proved by H. Baklouti ([2], Theorem 2.1):

Theorem 1.2. Let A ∈ B(X) and let p be a non-zero complex polynomial. If µ be in σ(p(A)) \ βess(p(A)), then µ is an
eigenvalue of p(A) and

N∞(µ − p(A)) =
⊕
λ∈σ(A)
p(λ)=µ

N∞(λ − A).

In particular, mult(p(A), µ) =
∑
λ∈σ(A)
p(λ)=µ

mult(A, λ).
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Set k(A) = dimN(A)/(N(A)∩R(A∞)). An operator A ∈ B(X) is called essentially Kato if R(A) is closed and
k(A) < ∞ ([13], Definition 21.4, Theorem 21.3; [15], Theorem 2.1). Clearly, every semi-Fredholm operator is
an essentially Kato operator. The corresponding spectrum is

σKe(A) = {λ ∈ C : A − λ is not essentially Kato}.

In [15] this spectrum was investigated and called Browder’s essential generalized spectrum of A.
Racall the following result for A ∈ B(X) ([13], Theorem 21.11):

∂σess(A) ⊂ σKe(A) ⊂ σess(A). (1.6)

LetA be a complex Banach algebra. For K ⊂ C, ∂K denotes the topological boundary of K.
If K is a compact set, K ⊆ C, we shall write ηK for the connected hull of K, where the complement C \ ηK

is the unique unbounded component of the complement C \ K ([8]; [9], Definition 7.10.1). A hole of K is a
component of ηK \ K. Generally ([8], Theorem 1.2, Theorem 1.3; [9], Theorem 7.10.3), for compact subsets
H,K ⊆ C,

∂H ⊆ K ⊆ H =⇒ ∂H ⊆ ∂K ⊆ K ⊆ H ⊆ ηK = ηH , (1.7)

and H can be obtained from K by filling in some holes of K.
Remark that for finite K ⊆ C it follows that ηK = K. Therefore, for compact subsets H,K ⊆ C,

ηK = ηH =⇒ (H is finite⇐⇒ K is finite), (1.8)

and in that case H = K.

2. Polynomially Riesz operators

We shall write

H +comm K = {c + d : (c, d) ∈ H × K , cd = dc}

for the commuting sum and

H ·comm K = {cd : (c, d) ∈ H × K , cd = dc}

for the commuting product of subsets H,K ⊆ A.
We say that S ⊆ A is a commutative ideal if

S +comm S ⊆ S , A ·comm S ⊆ S .

We shall write Poly = C[z] for the algebra of complex polynomials. If S ⊆ A is an arbitrary set we shall
write that a ∈ Poly−1(S) if there exists a nonzero complex polynomial p(z) such that p(a) ∈ S. If S ⊆ A is a
commutative ideal, the set

PS
a = {p ∈ Poly : p(a) ∈ S}

of polynomials p for which p(a) ∈ S will be an ideal of the algebra Poly. Since the natural numbers are well
ordered there will be a unique polynomial p of minimal degree with leading coefficient 1 contained in PS

a
which we call the minimal polynomial of a; we shall write p = πa ≡ πS

a . Then PS
a is generated by p = πa, i.e.

PS
a = πa · Poly.

According to (1.1) and (1.2) we conclude that the set of Riesz operators R(X) is a commutative ideal in
the algebra B(X).

We shall say that an operator A ∈ B(X) is polynomially Riesz and write A ∈ Poly−1R(X) if there exists a
nonzero complex polynomial p(z) such that p(A) ∈ R(X). These operators have been recently discussed in
[20].

Some parts of the following theorem are contained in Theorem 11.1 in [19]. For the sake of completeness
we give the whole proof and start with the following simple lemma.
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Lemma 2.1. If A,B ∈ B(X) commute, A is Fredholm and AB is Riesz, then B is Riesz.

Proof. Suppose that AB = BA ∈ R(X) and A ∈ Φ(X). Then Π(A) is invertible in the Calkin algebra C(X)
([4], Theorem 3.2.8), while Π(A)Π(B) = Π(AB) is quasinilpotent in C(X) and (Π(A))−1 commute with Π(B)
and hence also with Π(A)Π(B). It follows that Π(B) = (Π(A))−1Π(A)Π(B) is quasinilpotent in C(X), and so
B ∈ R(X).

We remark that the assertion of the previous lemma also holds if the condition of commutativity of operators
A and B is replaced by a weaker condition that AB−BA belongs to the perturbation class of the set of Fredholm
operators Ptrb(Φ(X)) (Ptrb(Φ(X)) = {S ∈ B(X) : S + T ∈ Φ(X) for all T ∈ Φ(X)}).

Theorem 2.2. Let A ∈ B(X). Then A ∈ Poly−1R(X) if and only if βess(A) is finite and in that case

βess(A) = π−1
A (0) ,

where πA is the minimal polynomial of A.

Proof. Suppose that A ∈ Poly−1R(X). Then πA(A) ∈ R(X) and from (1.4) and [6] it follows that πA(βess(A)) =
βess(πA(A)) = {0}, and therefore,

βess(A) ⊂ π−1
A (0). (2.1)

To prove the opposite suppose that βess(A) is finite and let βess(A) = {λ1, . . . , λn}. For p(z) = (z−λ1) · · · · ·(z−λn)
we have {0} = p(βess(A)) = βess(p(A)), and so, p(A) ∈ R(X) by (1.4).

Let A ∈ Poly−1R(X) and let λ be a zero of the minimal polynomial πA. Then πA(z) = (z − λ)q(z) and
therefore,

πA(A) = (A − λ)q(A) = q(A)(A − λ) ∈ R(X). (2.2)

We show that λ ∈ σess(A). If λ < σess(A), then A − λ is Fredholm, and from Lemma 2.1 it follows that
q(A) ∈ R(X) which contradicts the fact that the polynomial πA is minimal. Therefore, π−1

A (0) ⊂ σess(A), which
together with (2.1) gives σess(A) = βess(A) = π−1

A (0). This completes the proof.

Theorem 2.3. Let A ∈ B(X). If θ is one of σKe, σess, σ+ess, σ
−
ess, σ

le f t
ess , σ

ri1ht
ess , ωess, ω+ess, ω

−
ess, ω

le f t
ess , ω

ri1ht
ess , βess, β+ess,

β−ess, β
le f t
ess , β

ri1ht
ess , then

A ∈ Poly−1R(X)⇐⇒ θ(A) is finite,

and in that case

θ(A) = π−1
A (0) ,

where πA is the minimal polynomial of A.

Proof. From Theorem 1.1, (1.6), (1.7) and (1.8) it follows that if one of the mentioned spectra is finite, then
any other of them is also finite and they are equal. Now the rest of the assertion follows from Theorem
2.2.

Corollary 2.4. If A ∈ Poly−1R(X), then for all λ ∈ π−1
A (0), A − λ is not essentially Kato, and for all λ < π−1

A (0),
A − λ is Browder.

Proof. Follows from Theorem 2.3.

Corollary 2.5. If A ∈ Poly−1R(X), then σ(A) is at most countable.

Proof. From (1.5) it follows that the set σ(A) \βess(A) consists of the isolated points of σ(A) and consequently,
it is at most countable. Since, by Theorem 2.2, βess(A) is finite, it follows that σ(A) is at most countable.
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We recall the following concept introduced by A. Jeribi and N. Moalla in [11], Definition 1.2:

Definition 2.6. An operator A ∈ B(X) is called generalized Riesz if there exists E a finite subset of C such that
(i) For all λ ∈ C\E, A − λ is a Fredholm operator on X.
(ii) For all λ ∈ C\E, A − λ has finite ascent and finite descent.
(iii) All λ ∈ σ(A)\E are eigenvalues of finite multiplicity, and have no accumulation point except possibly points

of E.

Theorem 2.7. Let A ∈ B(X). Then A is generalized Riesz if and only if A has the finite Browder spectrum.

Proof. Suppose that A is generalized Riesz. Then there exists a finite subset E of C such that for every
λ ∈ C\E, A − λ is a Fredholm operator on X with finite ascent and finite descent, i.e. A − λ is Browder.
Therefore, βess(A) ⊂ E and hence, βess(A) is a finite subset of C.

To prove the converse, suppose that βess(A) is a finite subset of C. For all λ ∈ C\βess(A), A−λ is Browder.
Let λ ∈ σ(A)\βess(A). Then A− λ is a Weyl operator and asc(A − λ) = dsc(A − λ) = p < ∞. From i(A− λ) = 0
it follows that α(A − λ) = β(A − λ) and since λ ∈ σ(A) we get α(A − λ) > 0, i.e. λ is an eigenvalue of A.
Since N∞(A − λ) = N((A − λ)p) and (A − λ)p ∈ Φ(X) ([9] (6.4.4.1)) we get dimN∞(A − λ) < ∞. From (1.5) it
follows that all λ ∈ σ(A)\βess(A) have no accumulation point except possibly points of βess(A). Therefore, A
is generalized Riesz with E = βess(A).

Corollary 2.8. Let A ∈ B(X). Then A is generalized Riesz if and only if A is polynomially Riesz.

Proof. Follows from Theorem 2.2 and Theorem 2.7.

The following two results extend Corollary 2.1 in [2] and Proposition 3.1 in [11].

Theorem 2.9. Let A ∈ Poly−1R(X) and let µ ∈ σ(πA(A)) \ {0}. Then

N∞(µ − πA(A)) =
⊕
λ∈σ(A)
πA (λ)=µ

N∞(λ − A)

and
mult(πA(A), µ) =

∑
λ∈σ(A)
πA(λ)=µ

mult(A, λ).

Proof. From πA(A) ∈ R(X) it follows that βess(πA(A)) = {0} and the assertion follows from Theorem 1.2.

Theorem 2.10. Let A ∈ B(X). Then A ∈ Poly−1R(X) if and only if A′ ∈ Poly−1R(X′) and the minimal polynomial
of A is equal to the minimal polynomial of A′.

Moreover, if A ∈ Poly−1R(X), then for every λ ∈ σ(A) \ π−1
A (0),

mult(A, λ) = mult(A′, λ).

Proof. For a nonzero complex polynomial p(z), from (1.3) it follows that p(A) ∈ R(X) if and only if p(A′) =
p(A)′ ∈ R(X′). Therefore, A ∈ Poly−1R(X) if and only if A′ ∈ Poly−1R(X′) and πA = πA′ .

Let A ∈ Poly−1R(X) and let λ ∈ σ(A) \ π−1
A (0). From Theorem 2.2 it follows that λ ∈ σ(A) \ βess(A),

and hence A − λ is Browder and λ is an eigenvalue of A. Consequently, N∞(A − λ) = N((A − λ)p) and
N∞(A′ − λ) = N((A′ − λ)p) where p = asc(A− λ) = asc(A′ − λ). Since A− λ is Weyl, it follows that (A− λ)p is
Weyl ([9], Theorem 6.5.2). Hence and according to [4], Proposition 1.2.7, it follows

mult(A, λ) = dim N((A − λ)p) = α((A − λ)p) = β((A − λ)p)
= α((A′ − λ)p) = dim N((A′ − λ)p) = mult(A′, λ).
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Gilfeather ([5], Theorem 1) proved that if A is a polynomially compact operator on a Banach space, then
every λ zero of the minimal polynomial of A is the limit of the eigenvalues of A or else there exists a closed
infinite dimensional A-invariant subspace Xλ such that the reduction of A − λ on Xλ is quasinilpotent. We
shall show that polynomially Riesz operators have the same property. In order to prove this we need the
following simple assertion.

Lemma 2.11. Let A ∈ B(X) and let X = X1 ⊕ · · · ⊕ Xn where Xi is a closed A-invariant subspace of X and
A = A1 ⊕ · · · ⊕ An where Ai is the reduction of A on Xi, i = 1, . . . , n. Then

σess(A) = σess(A1) ∪ · · · ∪ σess(An), (2.3)

and A is Riesz if and only if A1, . . . ,An are Riesz.

Proof. For λ ∈ C, from
N(A − λ) = N(A1 − λ) ⊕ · · · ⊕N(An − λ)

and
R(A − λ) = R(A1 − λ) ⊕ · · · ⊕ R(An − λ)

it follows that A − λ is Fredholm if and only if Ai − λ is Fredholm, i = 1, . . . ,n. This implies (2.3) and
therefore, σess(A) = {0} if and only if σess(Ai) = {0}, i = 1, . . . ,n, which means that A is Riesz if and only if
A1, . . . ,An are Riesz.

Theorem 2.12. Let A ∈ Poly−1R(X). Then each λ ∈ π−1
A (0) is either the limits of of the eigenvalues of A or else there

exists a closed A-invariant subspace Xλ of X which is infinite dimensional and σ(Aλ) = {λ} where Aλ is the reduction
of A on Xλ.

Proof. From Theorem 2.2 and Theorem 2.7 it follows that each λ ∈ π−1
A (0) is either the limits of of the

eigenvalues of A or else λ is an isolated point of σ(A). Let λ ∈ π−1
A (0) and let λ be an isolated point of σ(A).

Then there exist open sets Ω1 and Ω2 which boundaries are simple closed rectifiable curves and such that
Ω1 ∩ Ω2 = ∅, λ ∈ Ω1, the closure of Ω1 contains no other point of σ(A) and σ(A) ⊂ Ω1 ∪ Ω2. Using the
spectral projection Pλ = 1

2πi

∫
∂Ω1

(zI − A)−1dz we have X = Xλ ⊕ Xµ, where Xλ = PλX and Xµ = (I − Pλ)X
are closed A-invariant subspaces of X, A = Aλ ⊕ Aµ, where Aλ (Aµ) is the reduction of A on Xλ (Xµ), and
also σ(Aλ) = {λ} and σ(Aµ) = σ(A)\{λ}. From πA(A) ∈ R(X) it follows that πA(Aµ) is Riesz ([4], Lemma
3.5.1; [1], Theorem 3.113 (iii)). Since (Aµ − λ)−1 commutes with πA(Aµ), by [1], Theorem 3.112 (ii), we get
that (Aµ − λ)−1πA(Aµ) is Riesz, that is there exists a polynomial q which degree is less than the degree of
the polynomial πA such that q(Aµ) is Riesz. We shall prove that dim Xλ = ∞. Suppose the opposite that
dim Xλ < ∞. Then q(Aλ) is compact and hence it is Riesz. Since q(A) = q(Aλ) ⊕ q(Aµ), from Lemma 2.11 it
follows that q(A) is Riesz which contradicts the fact that the polynomial πA is minimal. Thus Xλ is infinite
dimensional and the proof is complete.

Gilfeather ([5], Theorem 1) described the structure of polynomially compact operators proving that every
polynomially compact operator on a Banach space is the finite direct sum of translates of operators which
have property that the finite power of the operators is compact. The structure of polynomially Riesz
operators on Hilbert spaces was described by Y. M. Han, S. H. Lee and W. Y. Lee ([7], Lemma 3): every
polynomially Riesz operators on a Hilbert space is the finite direct sum of translates of Riesz operators.
This assertion holds also for polynomially Riesz operators on Banach spaces:

Theorem 2.13. If A ∈ Poly−1R(X) and π−1
A (0) = {λ1, . . . , λn}, then the Banach space X is decomposed into the direct

sum X = X1 ⊕ · · · ⊕Xn where Xi is closed A-invariant subspace of X, and A = A1 ⊕ · · · ⊕An where Ai is the reduction
of A on Xi and Ai − λi is Riesz, i = 1, . . . , n.

Proof. Let A ∈ Poly−1R(X) and π−1
A (0) = {λ1, . . . , λn}. There exist open sets Ω1, . . . ,Ωn such that λi ∈ Ωi, ∂Ωi

is a rectifiable simple closed curve, i = 1, . . . ,n, σ(A) ⊂ ∪n
i=1Ωi, Ωi ∩Ω j = ∅ for i , j and if λi is an isolated
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point of σ(A), then σ(A) ∩Ωi = {λi}. For the spectral projections Pi =
∫
∂Ωi

(zI − A)−1dz and Xi = PiX we have
X = X1 ⊕ · · · ⊕Xn and Xi is a closed A-invariant subspace of X, i = 1, . . . n. Also A = A1 ⊕ · · · ⊕An where Ai is
the reduction of A on Xi and σ(Ai) = σ(A)∩Ωi. By Theorem 2.3, σess(A) = {λ1, . . . , λn} and according to (2.3)
we conclude σess(Ai) = {λi}, i = 1, . . . ,n. Hence σess(Ai − λi) = {0}, that is Ai − λi is Riesz, i = 1, . . . , n.

Gilfeather ([5], Theorem 2) described also the structure of polynomially compact normal operators on
a Hilbert space. In the following theorem we extend Gilfeather’s result on polynomially Riesz normal
operators.

Theorem 2.14. Let H be a Hilbert space and let A ∈ B(H) be normal and polynomially Riesz. Let π−1
A (0) =

{λ1, . . . , λn}. Then for each i ∈ {1, . . . , n}, λ ∈ π−1
A (0) is either the limits of of the eigenvalues of A or else it is an

isolated eigenvalues with the infinite dimensional eigenspace.
Then H is decomposed into the orthogonal direct sum H = H1 ⊕ · · · ⊕Hn and A = A1 ⊕ · · · ⊕ An where Ai is the

reduction of A on Hi, and Ai − λi is compact, i = 1, . . . , n. Moreover, if λi is an isolated point of σ(A), then Ai = λiI.

Proof. Applying the functional calculus as in the proof of Theorem 2.13, we get that the spectral projections
Pi, i = 1, . . . , n, are orthogonal and PiP j = 0, i , j. Therefore, Hi = PiX are closed A-invariant subspaces of H
such that Hi⊥H j, i , j, and hence H is decomposed into the orthogonal direct sum H = H1 ⊕ · · · ⊕Hn. If Ai is
the reduction of A on Hi, then from Theorem 2.13 we have that Ai−λi is Riesz. LetΠi : B(Hi)→ C(Hi) denote
the natural homomorphism where C(Hi) is the Calkin algebra over Hi, C(Hi) = B(Hi)/K(Hi), i = 1, . . . ,n.
Since C(Hi) is a C∗ algebra and sinceΠi(Ai −λi) is normal and quasinilpotent, it follows thatΠi(Ai −λi) = 0,
that is Ai − λi is compact.

From Theorem 2.12 it follows that each λi ∈ π−1
A (0) is either the limits of of the eigenvalues of A or else

it is an isolated point of σ(A) in which case σ(Ai) = {λi} and Hi is infinite dimensional. Since σ(Ai − λi) = {0}
and Ai−λi is normal, it follows that Ai−λi = 0, i.e. Ai = λiI. As Hi is infinite dimensional, λi is an eigenvalue
with the infinite dimensional eigenspace.

If H is a Hilbert space, an operator A ∈ B(H) is called hyponormal if ∥A∗x∥ ≤ ∥Ax∥ for all x ∈ H, that is
A∗A − AA∗ ≥ 0. Gilfeather proved for A ∈ B(H) ([5], Proposition 4):

A is hyponormal, σ(A) is countable =⇒ A is normal. (2.4)

The conclusion of (2.4) extends to paranormal operators, i.e. a paranormal operator A ∈ B(H) with countable
spectrum is normal [12, 14], where A is paranormal if ||Ax||2 ≤ ||A2x|| for all unit vectors x ∈ H. Evidently,
A ∈ B(H) hyponormal implies A paranormal. The following corollary is an extension of Corollary 2 in [5]
to polynomially Riesz paranormal operators.

Corollary 2.15. Every polynomially Riesz paranormal operator in B(H) is normal.

Proof. If A ∈ Poly−1R(H) and π−1
A (0) = {λ1, ..., λn}, then it follows from Theorem 2.7 that H =

⊕n
i=1 Hi, where

each Hi is a closed A-invariant subspace of H, and A =
⊕n

i=1 Ai. Here each Ai − λi is Riesz, the operator
Ai has at best a countable spectrum (with λi as its only possible limit point) and all points of σ(Ai) other
than the point λi are eigenvalues of the operator. Recall that the restriction of a paranormal operator to an
invariant subspace is paranormal and (as noted above) a paranormal operator with countable spectrum is
normal. Hence each Ai, and consequently A, is normal.

The following theorem is an extension of Theorem 2.6 in [11] and Theorem 5.2, Chapter V in [16].

Theorem 2.16. Let B ∈ B(X). Then the following conditions are equivalent:
(2.16.1) B is Browder.
(2.16.2) There exist n ∈N, T ∈ B(X) and A ∈ K(X) such that

TBn = BnT = I − A.
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(2.16.3) There exist n ∈N, T ∈ B(X), A ∈ Poly−1K(X) and λ ∈ C such that πA(λ) , 0 and

TBn = BnT = λ − A.

(2.16.4) There exist n ∈N, T ∈ B(X), A ∈ Poly−1R(X) and λ ∈ C such that πA(λ) , 0 and

TBn = BnT = λ − A. (2.5)

Proof. (2.16.1) =⇒ (2.16.2): Follows from [16], Theorem 5.2, p. 123-124.
(2.16.2) =⇒ (2.16.3): Suppose that there exist n ∈N, T ∈ B(X) and A ∈ K(X) such that TBn = BnT = I −A.

Then A ∈ Poly−1K(X) with πA(z) = z and hence πA(1) , 0. Thus, the statement (2.16.3) holds for λ = 1.
(2.16.3) =⇒ (2.16.4): Follows from the inclusion K(X) ⊂ R(X).
(2.16.4) =⇒ (2.16.1): If (2.16.4) holds, then from Corollary 2.4 it follows that λ − A is Browder and from

(2.5), according to [9], Theorem 7.10.2, we get Bn is Browder. Again by [9], Theorem 7.10.2 we conclude that
B is Browder.

If A ∈ B(X,Y), B ∈ B(Y,X) and λ ∈ C, λ , 0, it is well know that ([3], Chapter 5.1, Lemma 7)

BA − λ is left (right) invertible⇐⇒ AB − λ is left (right) invertible, (2.6)

BA − λ is left (right) Fredholm⇐⇒ AB − λ is left (right) Fredholm. (2.7)

Theorem 2.17. Let A ∈ B(X,Y), B ∈ B(Y,X) and let λ ∈ C, λ , 0. Then

BA − λ is left Browder⇐⇒ AB − λ is left Browder, (2.8)

and

BA − λ is right Browder⇐⇒ AB − λ is right Browder. (2.9)

Proof. From [17], Theorem 5, for T ∈ B(X) we have

β
le f t
ess (T) = σle f t

ess (T) ∪ acc σle f t(T) (2.10)

From (2.6) it follows that

σle f t(BA) ∪ {0} = σle f t(AB) ∪ {0}, (2.11)

while (2.7) implies

σle f t
ess (BA) ∪ {0} = σle f t

ess (AB) ∪ {0}. (2.12)

From (2.11) it follows that

acc σle f t(BA) = acc σle f t(AB). (2.13)

Now from (2.10), (2.12) and (2.13) we conclude

βle f t
ess (BA) ∪ {0} = βle f t

ess (AB) ∪ {0}, (2.14)

which implies (2.8).
Similarly, we obtain the equality

βri1ht
ess (BA) ∪ {0} = βri1ht

ess (AB) ∪ {0}, (2.15)

which implies (2.9).



S. Č. Živković Zlatanović et al. / Filomat 28:1 (2014), 197–205 205

If A ∈ B(X,Y) and B ∈ B(Y,X), from (2.14) and (2.15) it follows

βess(BA) ∪ {0} = βess(AB) ∪ {0}. (2.16)

A. Jeribi and N. Moalla ([11], Proposition 3.3) proved that if BA is polynomially compact, then AB and BA
are generalized Riesz operators. We can improve on this:

Theorem 2.18. Let A ∈ B(X,Y) and B ∈ B(Y,X). Then

BA ∈ Poly−1R(X)⇐⇒ AB ∈ Poly−1R(Y) (2.17)

and in that case

π−1
BA(0) ∪ {0} = π−1

AB(0) ∪ {0} (2.18)

and

σ(BA) \ (π−1
BA(0) ∪ {0}) = σ(AB) \ (π−1

AB(0) ∪ {0}). (2.19)

Proof. From Theorem 2.2 and (2.16) we get (2.17) and (2.18). (2.19) follows from (2.6) and (2.18).

We remark that if A ∈ B(X,Y), B ∈ B(Y,X) and BA ∈ Poly−1R(X), then for all λ ∈ σ(BA)\(π−1
BA(0) ∪ {0}) it

follows

mult(BA, λ) = mult(AB, λ). (2.20)

For a proof of the equality (2.20) we refer the reader to the proof of Proposition 3.3 in [11].
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