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aFaculty of Economics and Business, University of Maribor, Maribor, Slovenia; bFaculty of
Sciences and Mathematics, University of Niš, Niš, Serbia

Communicated by R. Loewy

(Received 2 June 2013; accepted 13 November 2013)

Let A be a unital ring admitting involution. We introduce an order on A and
show that in the case when A is a Rickart ∗-ring, this order is equivalent to the
well-known star partial order. The notion of the left-star and the right-star partial
orders is extended to Rickart ∗-rings. Properties of the star, the left-star and the
right-star partial orders are studied in Rickart ∗-rings and some known results are
generalized. We found matrix forms of elements a and b when a ≤ b, where ≤
is one of these orders. Conditions under which these orders are equivalent to the
minus partial order are obtained. The diamond partial order is also investigated.
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1. Introduction

Let A be a ring. An involution * in a ring A is a bijection a �→ a∗ of A onto itself such
that

(a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗,

for every a, b ∈ A. A ring admitting an involution will be called an involutory ring. For
a ∈ A, we will denote by a◦ the right annihilator of a, i.e. the set a◦ = {x ∈ A : ax = 0}.
Similarly we denote the left annihilator ◦a of a, i.e. the set ◦a = {x ∈ A : xa = 0}. A
ring A is called a Rickart ring if for every a ∈ A there exist some idempotent elements
p, q ∈ A such that a◦ = p · A and ◦a = A·q . An involutory ring A is a Rickart ∗-ring
if the left annihilator ◦a of any element a ∈ A is generated by a self-adjoint idempotent
e ∈ A, i.e. ◦a = A·e where e = e∗ = e2. The analogous property for right annihilators is
automatically fulfilled in this case. Note that the self-adjoint idempotent e is unique: let f
be a self-adjoint idempotent in A such that Ae = A f . Then, e = ee ∈ Ae = A f hence
e f = x f f = x f = e for some x ∈ A. We have e = e f = f e and similarly f = f e = e f ,
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344 J. Marovt et al.

so e = f . Note also that if A is a Rickart ring, then A has a unity element. The proof is
similar to that used for Rickart ∗-rings.[1]

Let H be a Hilbert space and B(H) the algebra of all bounded linear operators on H .
The image and kernel of A ∈ B(H) will be respectively denoted by Im A and Ker A. Šemrl
defined in [2] an order in B(H), called the minus partial order, in the following way. For

A, B ∈ B(H) we write A
−≤ B when there exist idempotent operators P, Q ∈ B(H) such

that Im P = Im A, Ker A = Ker Q, P A = P B, and AQ = B Q.
Šemrl proved that this is indeed a partial order on B(H). He also presented some

equivalent definitions of this order (see Theorem 2 in [2]). In [3], authors found another
equivalent definition which allowed them to consider the algebraic version of the minus
partial order. Namely, the following order, called the minus order on a ring A with the
unit 1, was introduced.

Definition 1 Let A be a ring with the unit 1. For a, b ∈ A we write a
−≤ b when there

exist idempotent elements p, q ∈ A such that

(i) ◦a = A · (1 − p),
(ii) a◦ = (1 − q) · A,

(iii) pa = pb, and
(iv) aq = bq .

Authors proved in [3] that this is indeed a partial order when A is a Rickart ring.
Many other partial orders were defined on B(H). For example, Drazin [4] defined the

star partial order in the following way:

A ≤
∗

B when A∗ A = A∗ B and AA∗ = B A∗, (1)

A, B ∈ B(H). In [5], authors proved that the following definition is an equivalent definition
of this order on B(H).

Definition 2 For A, B ∈ B(H) we write A ≤
∗

B when there exist self-adjoint idempotent

operators P, Q ∈ B(H) such that

(i) Im P = Im A,
(ii) Ker A = Ker Q,

(iii) P A = P B, and
(iv) AQ = B Q.

Following the idea of the paper [3], we will in the next section present another equivalent
definition of the star partial order on B(H) which we will then generalize to involutory rings
with a unit and show that in the case when the ring is a Rickart ∗-ring, the new definition
is equivalent to the original, Drazin’s definition of the star partial order (1). We will then
consider the left-star and the right-star partial orders in a similar way (see the third section)
and the diamond partial order (see the fourth section), and study properties of these orders
and generalize some known results.
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Linear and Multilinear Algebra 345

2. Star partial order

Let us first present a new equivalent definition of the star partial order on B(H).

Definition 3 For A, B ∈ B(H) we write A ≤ B when there exist self-adjoint idempotent
operators P, Q ∈ B(H) such that

(i) ◦ A = B(H) · (I − P),
(ii) A◦ = (I − Q) · B(H),

(iii) P A = P B, and
(iv) AQ = B Q.

To prove that this is indeed an equivalent definition of the star partial order, we will
need the following two lemmas.

Lemma 2.1 Let A, B ∈ B(H). Then,

(i) A◦ = B◦ if and only if Ker A = Ker B.
(ii) ◦ A = ◦ B if and only if Im A = Im B.

Proof Let A, B ∈ B(H) and A◦ = B◦. Suppose x ∈ Ker A and let P be a self-adjoint
idempotent where Im P = Ker A. So, Px = x and AP = 0. It follows that B P = 0 and
hence Bx = 0. So, Ker A ⊆ Ker B. In the same way, we show that Ker B ⊆ Ker A hence
Ker A = Ker B.

Suppose now Ker A = Ker B for A, B ∈ B(H). Let X ∈ A◦. So, AX = 0 hence Im
X ⊆ Ker A. We have B Xz = 0 for every z ∈ H hence X ∈ B◦. It follows that A◦ ⊆ B◦.
Similarly we get B◦ ⊆ A◦ hence A◦ = B◦.

Note that ◦ A = ◦ B if and only if (A∗)◦ = (B∗)◦. So, ◦ A = ◦ B if and only if Ker
A∗ = Ker B∗ which is equivalent to Im A = Im B. �

The following lemma will be presented in a broader context of unitary rings, but note
that it holds also for idempotent operators in B(H).

Lemma 2.2 Let A be a ring with the unit 1, and let p be an idempotent element in A.
Then

(i) p◦ = (1 − p) · A.
(ii) ◦ p = A · (1 − p).

Proof The proof is simple so we will omit it (see Lemma 2.2 in [3]). �

Corollary 2.1 Let A, B ∈ B(H). Then, A ≤ B if and only if A ≤
∗

B.

Proof Let P, Q ∈ B(H) be idempotents. By Lemma 2.2, ◦ A = B(H) · (I − P) is
equivalent to ◦ A = ◦ P , and A◦ = (I − Q) · B(H) is equivalent to A◦ = Q◦. From
Lemma 2.1, we may conclude that ◦ A = B(H) · (I − P) if and only if Im A = Im P, and
A◦ = (I − Q) · B(H) if and only if Ker A = Ker Q. �
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346 J. Marovt et al.

We will now extend the order defined with Definition 3 from B(H) to an involutory
ring with the unit 1. The first two conditions from Definition 2 cannot be transferred but
since we may define left and right annihilators of any element in a ring, all the conditions
from Definition 3 may be used.

Definition 4 Let A be an involutory ring with the unit 1. For a, b ∈ A we write a ≤ b
when there exist self-adjoint idempotent elements p, q ∈ A such that

(i) ◦a = A · (1 − p),
(ii) a◦ = (1 − q) · A,

(iii) pa = pb, and
(iv) aq = bq .

The order ≤ will be called the star order on A.

We will prove later on (see Theorems 2 and 1) that this order ≤ is indeed a partial order
when A is a Rickart ∗-ring, and that at least in Rickart ∗-rings such an order is rightfully
named ‘the star order’.

Drazin introduced in [4] the star partial order in a broader sense of proper ∗-semigroups.
Recall that a special case of a proper ∗-semigroup are all proper involutory rings with
‘properness’ as customarily defined via aa∗ = 0 implies a = 0. Recall also (see [6] or
[1]) that any Rickart ∗-ring has a unit and is a proper involutory ring (i.e. aa∗ = 0 implies
a = 0). Theorem 1 will show that on Rickart ∗-rings the order defined with Definition 4
represents the star partial order which was introduced by Drazin in [4]. In the proof of
Theorem 1, we will need the following remark and some auxiliary results.

Remark 2.1 Suppose p and q are idempotent elements in A. Then, any x ∈ A can be
represented in the following form:

x = pxq + px(1 − q) + (1 − p)xq + (1 − p)x(1 − q) =
[

x1,1 x1,2
x2,1 x2,2

]
p×q

.

Here, x1,1 = pxq, x1,2 = px(1 − q), x2,1 = (1 − p)xq, x2,2 = (1 − p)x(1 − q). If
x = (xi, j )p×q and y = (yi, j )p×q , then x + y = (xi, j + yi, j )p×q . Moreover, if r ∈ A is

idempotent and z = (zi, j )q×r , then xz =
(∑2

k=1xi,k zk, j

)
p×r

. Thus, if we have idempotents

in A, then the usual algebraic operations in A can be interpreted as simple operations
between appropriate 2 × 2 matrices over A. Furthermore,

x∗ =
[

x∗
1,1 x∗

2,1

x∗
1,2 x∗

2,2

]
q∗×p∗

.

Similarly, if e1, e2, . . ., en and f1, f2, . . ., fn are idempotents in A such that e1 + e2 +
· · · + en = 1 = f1 + f2 + · · · + fn , and for i 	= j , ei e j = 0 and fi f j = 0 (i.e. these sums
of idempotents represent two decompositions of the identity of A), then for any x ∈ A we
have

x = 1 · x · 1 = (e1 + e2 + · · · + en)x( f1 + f2 + · · · + fn) =
n∑

i, j=1

ei x f j .
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Linear and Multilinear Algebra 347

We may write x as a matrix

x =
⎡
⎢⎣

x11 · · · x1n
...

. . .
...

xn1 · · · xnn

⎤
⎥⎦

e× f

where xi j = ei x f j .
Again, the usual algebraic operations in A can be interpreted as simple operations

between appropriate n × n matrices over A (see [3]).

Let

LP(a) := {p ∈ A : p = p2, ◦a = A · (1 − p)} = {p ∈ A : p = p2, ◦a = ◦ p},
RP(a) := {q ∈ A : q = q2, a◦ = (1 − q) · A} = {q ∈ A : q = q2, a◦ = q◦}.

Since A is Rickart ∗-ring, there exists the unique self-adjoint idempotent in LP(a). We
will denote it by lp(a). Similarly, let rp(a) denote the unique self-adjoint idempotent in
RP(a). Since a = lp(a)a = arp(a), it follows that

a ≤ b ⇔ a = lp(a)b = brp(a).

It is shown in [3] that if a ∈ A, p ∈ LP(a) and q ∈ RP(a), then

LP(a) =
{[

p p1
0 0

]
p×p

: p1 ∈ p · A · (1 − p)

}
,

RP(a) =
{[

q 0
q1 0

]
q×q

: q1 ∈ (1 − q) · A · q

}
. (2)

There are several characterizations of the star partial order (1) on the set of complex
matrices. One of them is as follows. If A and B are complex matrices, then

A ≤
∗

B ⇔ A = P B = B Q

for some self-adjoint idempotent matrices P and Q. We will show in Theorem 1 that the
same characterization is true in Rickart ∗-rings.

First, let us present the following lemmas which will be used frequently.

Lemma 2.3 Let A be Rickart ∗-ring and a ∈ A. Then,

(i) (a∗)◦ = (lp(a))◦;
(ii) ◦(a∗) = ◦(rp(a)).

Proof The statement (i) follows by the sequence of equivalences:

a∗x = 0 ⇔ x∗a = 0 ⇔ x∗ ∈ ◦a = ◦lp(a) ⇔ x∗lp(a) = 0 ⇔ lp(a)x = 0.

The statement (ii) can be proved similarly. �
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348 J. Marovt et al.

Lemma 2.4 Let A be Rickart ∗-ring and a, b ∈ A. The following are equivalent:

(i) a = lp(a)b;
(ii) a = pb, for some self-adjoint idempotent p;

(iii) a∗a = a∗b.

Proof (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii): Suppose a = pb where p is self-adjoint idempotent. Then, a = pa and

a∗a = a∗ pb = (pa)∗b = a∗b.
(iii) ⇒ (i): Now, a∗(b − a) = 0. By Lemma 2.3, lp(a)(b − a) = 0 so a = lp(a)b.

�

Similarly, we obtain the following lemma.

Lemma 2.5 Let A be Rickart ∗-ring and a, b ∈ A. The following are equivalent:

(i) a = brp(a);
(ii) a = bq, for some self-adjoint idempotent q;

(iii) aa∗ = ba∗.

Theorem 1 Let A be a Rickart ∗-ring and a, b ∈ A. The following conditions are
equivalent:

(i) a ≤ b;
(ii) there exist self-adjoint idempotents p and q such that a = pb = bq;

(iii) a∗a = a∗b and aa∗ = ba∗;
(iv)

a =
[

a1 0
0 0

]
p×q

and b =
[

a1 0
0 b1

]
p×q

(3)

where p = lp(a) and q = rp(a);
(v) there exist self-adjoint idempotents p and q such that (3) holds.

Proof (i) ⇔ (ii) ⇔ (iii) follows by Lemmas 2.4 and 2.5.
(i) ⇒ (iv): Suppose that a ≤ b. Then a = pb = bq where p = lp(a) and q = rp(a).

It is clear that a = paq so a has the requisite matrix form. According to Remark 2.1
representation of b follows by

pbq = bqq = bq = a,

pb(1 − q) = bq(1 − q) = 0,

(1 − p)bq = (1 − p)pb = 0.

(iv) ⇒ (v) is trivial.
(v) ⇒ (ii): We have

pb =
[

p 0
0 0

]
p×p

[
a1 0
0 b1

]
p×q

=
[

a1 0
0 0

]
p×q

= a

and similarly a = bq . �

D
ow

nl
oa

de
d 

by
 [

D
ok

uz
 E

yl
ul

 U
ni

ve
rs

ity
 ]

 a
t 1

6:
11

 0
4 

N
ov

em
be

r 
20

14
 



Linear and Multilinear Algebra 349

The next theorem can be proved directly in a similar way as Theorem 3.3 in [3]. Since
any Rickart ∗-ring is a proper involutory ring and since Drazin introduced the star partial
order (1) in a broader sense of proper ∗-semigroups, the next theorem is a direct consequence
of Theorem 1 ((i) ⇔ (iii)).

Theorem 2 Let A be a Rickart ∗-ring. The order ≤, introduced with Definition 4, is a
partial order in A.

From now on, we may and will denote the star partial order on a Rickart ∗-ring by ≤.

Remark 2.2 A C∗-algebra that is a Rickart ∗-ring is called a Rickart C∗-algebra. Recall
(see [1]) that the algebra B(H) is an example of a Rickart C∗-algebra.

Remark 2.3 Statement (ii) of Theorem 1 shows that the conditions (i) and (ii) in
Definition 4 are redundant in the case when A is a Rickart ∗-ring. Therefore, according
to Lemma 2.1, the conditions (i) and (ii) in Definition 2 are also redundant.

Remark 2.4 Statements (iv) and (v) of Theorem 1 give the characterization of all elements
b above a given element a under the star partial order.

Corollary 2.2 Let A be a Rickart ∗-ring and a, b ∈ A. Then, a ≤ b if and only if
b − a ≤ b.

Proof Suppose that a ≤ b. By Theorem 1, a = pb = bq for some self-adjoint idempotents
p and q . Now we have b −a = b − pb = p′b and b −a = b −bq = bq ′ where p′ = 1− p
and q ′ = 1 − q are self-adjoint idempotents. Hence, by Theorem 1 again, we conclude that
b − a ≤ b. Since a + (b − a) = b, the opposite direction follows. �

Theorem 3 Let A be a Rickart ∗-ring and a, b ∈ A. Then, a ≤ b if and only if there
exist decompositions of the identity of the ring A

1 = e1 + e2 + e3, 1 = f1 + f2 + f3

where e1 = lp(a), e2 = lp(b − a), f1 = rp(a), f2 = rp(b − a), and e3, f3 are self-adjoint
idempotents, such that

a =
⎡
⎣ a1 0 0

0 0 0
0 0 0

⎤
⎦

e× f

and b =
⎡
⎣ a1 0 0

0 b1 0
0 0 0

⎤
⎦

e× f

. (4)

Proof The proof proceeds along the same lines as the proof of Theorem 3.4 in [3]. In this
setting, the proof is slightly simpler. For the sake of completion, let us present it. ‘If’ part
follows by Theorem 1. Suppose now that a ≤ b. By Theorem 1, we have

a =
[

a1 0
0 0

]
p×q

and b =
[

a1 0
0 b1

]
p×q

,

where p = lp(a) and q = rp(a). Set e1 = p, e2 = lp(b1) = lp(b−a) and e3 = 1−e1 −e2.
Since pb1 = p(1 − p)b(1 − q) = 0 and ◦b1 = ◦(lp(b1)), we have plp(b1) = 0, i.e.
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350 J. Marovt et al.

e1e2 = 0. Also, e2e1 = (e1e2)
∗ = 0. Now it is easy to check that 1 = e1 + e2 + e3 is

decomposition of the identity. Similarly, we can show that 1 = f1 + f2 + f3, where f1 = q ,
f2 = rp(b − a), f3 = 1 − f1 − f2, is decomposition of the identity. Because of a = e1a f1
and b − a = e2(b − a) f2, we conclude that a and b have representations (4). �

In the next lemma, we obtain the matrix representations of a and b with respect to lp(a)

and rp(a) when a
−≤ b. The result is, in some way, analogous to Theorem 1 in [7] where the

case of complex matrices is considered. Our proof is completely different.

Lemma 2.6 Let A be a Rickart ∗-ring and a, b ∈ A. Then, a
−≤ b if and only if there

exist p1 ∈ p · A · (1 − p), q1 ∈ (1 − q) · A · q, and b4 ∈ (1 − p) · A · (1 − q) such that

a =
[

a1 0
0 0

]
p×q

and b =
[

a1 + p1b4q1 p1b4
b4q1 b4

]
p×q

(5)

where p = lp(a) and q = rp(a).

Proof It is clear that a has matrix representation given in (5). Suppose that b =
[

b1 b2
b3 b4

]
p×q

.

By definition, a
−≤ b if and only if there exist p′ ∈ LP(a) and q ′ ∈ RP(a) such that a = p′b

and a = bq ′. According to the characterizations (2), this is equivalent to[
a1 0
0 0

]
p×q

= a = p′b =
[

p p1
0 0

]
p×p

[
b1 b2
b3 b4

]
p×q

=
[

b1 + p1b3 b2 + p1b4
0 0

]
p×q

,[
a1 0
0 0

]
p×q

= a = bq ′ =
[

b1 b2
b3 b4

]
p×q

[
q 0
q1 0

]
q×q

=
[

b1 + b2q1 0
b3 + b4q1 0

]
p×q

.

This is true if and only if b2 = −p1b4, b3 = −b4q1 and b1 = a1 + p1b4q1. We can take
p1 = −p1 and q1 = −q1. The proof is complete. �

It is clear that the star partial order implies the minus partial order. We will now
investigate under what conditions the reverse holds. Many of these results are motivated
by the corresponding results for complex matrices.[7,8] Even in the case of matrices, the
proofs are not elementary. In some cases, the presented proofs are even simpler than the
matrix proofs which involve finite-dimensional linear algebra methods and/or use a Moore–
Penrose inverse. Of course, we cannot use these methods.

Theorem 4 Let A be a Rickart ∗-ring and a, b ∈ A such that a
−≤ b. The following

conditions are equivalent:

(i) a ≤ b;
(ii) ba∗ and a∗b are self-adjoint;

(iii) ba∗ and a∗b are normal.

Proof (i) ⇒ (ii): Since a ≤ b, we have aa∗ = ba∗ and a∗a = a∗b so ba∗ and a∗b are
self-adjoint.

(ii) ⇒ (iii) is trivial.
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Linear and Multilinear Algebra 351

(iii) ⇒ (i): Suppose that a
−≤ b and that ba∗ and a∗b are normal. Then, ba∗ab∗ =

ab∗ba∗. Using the representations given in (5), we obtain

ba∗ab∗ =
[

(a1 + p1b4q1)a∗
1a1(a1 + p1b4q1)

∗ (a1 + p1b4q1)a∗
1a1(b4q1)

∗
b4q1a∗

1a1(a1 + p1b4q1)
∗ b4q1a∗

1a1(b4q1)
∗

]
p×p

,

ab∗ba∗ =
[

a1(a1 + p1b4q1)
∗(a1 + p1b4q1)a∗

1 + a1(b4q1)
∗b4q1a∗

1 0
0 0

]
p×p

.

It follows that 0 = b4q1a∗
1a1(b4q1)

∗ = (b4q1a∗
1)(b4q1a∗

1)∗. Since A is proper, we have
b4q1a∗

1 = 0. Hence, b4q1 ∈ ◦(a∗
1) = ◦(a∗) = ◦(rp(a)) = ◦q . Since q1 ∈ A · q , we obtain

b4q1 = 0. Similarly, we obtain that p1b4 = 0, so

b =
[

a1 0
0 b4

]
p×q

.

By Theorem 1, a ≤ b. �

Lemma 2.7 Let A be a Rickart ∗-ring and a ∈ A. Then,

(i) lp(a) = rp(a∗);
(ii) lp(a) = lp(aa∗);

(iii) rp(a∗) = rp(aa∗);
(iv) lp(aa∗) = rp(aa∗) = lp(a) = rp(a∗).

Proof

(i) The proof follows directly from (i) of Lemma 2.3.
(ii) Every Rickart ∗-ring is proper, i.e. a∗a = 0 implies a = 0 for every a ∈ A.

Let a∗ax = 0. Then (ax)∗(ax) = 0 and hence ax = 0. Similarly, xaa∗ = 0
implies xa = 0. So, xaa∗ = 0 if and only if xa = 0. This means ◦(aa∗) = ◦a so
lp(aa∗) = lp(a).

(iii) Similarly to (ii).
(iv) Follows by (i), (ii) and (iii). �

Theorem 5 Let A be a Rickart ∗-ring and a, b ∈ A such that a
−≤ b. The following

conditions are equivalent:

(i) a ≤ b;
(ii) aa∗ ≤ bb∗;

(iii) a∗a ≤ b∗b.

Proof (i) ⇒ (ii): Suppose that a ≤ b. Then aa∗ = ba∗ = ab∗ and a∗a = a∗b = b∗a.
Therefore,

(aa∗)∗(bb∗) = aa∗bb∗ = aa∗ab∗ = aa∗aa∗ = (aa∗)∗(aa∗).

Likewise, (bb∗)(aa∗)∗ = (aa∗)(aa∗)∗, so aa∗ ≤ bb∗.

D
ow

nl
oa

de
d 

by
 [

D
ok

uz
 E

yl
ul

 U
ni

ve
rs

ity
 ]

 a
t 1

6:
11

 0
4 

N
ov

em
be

r 
20

14
 



352 J. Marovt et al.

(ii) ⇒ (i): Let p = lp(a) and q = rp(a). Then

a =
[

a1 0
0 0

]
p×q

and aa∗ =
[

a1a∗
1 0

0 0

]
p×p

.

Suppose that aa∗ ≤ bb∗. From Theorem 1 ((i) ⇔ (iv)) and Lemma 2.7, it follows that

bb∗ =
[

a1a∗
1 0

0 c

]
p×p

, (6)

where c ∈ (1 − p) · A · (1 − p). By Lemma 2.6, the condition a
−≤ b gives

b =
[

a1 + p1b4q1 p1b4
b4q1 b4

]
p×q

. (7)

It follows that

bb∗ =
[

(a1 + p1b4q1)(a1 + p1b4q1)∗ + (p1b4)(p1b4)∗ (a1 + p1b4q1)(b4q1)∗ + p1b4b∗
4

b4q1(a1 + p1b4q1)∗ + b4(p1b4)∗ b4q1(b4q1)∗ + b4b∗
4

]
p×p

.

(8)

From (6) and (8), we conclude that

a1a∗
1 = (a1 + p1b4q1)(a1 + p1b4q1)

∗ + (p1b4)(p1b4)
∗

= (a1 + p1b4q1)a
∗
1 + (a1 + p1b4q1)(b4q1)

∗ p∗
1 + (p1b4)(p1b4)

∗

= (a1 + p1b4q1)a
∗
1 + (−p1b4b∗

4)p∗
1 + (p1b4)(p1b4)

∗

= (a1 + p1b4q1)a
∗
1 = a1a∗

1 + p1b4q1a∗
1 . (9)

Hence, p1b4q1a∗
1 = 0. By Lemma 2.3 (ii), we conclude 0 = p1b4q1q = p1b4q1, since

q1 ∈ (1 − q) · A · q . Now, from (9) we obtain that (p1b4)(p1b4)
∗ = 0. By properness,

p1b4 = 0. From (a1 + p1b4q1)(b4q1)
∗ + p1b4b∗

4 = 0, we have a1(b4q1)
∗ = 0. Thus,

q(b4q1)
∗ = 0, so b4q1 = 0. Now, (7) becomes

b =
[

a1 0
0 b4

]
p×q

.

By Theorem 1, a ≤ b.
(i) ⇔ (iii): Similarly to (i) ⇔ (ii). �

Lemma 2.8 Let A be Rickart ∗-ring. If a ∈ A is normal, then lp(a) = rp(a).

Proof By Lemma 2.7, rp(a) = rp(a∗a) = rp(aa∗) = rp(a∗) = lp(a). �

Theorem 6 Let A be a Rickart ∗-ring. Let a, b ∈ A where a is normal and a
−≤ b. Then,

the following conditions are equivalent:

(i) a ≤ b;
(ii) a and b commute;

(iii) a∗ and b commute;
(iv) a and b∗ commute;
(v) a∗ and b∗ commute.
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Linear and Multilinear Algebra 353

Proof We will prove only the equivalence of (i) and (ii). Other equivalences can be proved
in a similar way.

(i) ⇒ (ii): Suppose that a is normal and a ≤ b. Theorem 1 and Lemma 2.8 give

a =
[

a1 0
0 0

]
p×p

and b =
[

a1 0
0 b4

]
p×p

where p = lp(a) = rp(a). It is easily seen that

ab = ba =
[

a2
1 0

0 0

]
p×p

.

(ii) ⇒ (i): Since a is normal and a
−≤ b, Lemmas 2.8 and 2.6 give

a =
[

a1 0
0 0

]
p×p

and b =
[

a1 + p1b4q1 p1b4
b4q1 b4

]
p×p

where p = lp(a) = rp(a), p1 ∈ p · A · (1 − p) and q1 ∈ (1 − p) · A · p. Suppose that
ab = ba. It follows that[

a2
1 + a1 p1b4q1 a1 p1b4

0 0

]
p×p

=
[

a2
1 + p1b4q1a1 0

b4q1a1 0

]
p×p

and hence a1 p1b4 = 0. Since a◦
1 = p◦ and p1 ∈ p · A · (1 − p), it follows that p1b4 = 0.

Similarly, from b4q1a1 = 0 we obtain b4q1 = 0. Thus,

b =
[

a1 0
0 b4

]
p×p

and a ≤ b. �

Recall that an element w ∈ A is a partial isometry if ww∗w = w.

Theorem 7 Let A be a Rickart ∗-ring and let a, b ∈ A be partial isometries. Then a ≤ b

if and only if a
−≤ b.

Proof The only if part is trivial. Suppose that a
−≤ b. We need to show that a ≤ b. By

Theorem 5, it is sufficient to show that aa∗ ≤ bb∗. By assumption, there exist idempotents
p and q such that a = pb = bq . This gives a = bq = bb∗bq = bb∗a, so

(aa∗)(aa∗)∗ = aa∗ = bb∗aa∗ = (bb∗)(aa∗)∗

and
(aa∗)∗(aa∗) = aa∗ = aa∗bb∗ = (aa∗)∗(bb∗).

Thus, aa∗ ≤ bb∗. �

We will present at the end of this section some inheritance properties of the star partial
order. First, let us extend a property of the minus partial order from B(H) (see [2]) to any
ring with a unit.
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354 J. Marovt et al.

Lemma 2.9 Let A be a ring with a unit and a, b ∈ A. If b2 = b and a
−≤ b, then a2 = a.

Proof Let b be an idempotent element and a
−≤ b. By definition, there exist idempotents

p ∈ LP(a) and q ∈ RP(a) such that a = pb = bq . We have a = bq = b2q = ba so
1 − b ∈ ◦a = ◦ p, i.e. p = bp. Therefore, p = p2 = pbp = ap, so

a = pa = apa = aa = a2. �

With the next theorem, we will show that if b is an idempotent, a self-adjoint idempotent,
or a partial isometry, then every a satisfying a ≤ b inherits the same property.

Theorem 8 Let A be a Rickart ∗-ring and a, b ∈ A. Suppose a ≤ b.

(i) If b2 = b, then a2 = a.
(ii) If b2 = b = b∗, then a2 = a = a∗.

(iii) If bb∗b = b, then aa∗a = a.

Proof

(i) Suppose a ≤ b. Let first b2 = b. Since a ≤ b, we have a
−≤ b and hence, by Lemma

2.9, a2 = a.
(ii) Let now b2 = b = b∗. As before we may conclude that a2 = a so we have to prove

only that a is a self-adjoint element. Since a ≤ b, we have a = pb = bq where
p = lp(a) and q = rp(a). From the proof of Lemma 2.9, we know that p = bp, so

a = pa = bpa = b∗ p∗a = (pb)∗a = a∗a.

Thus, a = a∗.
(iii) Finally, let b = bb∗b. Since a ≤ b, there exist self-adjoint idempotent elements

p, q ∈ A such that pa = aq = a and

a =
[

a1 0
0 0

]
p×q

and b =
[

a1 0
0 b1

]
p×q

.

We have [
a1 0
0 b1

]
p×q

=
[

a1 0
0 b1

]
p×q

[
a∗

1 0
0 b∗

1

]
q×p

[
a1 0
0 b1

]
p×q

hence a1 = a1a∗
1a1. So, a is a partial isometry since a1 = paq = a.

�

3. Left-star and right-star partial orders

Let Mm×n be the set of all m × n complex matrices and let as before Im A denote the
image (the column space) of A ∈ Mm×n . The left-star and the right-star partial orders were
introduced by Baksalary and Mitra in [9] in the following way.
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Linear and Multilinear Algebra 355

Definition 5 The left-star partial order on Mm×n is a relation defined by

A ∗≤ B when A∗ A = A∗ B and Im A ⊆ Im B.

Definition 6 The right-star partial order on Mm×n is a relation defined by

A ≤∗ B when AA∗ = B A∗ and Im A∗ ⊆ Im B∗.

Baksalary and Mitra proved that for A, B ∈ Mm,n , A ≤
∗

B implies A ∗≤ B and A ≤∗ B,

and A ∗≤ B or A ≤∗ B implies A
−≤ B. The reverse implications are in general not true.

Following Šemrl’s approach [2] of defining the minus partial order on B(H) and using
known facts about the relation between the star, the left-star, the right-star and the minus
partial orders on the set of complex matrices, authors introduced in [10] the following order
on B(H).

Definition 7 For A, B ∈ B(H)we write A ∗≤ B when there exist a self-adjoint idempotent
operator P and an idempotent operator Q ∈ B(H) such that

(i) Im P = Im A,
(ii) Ker A = Ker Q,

(iii) P A = P B, and
(iv) AQ = B Q.

It was proved in [10] that that for A, B ∈ B(H), A ∗≤ B if and only if A∗ A = A∗ B and
Im A ⊆ Im B, so the order from Definition 7 is called the left-star partial order on B(H).
Similarly, the following definition introduces the right-star partial order on B(H).

Definition 8 For A, B ∈ B(H) we write A ≤∗ B when there exist an idempotent operator
P and a self-adjoint idempotent operator Q ∈ B(H) such that

(i) Im P = Im A,
(ii) Ker A = Ker Q,

(iii) P A = P B, and
(iv) AQ = B Q.

For A, B ∈ B(H), we have A ≤∗ B in the sense of Definition 8 if and only if AA∗ =
B A∗ and Im A∗ ⊆ Im B∗ (see [10]).

Let us now present an equivalent definition of the left-star partial order on B(H).

Definition 9 For A, B ∈ B(H)we write A ∗≤ B when there exist a self-adjoint idempotent
operator P ∈ B(H) and an idempotent operator Q such that

(i) ◦ A = B(H) · (I − P),
(ii) A◦ = (I − Q) · B(H),

(iii) P A = P B, and
(iv) AQ = B Q.
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356 J. Marovt et al.

Because this is indeed an equivalent definition to Definition 7, it follows from
Lemmas 2.1 and 2.2. Note that we may in a similar way introduce an equivalent definition
of the right-star partial order.

Let us now extend these notions of the left-star and the right-star orders to involutory
rings with a unit.

Definition 10 Let A be an involutory ring with the unit 1. For a, b ∈ A we write a ∗≤ b
when there exist a self-adjoint idempotent p ∈ A and an idempotent q ∈ A such that

(i) ◦a = A · (1 − p),
(ii) a◦ = (1 − q) · A,

(iii) pa = pb, and
(iv) aq = bq .

The order ∗≤ will be called the left-star order on A.

Definition 11 Let A be an involutory ring with the unit 1. For a, b ∈ A we write a ≤∗ b
when there exist an idempotent p ∈ A and a self-adjoint idempotent q ∈ A such that

(i) ◦a = A · (1 − p),
(ii) a◦ = (1 − q) · A,

(iii) pa = pb, and
(iv) aq = bq .

The order ≤∗ will be called the right-star order on A.

Remark 3.1 By Lemmas 2.4 and 2.5, the condition (i) in Definition 10 and the condition
(ii) in Definition 11 are redundant in the case when A is a Rickart ∗-ring. Also, the condition
(i) in Definition 7 and the condition (ii) in Definition 8 are redundant.

Remark 3.2 It is easy to check that a ∗≤ b if and only if a∗ ≤∗ b∗. This is provided by
x◦ = y◦ ⇔ ◦(x∗) = ◦(y∗).

Remark 3.3 Let A be an involutory ring with the unit 1. Comparing Definition 1 with

Definitions 10 and 11, it is clear that a ∗≤ b ⇒ a
−≤ b and a ≤∗ b ⇒ a

−≤ b.

The next theorem can be proved in a similar way as Theorem 1.

Theorem 9 Let A be a Rickart ∗-ring and a, b ∈ A. Then the following conditions are
equivalent:

(i) a ∗≤ b;
(ii) there exist a self-adjoint idempotent p and an idempotent q ∈ RP(a) such that

a = pb = bq;
(iii) a∗a = a∗b and a = bq for some idempotent q ∈ RP(a);
(iv)

a =
[

a1 0
0 0

]
p×q

and b =
[

a1 0
0 b1

]
p×q

, (10)
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Linear and Multilinear Algebra 357

where p = lp(a) and q ∈ RP(a);
(v) there exist a self-adjoint idempotent p and an idempotent q ∈ RP(a) such that (10)

holds.

Of course, the analogous theorem for right-star order holds.
The following theorem states that orders introduced with Definitions 10 and 11 are

partial orders when A is a Rickart ∗-ring.

Theorem 10 Let A be a Rickart ∗-ring. The orders ∗≤ and ≤∗, defined with Definitions
10 and 11, are partial orders on A.

Proof The proof proceeds along the same lines as the proof of Theorem 3.3 in [3]. For the
sake of completion, let us present it in its entirety.

We give the proof only for ∗≤ relation. The fact that ≤∗ is partial order can be proved
analogously. Since A is Rickart ∗-ring, the relation ∗≤ is reflexive. To prove antisymmetry,
suppose that a ≤ b and b ≤ a. By Theorem 9, we have matrix representations (10) and
there exists the self-adjoint idempotent r such that b = ra. We have

b − a = (1 − p)b(1 − q) = (1 − p)ra(1 − q) = (1 − p)raq(1 − q) = 0.

To show the transitivity of ∗≤, suppose that a∗≤ b and b∗≤ c. Then, there exist self-adjoint
idempotents p = lp(a), r = lp(b), and idempotents q ∈ RP(a), s ∈ RP(b) such that a and
b have matrix forms as in (10) and b = rc = cs. Suppose that

r =
[

r1 r2
r3 r4

]
p×p

, s =
[

s1 s2
s3 s4

]
q×q

and c =
[

c1 c2
c3 c4

]
p×q

.

Since

0 = b(1−s) =
[

a1 0
0 b1

]
p×q

[
q − s1 −s2
−s3 1 − q − s4

]
q×q

=
[

a1(q − s1) −a1s2
−b1s3 b1(1 − q − s4)

]
p×q

,

we have a1(q − s1) = 0, a1s2 = 0, and b1s3 = 0. Since a◦
1 = q◦, we obtain that

0 = q(q − s1) = q − s1 and 0 = qs2 = s2. From b = cs, we conclude that[
a1 0
0 b1

]
p×q

=
[

c1 c2
c3 c4

]
p×q

[
q 0
s3 s4

]
q×q

=
[

c1 + c2s3 c2s4
c3 + c4s3 c4s4

]
p×q

.

Hence,
a1 = c1 + c2s3 and 0 = c3 + c4s3. (11)

Let q ′ =
[

q 0
s3 0

]
q×q

. By formulas (2), we obtain q ′ ∈ RP(a). As b1s3 = 0, we also have

bq ′ = a. From (11) and

cq ′ =
[

c1 + c2s3 0
c3 + c4s3 0

]
p×q

it follows that cq ′ = a.
Similar consideration shows that r1 = p and r3 = 0. Since r and p are self-adjoint, we

conclude that r2 = 0. Now, from b = rc it is easy to show that a = pc. By definition, we
conclude that a∗≤ c. �
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358 J. Marovt et al.

The following theorem is a generalization of the corresponding results for complex
matrices (see Theorem 4.2. in [9] and Theorem 2.1 in [11]).

Theorem 11 Let A be Rickart ∗-ring and a, b ∈ A. Then, the following conditions are
equivalent:

(i) a ∗≤ b;

(ii) a
−≤ b and a∗b is self-adjoint;

(iii)

a =
[

a1 0
0 0

]
p×q

and b =
[

a1 0
b4q1 b4

]
p×q

,

where p = lp(a) and q = rp(a).

Proof (i) ⇒ (ii) follows by Remark 3.3 and Theorem 9 ((i) ⇒ (iii)).

(ii) ⇒ (iii): Suppose that a
−≤ b and a∗b is self-adjoint. By Lemma 2.6, it follows that

a∗b =
[

a∗
1 0

0 0

]
q×p

[
a1 + p1b4q1 p1b4

b4q1 b4

]
p×q

=
[

a∗
1a1 + a∗

1 p1b4q1 a∗
1 p1b4

0 0

]
q×q

,

where p = lp(a) and q = rp(a). Since a∗b is self-adjoint, we have a∗
1 p1b4 = 0, and thus

p1b4 ∈ (a∗
1)◦ = rp(a∗)◦ = lp(a)◦ = p◦. As p1 ∈ pA(1 − p) we have p1b4 = 0, so the

representation of b follows.

(iii)⇒ (i): Suppose that a and b have the given representations and let q ′ =
[

q 0
−q1 0

]
q×q

.

By (2), q ′ ∈ RP(a). Direct computations show that a∗a = a∗b and a = bq ′. By Theorem
9, it follows that a ∗≤ b. �

Theorem 12 Let A be Rickart ∗-ring and a, b ∈ A. Then, the following conditions are
equivalent:

(i) a ≤∗ b;

(ii) a
−≤ b and ba∗ is self-adjoint;

(iii)

a =
[

a1 0
0 0

]
p×q

and b =
[

a1 p1b4
0 b4

]
p×q

,

where p = lp(a) and q = rp(a).

Proof The proof is similar to the proof of Theorem 11. �

Theorem 13 Let A be Rickart ∗-ring and let a, b ∈ A be normal elements. Then

a ∗≤ b ⇔ a ≤∗ b ⇔ a ≤ b.
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Linear and Multilinear Algebra 359

Proof Suppose that a and b are normal and a ∗≤ b. By Lemma 2.8, lp(a) = rp(a). By
Theorem 11, it follows that

bb∗ =
[

a1 0
b4q1 b4

]
p×p

[
a∗

1 (b4q1)
∗

0 b∗
4

]
p×p

=
[

a1a∗
1 a1(b4q1)

∗
b4q1a∗

1 b4q1(b4q1)
∗ + b4b∗

4

]
p×p

,

b∗b =
[

a∗
1a1 + (b4q1)

∗b4q1 (b4q1)
∗b4

b∗
4b4q1 b∗

4b4

]
p×p

,

where p = lp(a). Since a and b are normal, it follows that a1a∗
1 = a∗

1a1 and a1a∗
1 =

a∗
1a1 + (b4q1)

∗b4q1. Therefore, (b4q1)
∗b4q1 = 0 and since A is proper ring, we obtain

b4q1 = 0. By Theorem 1 (iv) ⇒ (i), it follows that a ≤ b. Since the star order induces the
left-star order, we have a ∗≤ b if and only if a ≤ b. In the same manner, we can show that
a ≤∗ b if and only if a ≤ b. �

An element a in a ring A is called regular if there exists x ∈ A such that axa = a.
Recall that a von Neumann regular ring A is a ring where every a ∈ A is regular. We call
an element a ∈ A a ∗-regular element or Moore–Penrose invertible element with respect
to * if there is x ∈ A with

axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa.

If such x exists, we write x = a† and call it the Moore–Penrose inverse of a. A ring A
where every element is ∗-regular will be called a ∗-regular ring. It is known (see [4] or
[12]) that in proper involutory rings, an element a is a ∗-regular element if and only if aa∗
and a∗a are both regular. It follows that a proper involutory ring A is ∗-regular whenever
every element of A is regular (for example, Mn(C)). Since every Rickart ∗-ring is a proper
involutory ring, it follows that every von Neumann regular ring which is also a Rickart
∗-ring is a ∗-regular ring.

Let now C be a C∗-algebra with the unit 1. The subset of C consisting of all Moore–
Penrose invertible elements of C will be denoted by C†. Inspired by a paper of Baksalary
and Mitra [9], Liu, Benítez and Zhong generalized in [13] the left-star and the right-star
partial orders from the set of all complex m × n matrices to a C† in the following way.

For a ∈ C† let aπ
l = 1−a†a and aπ

r = 1−aa†. Observe that aπ
l and aπ

r are self-adjoined
idempotents. For a, b ∈ C† let

a ∗≤ b if a∗a = a∗b and bπ
r a = 0

and
a ≤∗ b if aa∗ = ba∗ and abπ

l = 0.

It is easy to prove (see [10]) that if A, B ∈ B(H) are Moore–Penrose invertible elements,
then Bπ

r A = 0 if and only if Im A ⊆ Im B, and ABπ
l = 0 if and only if Im A∗ ⊆ Im B∗.

Recall that an operator in B(H) has a Moore–Penrose inverse if and only if its image is
closed. It follows that on the set of operators from B(H) with a closed image, the above
orders are equivalent respectively to the left-star and the right-star partial order.

Let us now extend this observation to ∗-regular rings.

Definition 12 Let A be a ∗-regular ring with the unit 1. Then a ∗≤ b if a∗a = a∗b and
bπ

r a = 0.
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360 J. Marovt et al.

Definition 13 Let A be a ∗-regular ring with the unit 1. Then a ≤∗ b if aa∗ = ba∗ and
abπ

l = 0.

Here, bπ
r and bπ

l are defined as before.

Theorem 14 Let A be a Rickart ∗-ring which is also a von Neumann regular ring. Then,
Definition 10 is equivalent to Definition 12, and Definition 11 is equivalent to Definition 13.

Proof Let us prove only that Definition 10 is equivalent to Definition 12. The other
equivalence may be proved similarly.

Suppose a ∗≤ b in the sense of Definition 10. So, there exists a self-adjoint idempotent
p ∈ A such that ◦a = A · (1 − p). Hence, a = pa and a∗ = a∗ p. Since pa = pb, it
follows that

a∗a = a∗ pa = a∗ pb = a∗b.

From a ∗≤ b, we have a
−≤ b (see Definition 1). Theorem 2.6 in [3] states that in a von

Neumann regular ring with the unit, we have a
−≤ b (in the sense of Definition 1) if and only

if there exists x ∈ A such that ax = bx , xa = xb where axa = a (see [14] for the original

definition of the minus partial order). Since a
−≤ b, such x exists. From ax = bx , it follows

a = bxa. Recall that A is a ∗-regular ring so there exists the Moore–Penrose inverse b† of
b. This yields

bb†a = bb†bxa = bxa = a.

So, bπ
r a = 0 hence Definition 10 implies Definition 12.

Conversely, suppose that for a, b ∈ A, we have a∗a = a∗b and bπ
r a = 0. There exist

self-adjoint idempotent elements p, r ∈ A such that ◦a = A · (1 − p),

a =
[

a1 0
0 0

]
p×r

and a∗ =
[

a∗
1 0

0 0

]
r×p

.

Let

b =
[

b1 b2
b3 b4

]
p×r

.

Since a∗a = a∗b, we may, as in the proof of Theorem 1, show that b2 = 0 and a1 = b1.

From

p =
[

p 0
0 0

]
p×p

,

it follows that pa = pb.
Let us now prove that there exists an idempotent q ∈ A such that a◦ = (1 − q) · A and

aq = bq. Recall that if a
−≤ b, then such idempotent q exists. To conclude the proof we

will show that from our assumptions a∗a = a∗b and bb†a = a, it follows that there exists
x ∈ A such that ax = bx , xa = xb where axa = a.

Since a is a regular element, there exists c ∈ A such that aca = a. It is known [15]
(see also [16]) that the Moore–Penrose inverse a† of a von Neumann regular element a in
an involutory ring can be characterized by the invertibility of the element a∗a + 1 − ca.
Moreover,

a† = ((a∗a + 1 − ca)∗)−1a∗. (12)
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Let z ∈ (a∗)◦. Then, a∗z = 0 which yields by equation (12) that a†z = 0 and hence
z ∈ (a†)◦. Let z ∈ (a†)◦. Again, by using Equation (12), we may conclude that z ∈ (a∗)◦
hence (a∗)◦ = (a†)◦.

From a∗a = a∗b, it follows that a∗(b−a) = 0 hence (b−a) ∈ (a∗)◦ = (a†)◦. We have
a†(b − a) = 0 and hence a†a = a†b. It follows that aa†a = aa†b which yields a = aa†b.
So,

ab†b = aa†bb†b = aa†b = a

and
ab†a = aa†bb†a = aa†a = a.

Since bb†a = ab†b = ab†a = a, we may conclude from Lemma 1 in [17] (compare
items (iv) and (v)) that there exists x ∈ A such that axa = a, xax = x , xa = xb and
ax = bx . �

Remark 3.4 We may prove Theorem 14 in an alternative way, using Lemmas 2.4 and 2.5:
Suppose a ∗≤ b in the sense of Definition 10. So, there exist self-adjoint idempotent p such
that a = pb and there exist idempotent q such that and a = bq . By Lemma 2.4, a∗a = a∗b.
Also, bb†a = bb†bq = bq = a, hence bπ

r a = 0. Conversely, suppose that for a, b ∈ A
we have a∗a = a∗b and bπ

r a = 0, i.e. a = bb†a. By Lemma 2.4, it follows that there
exist self-adjoint idempotent p such that a = pb and thus a = pa. Let q = b†a. Then
bq = bb†a = a and q2 = b†ab†a = b† pbb†a = b† pa = b†a = q. It remains to show
that q◦ = a◦. But, b†ax = 0 ⇒ bb†ax = 0 ⇒ ax = 0 ⇒ b†ax = 0.

4. Diamond partial order

Baksalary and Hauke introduced in [18] another partial order on Mm×n which is also related
to the minus partial order and the star partial order.

Definition 14 For A, B ∈ Mm×n we write A
≤ B when AB∗ A = AA∗ A, Im A ⊆ Im B

and Im A∗ ⊆ Im B∗. The order
≤ will be called the diamond order on Mm×n .

Let A be the set of all Moore–Penrose invertible elements in B(H). It is known that
A ∈ A if and only if Im A is closed. Suppose we define the diamond order on A in the same
way as in Definition 14. It may be proved that the diamond order is also a partial order on A
but we will omit the proof since a more general result will be presented in the continuation.

Note that for A, B ∈ A we have Bπ
r A = 0 if and only if Im A ⊆ Im B, and ABπ

l = 0
if and only if Im A∗ ⊆ Im B∗. This observation provides a motivation for the following
definition.

Definition 15 Let A be a ∗-regular ring with the unit 1, and a, b ∈ A. For a, b ∈ A we

write a
≤ b when ab∗a = aa∗a, bπ

r a = 0, and abπ
l = 0. The order

≤ will be called the
diamond order on A.

The order defined with Definition 15 is a partial order. Indeed, observe that this is a
corollary of Lemma 5, Theorem 2 and Corollary 1 in [19]. For the sake of completeness,
let us provide an alternative, more direct proof. Let A be a ∗-regular ring with the unit 1.
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362 J. Marovt et al.

Clearly,
≤ is reflexive. Let a

≤ b and b
≤ a, a, b ∈ A. Then, a = bb†a = ab†b and

b = aa†b = ba†a. Also, it is not hard to prove (see for example [18]) that a†ba† = a† is
equivalent to ab∗a = aa∗a. Hence,

a = aa†a = aa†ba†a = ba†a = b.

For the proof of transitivity, let us first observe the following. Suppose bπ
r a = 0 and

abπ
l = 0. So, a = bb†a = ab†b. Let d = b†ab†. Then

a = bb†a = bb†ab†b = bdb.

Let now a
≤ b and b

≤ c, for some a, b, c ∈ A. Since a = bb†a = ab†b and b = cc†b =
bc†c, we have

a = bb†a = cc†bb†a = cc†a

and
a = ab†b = ab†bc†c = ac†c.

It follows that cπ
r a = 0 and acπ

l = 0. Since a
≤ b, there exists d ∈ A such that a = bdb.

From bc∗b = bb∗b and ab∗a = aa∗a, we have

ac∗a = bdbc∗bdb = bdbb∗bdb = ab∗a = aa∗a,

hence a
≤ c.

Suppose that A, B ∈ Mm×n . It is clear that Im A ⊆ Im B if and only if A = BL for
some L ∈ Mn×n . Also, Im A∗ ⊆ Im B∗ if and only if A = M B, for some M ∈ Mm×m .
Note that, in the setting of Hilbert space operators, the condition Im A ⊆ Im B does not
imply A = BL unless Im B = Im B.

Definition 16 Let A be an involutory ring. For a, b ∈ A we write a
d≤ b when ab∗a =

aa∗a, aA ⊆ bA and Aa ⊆ Ab.

In a very recent paper [19], authors proved that the order, defined with Definition 16, is
indeed a partial order when A is a ∗-regular ring. Recall that every ∗-regular ring is proper
(of course, the converse is not true). Indeed, suppose that aa∗ = 0. Then, a = aa†a =
a(a†a)∗ = aa∗(a†)∗ = 0. We will show that the order from Definition 16 is a partial order
for every proper involutory ring.

First, let us compare Definitions 15 and 16.

Theorem 15 Let A be ∗-regular ring with the unit 1. Then, the orders defined by
Definitions 15 and 16 are the same.

Proof We claim that aA ⊆ bA if and only if bπ
r a = 0. If aA ⊆ bA then a = bx for some

x ∈ A, so bπ
r a = (1 − bb†)a = (1 − bb†)bx = bx − bx = 0. On the other hand, suppose

that bπ
r a = 0. Then, a = bb†a, so aA ⊆ bA. Similarly, Aa ⊆ Ab if and only if abπ

l = 0.
This completes the proof. �

Theorem 16 Let A be a proper involutory ring with the unit 1. The order
d≤, defined with

Definition 16, is a partial order on A.
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Proof Obviously,
d≤ is reflexive. Suppose that a

d≤ b and b
d≤ a. Then aa∗a = ab∗a,

bb∗b = ba∗b and there exist x, y ∈ A such that a = bx = yb. Therefore, bb∗a = bb∗bx =
ba∗bx = ba∗a and ab∗b = ybb∗b = yba∗b = aa∗b. We have

(a −b)(a −b)∗(a −b) = aa∗a −aa∗b −ab∗a +ab∗b −ba∗a +ba∗b +bb∗a −bb∗b = 0.

Hence, (a − b)(a − b)∗((a − b)(a − b)∗)∗ = 0. By properness, it follows that a − b = 0.

To show transitivity, suppose that a
d≤ b and b

d≤ c. We see at once that aA ⊆ cA and
Aa ⊆ Ac. By assumption aa∗a = ab∗a, bb∗b = bc∗b and there exist x, y ∈ A such that
a = bx = yb. Therefore,

ac∗a = ybc∗bx = ybb∗bx = ab∗a = aa∗a.

It follows a
d≤ c. �

It was proved in [18] that for A, B ∈ Mm×n

A
≤ B if and only if A† −≤ B† (13)

where A† and B† are respectively Moore–Penrose inverses of A and B.

It is known (see [20]) that in every von Neumann regular ring a
−≤ b if and only if

a = ab−a = ab−b = bb−a for some (and thus every) b− such that bb−b = b. This is true
especially when for b− we take b†. This observation may be used to prove that the relation
(13) between the minus and the diamond partial order is valid also in the setting of Rickart
∗-rings which are also von Neumann rings. Recently [19], it has already been proved that
(13) is valid for every ∗-regular ring hence we will omit our proof.

Let us conclude this section with an observation about a relation between the star partial
order and the diamond partial order in Rickart ∗-rings.

Theorem 17 Let A be Rickart ∗-ring and a, b ∈ A. If

a ≤ b then a
d≤ b.

Proof Suppose that a ≤ b. By Theorem 1 there exist self-adjoint idempotents p and q
such that a = pb = bq , hence Aa ⊆ Ab and aA ⊆ bA. Also,

ab∗a =
[

a1 0
0 0

]
p×q

[
a∗

1 0
0 b∗

1

]
q×p

[
a1 0
0 0

]
p×q

=
[

a1a∗
1a1 0

0 0

]
p×q

= aa∗a.

Therefore, a
d≤ b. �

5. Concluding remarks

The orders defined with Definitions 4, 10 and 11 are a proper extension of the well-known
partial order on the set of self-adjoint idempotents.
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364 J. Marovt et al.

Theorem 18 Let A be an involutory ring with the unit 1. Suppose a, b ∈ A are self-
adjoint idempotent elements and let ≤ be an order defined with Definition 4, or 10, or 11.
Then, a ≤ b if and only if ab = ba = a.

The proof of this theorem is the same as the proof of Theorem 2.5 in [3].
It is known that the set of self-adjoint idempotents of a Rickart ∗-ring forms a lattice

(see [1], Section 3, Proposition 7). A natural question to ask is whether the partially ordered
set (A,≤), where A is a Rickart ∗-ring and ≤ is the star partial order, is a lattice. It is easy
to see that this is not true even for the case of matrices (two different invertible matrices do
not have supremum). The question that we pose here is whether two different elements in
a Rickart ∗-ring have infimum. We leave this as an open problem.
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