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Abstract

We introduce new expressions for the generalized Drazin inverse of
a block matrix with the generalized Schur complement being general-
ized Drazin invertible in a Banach algebra under some conditions. We
generalized some recent results for Drazin inverse and group inverse of
complex matrices.
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1 Introduction

The research on the representations of the Drazin inverse for block matri-
ces is an important problem in the theory and applications of generalized
inverses of matrices (see [2, 8, 11, 12, 15, 16]). Generalized inverses of block
matrices have important applications in automatics, probability, statistics,
mathematical programming, numerical analysis, game theory, econometrics,
control theory and so on [3, 4]. In 1979, Campbell and Meyer proposed the
problem of finding a formula for the Drazin inverse of a 2 x 2 matrix in
terms of its various blocks, where the blocks on the diagonal are required to
be square matrices [4]. At the present time, there is not known a complete
solution to this problem.

Let A be a complex unital Banach algebra with unit 1. For a € A, let
o(a) be the spectrum of a. We denote by A™ and A the sets of all
nilpotent and quasinilpotent elements (o(a) = {0}) of A, respectively.
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Recall that an element b € A is the generalized Drazin inverse (or Koliha—
Drazin inverse) of a € A provided that

bab = b, ab = ba, a—a’b e A

If the generalized Drazin inverse of a exists, it is unique and denoted by a?
[13], and a is generalized Drazin invertible. By A% we denote the set of all
generalized Drazin invertible elements of A. If a € A%, then the spectral
idempotent a™ of a corresponding to the set {0} is given by a™ = 1 — aa.
A particular case of the generalized Drazin inverse is the (ordinary) Drazin
inverse for which a — a?b € A™!. The group inverse is the Drazin inverse
for which the condition a — a?b € A™ is replaced with a = aba. By a¥ we
denote the group inverse of a. The set of all group invertible elements of 4
is denoted by A%.

We use the next lemma, recalling that part (i) is proved by Castro—
Gonzélez and Koliha [5], and part (ii) for bounded linear operators is proved
in [9].

Lemma 1.1. Let b € A% and a € AT,

(i) [5, Corollary 3.4] Ifab = 0, then a+b € A% and (a+b)? = 3 (b)) la".
n=0

(ii) [9, Theorem 2.2] Ifba = 0, then a+b € A% and (a+b)? = > a™(bd)"+1.
n=0

If a € A, and if p = p? € A is an idempotent, then a has the following
block matrix representation

ail a2
a = s
a21 Q22

where a1 = pap, a12 = pa(l — p), a1 = (1 — p)ap, aze = (1 — p)a(l — p).
Let

a b
x = [ e d ] cA (1)
relative to the idempotent p € A, a € (pAp)?, and let the generalized Schur
complement be denoted by s = d — ca® € ((1—p).A(1 —p))?. Notice that if
pap is invertible in pAp, then s becomes the (ordinary) Schur complement
(120)).

The following useful lemma is proved in [14] for elements of a Banach
algebra.



Lemma 1.2. [14, Lemma 2.1] Let x be defined as in (1). Then the following
statements are equivalent:

(i) = € A? and 2% = r, where

a® + a%bstcat —adbs?
r= :
—s%a ’

d,..d Sd
aa™ bs™ :
ii) a™b=0bs", s"c=-ca™ and = Al
(i) ’ Y ca™ ss™

The expression (2) is called the generalized Banachiewicz—Schur form of
x. For more detailed see [1, 2, 6, 7, 10, 18].

A general formula for block triangular matrices was given by Meyer and
Rose [15], and Hartwig and Shoaf [12]. Hence, a challenge in this field is to
extend the result of Meyer and Rose to the case of arbitrary matrices.

Under different conditions, Castro-Gonzalez and Martinez-Serrano [6]
presented several explicit representations for the Drazin inverse of a block
matrix with the group invertible generalized Schur complement.

Deng and Wei [8] studied conditions under which the Drazin inverse of
block-operator matrix having generalized Schur complement Drazin invert-
ible, can be expressed in terms of a matrix in the Banachiewicz-Schur form
and its powers.

In this paper, we presente new explicit formulae for the generalized
Drazin inverse of a block matrix = defined in (1) in the case that the gener-
alized Schur complement is generalized Drazin invertible. These expressions
involve the generalized Banachiewicz-Schur form (2). Several special cases
are analyzed: we notice that some of them extend results from [6, 17, 19] to
more general settings.

2 Generalized Drazin inverse

Throughout this paper, we assume that a block matrix x is defined as in
(1), where a € (pAp)?, and the generalized Schur complement satisfies s =
d —ca € ((1 —p)A(1 —p))-.

In the following theorem we provide the explicit expression for the gen-
eralized Drazin inverse of block matrix z in (1) in terms of a?, s¢, and the
generalized Banachiewicz—Schur forms r defined as in (2).

Theorem 2.1. Let = be defined as in (1), and let r be defined as in (2). If
ca™ =0 and abs™ =0, (3)



then x € A% and

o0 n d
d_ aa™ bs” 0 a™bss 2
rE=r Z:() [ 0 ss™ } [ s7c sTeadbss? | (4)
n=

Proof. Assume that x = y + z, where

{ aa™ bsT ] [ aa™ bs™ } [ a?a®  bss? }
Y= = and z= .

ca™ ds™ 0 ss™ caa®  dss?

Using equalities a™a® = 0 and (3), we get zy = 0.

Since aa™ € (pAp)ii, ss™ € ((1—p)A(1—p))? and o(y) C opap(aa™)U
O(1—p)A(1—p)(857), we conclude that y € Al

In order to show that z € A%, let z = 2 + 2o, where

o= [ a’a®  aabss? ] and 2 — { 0 a™bss? ]
sslcaa® sstdss? 2 s"caa®  sTca®bss? |-

Then z12z9 = 0 and zg =0, i.e. 20 € AM If we set A, = a?a?, B, =
aabss?, C,, = ss?caa® and D,, = ss?dss?, we have A,, € (pAp)”, Aﬁ =
a?, AT B., = a"aa%ss® =0, C,, AT =0, S., =D, — CzlAﬁle =s%s ¢
(1 —p)AQ — p))#, 5% = &, ST C., = s™sscaa? = 0, B,,ST = 0 and

Y,, = 0. By Lemma 1.2, we deduce that z; € A% and z{ = r. Applying

Lemma 1.1(ii), we obtain that z € A% and 2% = r + 2972

o0
Using Lemma 1.1(ii) again, z € A% and 2% = > y™(2¢)" 1. Since 2129 =
n=0

0 and zf = r, we have 729 = 122129 = 0 which gives

o0
zd = Z Y™ (1 4 zor)r™ L.

n=0

From yr = 0 we obtain

o0 o
ph = (L zor)r + Y gl zr™ 2 =r 4y e
n=0

n=1
which yields (4). O
A geometrical reformulation of conditions ca™ = 0 and abs™ = 0 is as
follows:
(ah)° c ¢® and s° C (ab)®,
where a° = {z € A: ax = 0}.
The following corollary is a straightforward application of Theorem 2.1.



Corollary 2.1. Let x be defined as in (1), a € (pAp)™ and let s = d—ca™b €
(1 =p)A(L —p))7. If ca™ =0 and abs™ = 0, then x € A% and

2 p—a"bsTca® a"bs™ . bsTca® 0 2.
N sTca’ 1- ! 0 0| v

where

_ a¥ + a¥bstca?t —aFbst
= —s#cat st ’

If we assume that s° C b° and a° C (sc)°, we have the following repre-
sentation of generalized Drazin inverse z?.

Theorem 2.2. Let x be defined as in (1), and let r be defined as in (2). If
bs" =0 and sca™ =0,

then z € A% and
oo n
d_ aa™ 0 0 a™b —
=t Zo { ca™ ssT ] [ sTcaa® sTeadd |7
n=
Proof. Let x = y + z, where

| ad™ 0 and L a?a®  bss?
Y= cam ss™ T | caa® dss® |-

Then zy = 0 and we can finish the proof in the same way as in the proof of
Theorem 2.1. O

By Theorem 2.2, we can verify the next expression for z¢ in the case
when a and s are group invertible.

Corollary 2.2. Let = be defined as in (1) where a € (pAp)* and s =

d —ca®b € (1 —p)A(1 —p))*, and let 71 be defined as in Corollary 2.1. If
bs™ =0 and sca™ = 0, then z € A% and

ia_ | p— a™bs*ca®  a™bs? 0 0 3

v [ s™ca 1-— " 0 ca™ |

Using Corollary 2.1 and Corollary 2.2, we can verify the following result.

Corollary 2.3. Let z be defined as in (1), a € (pAp)” and s = d — ca™b €
(1 =p)A(1 —p))#, and let r1 be defined as in Corollary 2.1. If ca™ = 0 and
bs™ =0, then z € A% and

d p—a"bstca®  a"bs?
r = # 1
s™ca 1—p



Note that Corollary 2.3 recovers [6, Theorem 2.5] for the Drazin inverse
of complex matrices.

If we assume that the generalized Schur complement s is invertible in
Theorem 2.1 and Theorem 2.2, then we can prove the next result.

Corollary 2.4. Let x be defined as in (1), where a € (pAp)? and the gen-
eralized Schur complement satisfies s = d — ca® € ((1 — p)A(1 —p))~L. If
ca™ =0, then x € A% and

o0
0 naTh N
z? = <1+Z[0 ag ]7“2“)7“27
n=0

[ a® + a%bs tca® —abs! ]
Ty = .

where

—s tea? s
Following the same strategy as in the proof of the preceding results, we
derive a new representation for z¢.
Theorem 2.3. Let = be defined as in (1), and let r be defined as in (2). If
a™b=0 and s"ca =0,
then x € A% and
o n
0 bs™ aa™ 0
d __ n—+2
v T+Z%T { ss%ca™  sstcadbs™ } [ ™ ™ } ' (5)
n=
Proof. 1f we write x = y + z, where
| aa™ a™b | | aa™ O and L a’a®  aa®b
Y= s7¢ s7d |~ | s7c s7s T | sslc ssdd |’
then we have that yz = 0 and y € A,
Suppose that z = z; + 29, where
— a?a®  aa’bss? and 2 — 0 aa’bs™
V7 ssdeaad  sstdss? 27| sslea™  ssbeatbs™ |

Now we can check that zpz; = 0 and 22 = 0. Using Lemma 1.2 we get
z1 € A% and z{ = r. From Lemma 1.1(i) it follows z € A% and 2¢ = r +1%2,.
By Lemma 1.1(i), we conclude that 2 € A% and

[o¢] (o)
xd _ Z(Zd)nJrlyn =r 4+ Z rn+222yn
n=0 n=0
implying (5). O



Observe that conditions a™b = 0 and s"ca = 0 are equivalent with the
following geometrical conditions:

bA C aA and caA C sA,

where a A = {az : x € A}.
As a consequence of Theorem 2.3, we obtain the next result.

Corollary 2.5. Let x be defined as in (1), a € (pAp)*, s = d — ca™b €
(1—-p)A(1—p))*#, and let 1 be defined as in Corollary 2.1. If a™b = 0 and
s"ca =0, then z € A? and

d p—a”bstca”™ a¥bsT 5 [ a®bs™c 0
¢ =mr 4 i
s ca 1-p 0 0

The following theorem gives a formula for the generalized Drazin inverse
of z in (1) under assumptions cA C sA and bsA C aA.

Theorem 2.4. Let x be defined as in (1), and let v be defined as in (2). If
s"c=0 and a"bs=0,

then z € A% and
o dy, .7 IS s n
d_ nt2 | 0 aa®bs aa™ a™b
v —r+z%r [ ca™  cabs™ ] [ 0 ss™ } '
n=

Proof. Similarly as Theorem 2.3, we can prove this theorem using the rep-
resentation x = y + z, where

[ aa™ a™b } [ a2a®  aab ]
Y= and z= .

0 s7s sstc  ssid

From Theorem 2.4, we can obtain the next corollary.

Corollary 2.6. Let = be defined as in (1) where a € (pAp)* and s =
d—ca”b € (1 —p)A(1 —p))#, and let r1 be defined as in Corollary 2.1. If
s"c =0 and a"bs = 0, then z € A% and

e p—a”bstca”™  a”bs™ .3 0 0
0t s*#ca™ 1—p Y10 ca™ |-



Now, by Corollary 2.5 and Corollary 2.6, we prove the result which covers
[6, Theorem 2.2].

Corollary 2.7. Let x be defined as in (1), a € (pAp)¥, s = d — ca™b €
(1 =p) A1l —p))7, and let 71 be defined as in Corollary 2.1. If s"c = 0 and
a™b =0, then x € A% and
— a#bs#ca™ aFbsT
a_ p —a¥bs*ca™ a¥bs
=N s*ca™ 1—p

Using Theorems 2.1-2.4, we can prove the next corollary which recovers
[6, Corollary 2.3] and [17, Theorem 3.2].

Corollary 2.8. Let x be defined as in (1) where a € (pAp)*, the generalized
Schur complement satisfies s = d — ca™b € ((1 — p)A(1 — p))¥, and let r
be defined as in Corollary 2.1. If a™b = 0 = bs™ and ca™ = 0 = s™¢, then
z e A% and z¢ = ry.

The next result is a consequence of Theorem 2.3 and Theorem 2.4.

Corollary 2.9. Let x be defined as in (1), where a € (pAp)? and s =
d—ca® € (1 —p)A(1 —p))~t, and let ro be defined as in Corollary 2.4. If
a™b =0, then x € A% and

0 0
d § : +1
! " (1 07"3 [ ca™a™ 0 D ’
n=

Next, by Corollary 2.4 and Corollary 2.9, we obtain an extension of the
result for the Drazin inverse of a block matrix by Wei [19] to a block matrix
of Banach algebra.

Corollary 2.10. Let x be defined as in (1), where a € (pAp)? and s =
d—ca®b € ((1 —p)AQ —p))~L, and let ro be defined as in Corollary 2.4. If
ca™ =0 and a™b =0, then x € A? and ¢ = ry.

Some representations for the generalized Drazin inverse of triangular
matrices are presented in the following theorems.

Theorem 2.5. Let x = [ CCL

PJA(L = p))”.
(i) If ca™ =0, then x € A% and

d [ 0 0]
rv=Tst Z shste 0|3
n=0

2}, where a € (pAp)? and s = d € ((1 —



(i) If sTc =0, then z € A? and

where
- al 0
37 —sdea? 54 |
Proof. If we suppose that b = 0 in Theorem 2.1 and Theorem 2.4, we check

these formulae. O

If the hypothesis ¢ = 0 is assumed in Theorem 2.2 and Theorem 2.3, we
can verify the next result.

a b

Theorem 2.6. Let x = [ 0 d

PIA(L = p)?.
(i) If bs™ = 0, then x € A4 and

oo
0 aa™
s [0 |
n=0

}, where a € (pAp)? and s = d € ((1 —

(i) If a™b =0, then x € A% and
0 bs™s"
d § : n+2 .
v _07’4 [ 0 0 } ’

where

a® —abs?
7'4 == 0 Sd .

Finally, we give an example to illustrate our results.
0

L—=p
relative to the idempotent p € A. Hence, a® =a =p,a™ =0, s = s¢ = 1—p,
s™ =0 and b = 0. Applying Theorem 2.1 or Theorem 2.5, we conclude that

x e A% and 2% = p 0
—c 1—p

Example 2.1. Let A be a Banach algebra and let z = [ Ic) ] cA

d
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