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Abstract

We introduce new expressions for the generalized Drazin inverse of
a block matrix with the generalized Schur complement being general-
ized Drazin invertible in a Banach algebra under some conditions. We
generalized some recent results for Drazin inverse and group inverse of
complex matrices.
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1 Introduction

The research on the representations of the Drazin inverse for block matri-
ces is an important problem in the theory and applications of generalized
inverses of matrices (see [2, 8, 11, 12, 15, 16]). Generalized inverses of block
matrices have important applications in automatics, probability, statistics,
mathematical programming, numerical analysis, game theory, econometrics,
control theory and so on [3, 4]. In 1979, Campbell and Meyer proposed the
problem of finding a formula for the Drazin inverse of a 2 × 2 matrix in
terms of its various blocks, where the blocks on the diagonal are required to
be square matrices [4]. At the present time, there is not known a complete
solution to this problem.

Let A be a complex unital Banach algebra with unit 1. For a ∈ A, let
σ(a) be the spectrum of a. We denote by Anil and Aqnil the sets of all
nilpotent and quasinilpotent elements (σ(a) = {0}) of A, respectively.

∗The author are supported by the Ministry of Education and Science, Republic of
Serbia, grant no. 174007.
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Recall that an element b ∈ A is the generalized Drazin inverse (or Koliha–
Drazin inverse) of a ∈ A provided that

bab = b, ab = ba, a− a2b ∈ Aqnil.

If the generalized Drazin inverse of a exists, it is unique and denoted by ad

[13], and a is generalized Drazin invertible. By Ad we denote the set of all
generalized Drazin invertible elements of A. If a ∈ Ad, then the spectral
idempotent aπ of a corresponding to the set {0} is given by aπ = 1 − aad.
A particular case of the generalized Drazin inverse is the (ordinary) Drazin
inverse for which a − a2b ∈ Anil. The group inverse is the Drazin inverse
for which the condition a− a2b ∈ Anil is replaced with a = aba. By a# we
denote the group inverse of a. The set of all group invertible elements of A
is denoted by A#.

We use the next lemma, recalling that part (i) is proved by Castro–
González and Koliha [5], and part (ii) for bounded linear operators is proved
in [9].

Lemma 1.1. Let b ∈ Ad and a ∈ Aqnil.

(i) [5, Corollary 3.4] If ab = 0, then a+b ∈ Ad and (a+b)d =
∞∑

n=0
(bd)n+1an.

(ii) [9, Theorem 2.2] If ba = 0, then a+b ∈ Ad and (a+b)d =
∞∑

n=0
an(bd)n+1.

If a ∈ A, and if p = p2 ∈ A is an idempotent, then a has the following
block matrix representation

a =
[

a11 a12

a21 a22

]
,

where a11 = pap, a12 = pa(1− p), a21 = (1− p)ap, a22 = (1− p)a(1− p).
Let

x =
[

a b
c d

]
∈ A (1)

relative to the idempotent p ∈ A, a ∈ (pAp)d, and let the generalized Schur
complement be denoted by s = d− cadb ∈ ((1− p)A(1− p))d. Notice that if
pap is invertible in pAp, then s becomes the (ordinary) Schur complement
([20]).

The following useful lemma is proved in [14] for elements of a Banach
algebra.
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Lemma 1.2. [14, Lemma 2.1] Let x be defined as in (1). Then the following
statements are equivalent:

(i) x ∈ Ad and xd = r, where

r =
[

ad + adbsdcad −adbsd

−sdcad sd

]
; (2)

(ii) aπb = bsπ, sπc = caπ and y =
[

aaπ bsπ

caπ ssπ

]
∈ Aqnil.

The expression (2) is called the generalized Banachiewicz–Schur form of
x. For more detailed see [1, 2, 6, 7, 10, 18].

A general formula for block triangular matrices was given by Meyer and
Rose [15], and Hartwig and Shoaf [12]. Hence, a challenge in this field is to
extend the result of Meyer and Rose to the case of arbitrary matrices.

Under different conditions, Castro-González and Mart́ınez-Serrano [6]
presented several explicit representations for the Drazin inverse of a block
matrix with the group invertible generalized Schur complement.

Deng and Wei [8] studied conditions under which the Drazin inverse of
block-operator matrix having generalized Schur complement Drazin invert-
ible, can be expressed in terms of a matrix in the Banachiewicz-Schur form
and its powers.

In this paper, we presente new explicit formulae for the generalized
Drazin inverse of a block matrix x defined in (1) in the case that the gener-
alized Schur complement is generalized Drazin invertible. These expressions
involve the generalized Banachiewicz-Schur form (2). Several special cases
are analyzed: we notice that some of them extend results from [6, 17, 19] to
more general settings.

2 Generalized Drazin inverse

Throughout this paper, we assume that a block matrix x is defined as in
(1), where a ∈ (pAp)d, and the generalized Schur complement satisfies s =
d− cadb ∈ ((1− p)A(1− p))d.

In the following theorem we provide the explicit expression for the gen-
eralized Drazin inverse of block matrix x in (1) in terms of ad, sd, and the
generalized Banachiewicz–Schur forms r defined as in (2).

Theorem 2.1. Let x be defined as in (1), and let r be defined as in (2). If

caπ = 0 and absπ = 0, (3)
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then x ∈ Ad and

xd = r +
∞∑

n=0

[
aaπ bsπ

0 ssπ

]n [
0 aπbssd

sπc sπcadbssd

]
rn+2. (4)

Proof. Assume that x = y + z, where

y =
[

aaπ bsπ

caπ dsπ

]
=

[
aaπ bsπ

0 ssπ

]
and z =

[
a2ad bssd

caad dssd

]
.

Using equalities aπad = 0 and (3), we get zy = 0.
Since aaπ ∈ (pAp)qnil, ssπ ∈ ((1−p)A(1−p))qnil and σ(y) ⊆ σpAp(aaπ)∪

σ(1−p)A(1−p)(ssπ), we conclude that y ∈ Aqnil.
In order to show that z ∈ Ad, let z = z1 + z2, where

z1 =
[

a2ad aadbssd

ssdcaad ssddssd

]
and z2 =

[
0 aπbssd

sπcaad sπcadbssd

]
.

Then z1z2 = 0 and z2
2 = 0, i.e. z2 ∈ Anil. If we set Az1 ≡ a2ad, Bz1 ≡

aadbssd, Cz1 ≡ ssdcaad and Dz1 ≡ ssddssd, we have Az1 ∈ (pAp)#, A#
z1 =

ad, Aπ
z1

Bz1 = aπaadbssd = 0, Cz1A
π
z1

= 0, Sz1 = Dz1 − Cz1A
#
z1Bz1 = s2sd ∈

((1 − p)A(1 − p))#, S#
z1 = sd, Sπ

z1
Cz1 = sπssdcaad = 0, Bz1S

π
z1

= 0 and
Yz1 = 0. By Lemma 1.2, we deduce that z1 ∈ Ad and zd

1 = r. Applying
Lemma 1.1(ii), we obtain that z ∈ Ad and zd = r + z2r

2.

Using Lemma 1.1(ii) again, x ∈ Ad and xd =
∞∑

n=0
yn(zd)n+1. Since z1z2 =

0 and zd
1 = r, we have rz2 = r2z1z2 = 0 which gives

xd =
∞∑

n=0

yn(1 + z2r)rn+1.

From yr = 0 we obtain

xd = (1 + z2r)r +
∞∑

n=1

ynz2r
n+2 = r +

∞∑

n=0

ynz2r
n+2

which yields (4).

A geometrical reformulation of conditions caπ = 0 and absπ = 0 is as
follows:

(ad)◦ ⊂ c◦ and s◦ ⊂ (ab)◦,

where a◦ = {x ∈ A : ax = 0}.
The following corollary is a straightforward application of Theorem 2.1.
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Corollary 2.1. Let x be defined as in (1), a ∈ (pAp)# and let s = d−ca#b ∈
((1− p)A(1− p))#. If caπ = 0 and absπ = 0, then x ∈ Ad and

xd =
[

p− aπbs#ca# aπbs#

sπca# 1− p

]
r1 +

[
bsπca# 0

0 0

]
r2
1;

where

r1 =
[

a# + a#bs#ca# −a#bs#

−s#ca# s#

]
.

If we assume that s◦ ⊂ b◦ and a◦ ⊂ (sc)◦, we have the following repre-
sentation of generalized Drazin inverse xd.

Theorem 2.2. Let x be defined as in (1), and let r be defined as in (2). If

bsπ = 0 and scaπ = 0,

then x ∈ Ad and

xd = r +
∞∑

n=0

[
aaπ 0
caπ ssπ

]n [
0 aπb

sπcaad sπcadb

]
rn+2.

Proof. Let x = y + z, where

y =
[

aaπ 0
caπ ssπ

]
and z =

[
a2ad bssd

caad dssd

]
.

Then zy = 0 and we can finish the proof in the same way as in the proof of
Theorem 2.1.

By Theorem 2.2, we can verify the next expression for xd in the case
when a and s are group invertible.

Corollary 2.2. Let x be defined as in (1) where a ∈ (pAp)# and s =
d− ca#b ∈ ((1− p)A(1− p))#, and let r1 be defined as in Corollary 2.1. If
bsπ = 0 and scaπ = 0, then x ∈ Ad and

xd =
[

p− aπbs#ca# aπbs#

sπca# 1− p

]
r1 +

[
0 0
0 caπb

]
r3
1.

Using Corollary 2.1 and Corollary 2.2, we can verify the following result.

Corollary 2.3. Let x be defined as in (1), a ∈ (pAp)# and s = d− ca#b ∈
((1− p)A(1− p))#, and let r1 be defined as in Corollary 2.1. If caπ = 0 and
bsπ = 0, then x ∈ Ad and

xd =
[

p− aπbs#ca# aπbs#

sπca# 1− p

]
r1.
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Note that Corollary 2.3 recovers [6, Theorem 2.5] for the Drazin inverse
of complex matrices.

If we assume that the generalized Schur complement s is invertible in
Theorem 2.1 and Theorem 2.2, then we can prove the next result.

Corollary 2.4. Let x be defined as in (1), where a ∈ (pAp)d and the gen-
eralized Schur complement satisfies s = d − cadb ∈ ((1 − p)A(1 − p))−1. If
caπ = 0, then x ∈ Ad and

xd =

(
1 +

∞∑

n=0

[
0 anaπb
0 0

]
rn+1
2

)
r2,

where

r2 =
[

ad + adbs−1cad −adbs−1

−s−1cad s−1

]
.

Following the same strategy as in the proof of the preceding results, we
derive a new representation for xd.

Theorem 2.3. Let x be defined as in (1), and let r be defined as in (2). If

aπb = 0 and sπca = 0,

then x ∈ Ad and

xd = r +
∞∑

n=0

rn+2

[
0 bsπ

ssdcaπ ssdcadbsπ

] [
aaπ 0
sπc ssπ

]n

. (5)

Proof. If we write x = y + z, where

y =
[

aaπ aπb
sπc sπd

]
=

[
aaπ 0
sπc sπs

]
and z =

[
a2ad aadb
ssdc ssdd

]
,

then we have that yz = 0 and y ∈ Aqnil.
Suppose that z = z1 + z2, where

z1 =
[

a2ad aadbssd

ssdcaad ssddssd

]
and z2 =

[
0 aadbsπ

ssdcaπ ssdcadbsπ

]
.

Now we can check that z2z1 = 0 and z2
2 = 0. Using Lemma 1.2 we get

z1 ∈ Ad and zd
1 = r. From Lemma 1.1(i) it follows z ∈ Ad and zd = r + r2z2.

By Lemma 1.1(i), we conclude that x ∈ Ad and

xd =
∞∑

n=0

(zd)n+1yn = r +
∞∑

n=0

rn+2z2y
n

implying (5).
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Observe that conditions aπb = 0 and sπca = 0 are equivalent with the
following geometrical conditions:

bA ⊂ aA and caA ⊂ sA,

where aA = {ax : x ∈ A}.
As a consequence of Theorem 2.3, we obtain the next result.

Corollary 2.5. Let x be defined as in (1), a ∈ (pAp)#, s = d − ca#b ∈
((1− p)A(1− p))#, and let r1 be defined as in Corollary 2.1. If aπb = 0 and
sπca = 0, then x ∈ Ad and

xd = r1

[
p− a#bs#caπ a#bsπ

s#caπ 1− p

]
+ r2

1

[
a#bsπc 0

0 0

]
.

The following theorem gives a formula for the generalized Drazin inverse
of x in (1) under assumptions cA ⊂ sA and bsA ⊂ aA.

Theorem 2.4. Let x be defined as in (1), and let r be defined as in (2). If

sπc = 0 and aπbs = 0,

then x ∈ Ad and

xd = r +
∞∑

n=0

rn+2

[
0 aadbsπ

caπ cadbsπ

] [
aaπ aπb
0 ssπ

]n

.

Proof. Similarly as Theorem 2.3, we can prove this theorem using the rep-
resentation x = y + z, where

y =
[

aaπ aπb
0 sπs

]
and z =

[
a2ad aadb
ssdc ssdd

]
.

From Theorem 2.4, we can obtain the next corollary.

Corollary 2.6. Let x be defined as in (1) where a ∈ (pAp)# and s =
d− ca#b ∈ ((1− p)A(1− p))#, and let r1 be defined as in Corollary 2.1. If
sπc = 0 and aπbs = 0, then x ∈ Ad and

xd = r1

[
p− a#bs#caπ a#bsπ

s#caπ 1− p

]
+ r3

1

[
0 0
0 caπb

]
.
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Now, by Corollary 2.5 and Corollary 2.6, we prove the result which covers
[6, Theorem 2.2].

Corollary 2.7. Let x be defined as in (1), a ∈ (pAp)#, s = d − ca#b ∈
((1− p)A(1− p))#, and let r1 be defined as in Corollary 2.1. If sπc = 0 and
aπb = 0, then x ∈ Ad and

xd = r1

[
p− a#bs#caπ a#bsπ

s#caπ 1− p

]
.

Using Theorems 2.1–2.4, we can prove the next corollary which recovers
[6, Corollary 2.3] and [17, Theorem 3.2].

Corollary 2.8. Let x be defined as in (1) where a ∈ (pAp)#, the generalized
Schur complement satisfies s = d − ca#b ∈ ((1 − p)A(1 − p))#, and let r1

be defined as in Corollary 2.1. If aπb = 0 = bsπ and caπ = 0 = sπc, then
x ∈ Ad and xd = r1.

The next result is a consequence of Theorem 2.3 and Theorem 2.4.

Corollary 2.9. Let x be defined as in (1), where a ∈ (pAp)d and s =
d− cadb ∈ ((1− p)A(1− p))−1, and let r2 be defined as in Corollary 2.4. If
aπb = 0, then x ∈ Ad and

xd = r2

(
1 +

∞∑

n=0

rn+1
2

[
0 0

caπan 0

])
.

Next, by Corollary 2.4 and Corollary 2.9, we obtain an extension of the
result for the Drazin inverse of a block matrix by Wei [19] to a block matrix
of Banach algebra.

Corollary 2.10. Let x be defined as in (1), where a ∈ (pAp)d and s =
d− cadb ∈ ((1− p)A(1− p))−1, and let r2 be defined as in Corollary 2.4. If
caπ = 0 and aπb = 0, then x ∈ Ad and xd = r2.

Some representations for the generalized Drazin inverse of triangular
matrices are presented in the following theorems.

Theorem 2.5. Let x =
[

a 0
c d

]
, where a ∈ (pAp)d and s = d ∈ ((1 −

p)A(1− p))d.

(i) If caπ = 0, then x ∈ Ad and

xd = r3 +
∞∑

n=0

[
0 0

snsπc 0

]
rn+2
3 ;
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(i) If sπc = 0, then x ∈ Ad and

xd = r3 +
∞∑

n=0

rn+2
3

[
0 0

canaπ 0

]
;

where

r3 =
[

ad 0
−sdcad sd

]
.

Proof. If we suppose that b = 0 in Theorem 2.1 and Theorem 2.4, we check
these formulae.

If the hypothesis c = 0 is assumed in Theorem 2.2 and Theorem 2.3, we
can verify the next result.

Theorem 2.6. Let x =
[

a b
0 d

]
, where a ∈ (pAp)d and s = d ∈ ((1 −

p)A(1− p))d.

(i) If bsπ = 0, then x ∈ Ad and

xd = r4 +
∞∑

n=0

[
0 anaπb
0 0

]
rn+2
4 ;

(i) If aπb = 0, then x ∈ Ad and

xd = r4 +
∞∑

n=0

rn+2
4

[
0 bsπsn

0 0

]
;

where

r4 =
[

ad −adbsd

0 sd

]
.

Finally, we give an example to illustrate our results.

Example 2.1. Let A be a Banach algebra and let x =
[

p 0
c 1− p

]
∈ A

relative to the idempotent p ∈ A. Hence, ad = a = p, aπ = 0, s = sd = 1−p,
sπ = 0 and b = 0. Applying Theorem 2.1 or Theorem 2.5, we conclude that

x ∈ Ad and xd =
[

p 0
−c 1− p

]
.
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generalized Drazin inverse of block matrices in Banach algebras, Bull.
Malays. Math. Sci. Soc. (to appear).

[15] C.D. Meyer, N.J. Rose, The index and the Drazin inverse of block
triangular matrices, SIAM J. Appl. Math. 33 (1977) 17.
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D. S. Djordjević: dragan@pmf.ni.ac.rs

11


