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Abstract. We characterize elements with equal idempotents related to their image-kernel (p, q)-

inverses and give applications to perturbations, reverse order law and commutativity.
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1. Introduction. LetR be an associative ring with unit 1. We useR• to denote
the set of all idempotents of R. For a ∈ R, we define the following kernel ideals
a◦ = {x ∈ R : ax = 0}, ◦a = {x ∈ R : xa = 0}, and image ideals aR = {ax : x ∈ R}
and Ra = {xa : x ∈ R}.

Let a ∈ R. If there exists c ∈ R such that c = cac holds, then we say that
c is an outer inverse for a, and write c = a(2). The outer inverse is not unique in
general, but it is unique if we fix the idempotents ac and ca [4]: let p, q ∈ R•, the
(p, q)-outer generalized inverse of a is the unique element c ∈ R (in the case when it
exists) satisfying

cac = c, ca = p, 1− ac = q,

In this case, we write c = a
(2)
p,q. Note that, for a ∈ R and p, q ∈ R•, a

(2)
p,q exists if and

only if (1 − q)a = (1 − q)ap and there exists some c ∈ R such that pc = c, cq = 0,
cap = p and ac = 1− q [4].

Instead of prescribing the idempotents ac and ca, we may prescribe certain kernel
and image ideals related to these idempotents: let p, q ∈ R•, an element c ∈ R is the
image-kernel (p, q)-inverse of a if

cac = c, caR = pR and (1− ac)R = qR.

The image-kernel (p, q)-inverse c is unique if it exists [5], and it will be denoted by
a×.
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Trying to mimic the operators case (since for the case of bounded linear operators
on Banach spaces, the outer inverse is unique if we fix its range and kernel), the third
author [5] has investigated sufficient algebraic conditions for the uniqueness of the
outer inverse, several classes of outer inverses that can be found in the literature, and
proved some relations between these different approaches.

An element a ∈ R is group invertible if there is a# ∈ R such that

(1) aa#a = a, (2) a#aa# = a#, (5) aa# = a#a.

Recall that a# is uniquely determined by the equations as above and it is called the
group inverse of a. We use R# to denote the set of all group invertible elements of
R.

If δ ⊂ {1, 2, 5} and c satisfies the equations (i) for all i ∈ δ, then c is a δ–inverse
of a. The set of all δ–inverses of a is denoted by a{δ}. Obviously, a{1, 2, 5} = {a#}.

The Drazin and the Moore-Penrose inverses are particular classes of outer in-
verses. Castro-González, Koliha and Wei [3] characterized matrices with the same
eigenprojections, i.e. the same projections corresponding to the Drazin inverses of
these matrices. Koliha and Patŕıcio [6] proved analogous results for Drazin invertible
elements of a ring. A similar problem was considered for the Moore-Penrose inverse
in [8]. In [7], these results were generalized to the weighted Moore-Penrose inverse in
rings with involution. In [4], Wei and the second author characterized elements with
equal idempotents related to their (p, q)-outer generalized inverses. In this paper,
we characterize elements of a ring which have the same idempotents related to their
particular image-kernel (p, q)-inverses.

2. Image-kernel (p, q)-inverse. For u, v ∈ R•, notice that u◦ = (1− u)R and
◦u = R(1− u). Also, we have

uR = vR ⇔ ◦u = ◦v(2.1)

and

Ru = Rv ⇔ u◦ = v◦.(2.2)

From these equations, we can verify the next result.

Lemma 2.1. Let a, c ∈ R and c = cac.

(i) If p ∈ R•, then the following conditions are equivalent:

1. caR = pR;
2. R(1− ca) = R(1− p);
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3. ◦(ca) = ◦p;
4. (1− ca)◦ = (1− p)◦.

(ii) If q ∈ R•, then the following conditions are equivalent:

1. (1− ac)R = qR;
2. Rac = R(1− q);
3. ◦(1− ac) = ◦q;
4. (ac)◦ = (1− q)◦.

Proof. We only prove the part (i), because the part (ii) follows in the same way.
Since ca, p, 1− ca, 1− p ∈ R•, by (2.1) and (2.2), we obtain 1 . ⇔ 3 . and 2 . ⇔ 4 . The
equalities ◦(ca) = R(1− ca) and ◦p = R(1− p) imply 2 . ⇔ 3 .

All these conditions involve ideals, but we can also give a necessary and sufficient
condition for the existence of the image-kernel (p, q)-inverse without explicit reference
to ideals.

Theorem 2.2. Let p, q ∈ R• and let a ∈ R. Then the following statements are
equivalent:

(i) a× exists,
(ii) there exists some c ∈ R such that

c = pc, cap = p, cq = 0, 1− q = (1− q)ac.

Proof. (i) ⇒ (ii): Take c = a×. Then caR = pR implies that ca = pca and
p = cap. Thus, c = cac = pcac = pc. In a similar way, Rac = R(1 − q) gives
(1−q) = (1−q)ac and ac = ac(1−q), and we get acq = 0 which yields cq = cacq = 0.

(ii) ⇒ (i): A direct calculation shows that

cac = capc = pc = c,

caR = pcaR ⊂ pR = capR ⊂ caR,

and

R(1− q) = R(1− q)ac ⊂ Rac = Rac(1− q) ⊂ R(1− q).

So, caR = pR and R(1− q) = Rac.

By Theorem 2.2, if c and d are two image-kernel (p, q)-inverses of a, then c =
pc = dapc = dac = d(1− q)ac = d(1− q) = d, i.e. the image-kernel (p, q)-inverse of a

is unique if it exists [5].

Now, we give an example where the second equivalent condition of Theorem 2.2
is applicable.
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Example 2.3. Let R be a ring of 2×2 matrices with real entries, and let a, c, p, q ∈
R be defined by

a =
[

0 2
1 0

]
, c =

[
0 1
0 0

]
, p =

[
1 3
0 0

]
, q =

[
1 2
0 0

]
.

Since c = pc, cap = p, cq = 0 and 1 − q = (1 − q)ac, we conclude that c is the
image-kernel (p, q)-inverse of a.

3. Elements with equal idempotents related to image-kernel (p, q)-inverses.
We will use the following auxiliary result, which we state without proof:

Lemma 3.1. [9] Let c, s ∈ R satisfy cs = sc and s ∈ R•. Then c is invertible in
R if and only if cs is invertible in sRs and c(1− s) is invertible in (1− s)R(1− s).
In this case

c−1 = [cs]−1
sRs + [c(1− s)]−1

(1−s)R(1−s).

Lemma 3.2. Let p, q ∈ R• and let a, b ∈ R be such that a× and b× exist. Then

(i) a×bb×a = a×a,
(ii) a×bb×ap = p.

Proof. (i) Observe that

a×bb×a = a×aa×bb×a = a×aa×(1− q)bb×a

= a×aa×(1− q)a = a×a.

(ii) From the part (i), we get

a×bb×ap = a×ap = p.

Now, as our main result, we give a characterization of elements of R which have
the same idempotents related to their particular image-kernel (p, q)-inverses.

Theorem 3.3. Let p, q ∈ R• and let a ∈ R be such that a× exists. Then for
b ∈ R the following statements are equivalent:

(i) b× exists,
(ii) (ba×a)× exists,
(iii) 1− p + a×bp is invertible,
(iv) q + (1− q)ba× is invertible.
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If any of the previous statements is valid, then

b× = (a×bp)−1
pRpa

× = a×((1− q)ba×)−1
(1−q)R(1−q).

Proof. (i) ⇒ (ii): We prove that (ba×a)× = b×, by

b×ba×ab× = b×ba×apb× = b×bpb× = b×,

b×ba×aR = b×bpR = pR,

Rba×ab× = Rba×apb× = Rbpb× = Rbb× = R(1− q).

(ii) ⇒ (i): If z = (ba×a)×, then

bz = bpz = ba×apz = ba×az

which gives zbz = zba×az = z and Rbz = Rba×az = R(1− q). Since

pR = zba×aR = zbpR ⊂ zbR = pzbR ⊂ pR,

we conclude that pR = zbR. Consequently, z = b×.

(i) ⇒ (iii): Notice that, by Lemma 3.2(ii),

(1− p + a×bp)(1− p + b×ap) = 1− p + a×bb×ap = 1.

In the same way, it follows that (1−p+ b×ap)(1−p+a×bp) = 1. Hence, 1−p+a×bp

is invertible and (1− p + a×bp)−1 = 1− p + b×ap.

(iii)⇒ (i): Since x = 1−p+a×bp = 1−p+pa×bp is invertible and px = a×bp = xp,
by Lemma 3.1,

x−1 = 1− p + (a×bp)−1
pRp.

Denote by y = x−1a× = (a×bp)−1
pRpa

×. From

(a×bp)−1
pRp = p(a×bp)−1

pRp = (a×bp)−1
pRpp,

we get

yby = (a×bp)−1
pRpa

×bp(a×bp)−1
pRpa

× = (a×bp)−1
pRpa

× = y

and

ybR = p(a×bp)−1
pRpa

×bR ⊂ pR = (a×bp)−1
pRpa

×bpR ⊂ ybR.
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Thus, ybR = pR. By

1− q = (1− q)aa× = (1− q)apa×

= (1− q)aa×bp(a×bp)−1
pRpa

× = (1− q)by,

we deduce that R(1− q) ⊂ Rby. Now

Rby ⊂ Ra× = Raa× = R(1− q)

implies Rby = R(1− q). So, y = b×.

(i) ⇒ (iv): Using

(1− q)ba×ab× = (1− q)ba×apb× = (1− q)bpb×

= (1− q)bb× = 1− q,

we obtain

(q + (1− q)ba×)(q + (1− q)ab×) = q + (1− q)ba×ab× = 1.

Similarly, we can verify that (q +(1− q)ab×)(q +(1− q)ba×) = 1. Therefore, q +(1−
q)ba× is invertible and (q + (1− q)ba×)−1 = q + (1− q)ab×.

(iv) ⇒ (i): As in the part (iii) ⇒ (i), we show that (q +(1− q)ba×)−1 = q +((1−
q)ba×)−1

(1−q)R(1−q) and b× = a×((1− q)ba×)−1
(1−q)R(1−q).

Remark 3.4. In the similar manner as in the proof of Theorem 3.3, we can
verify the following: Let p, q ∈ R• and let a ∈ R be such that a× exists. Then for
b ∈ R the following statements are equivalent:

(i) b× exists,
(ii) (ba×a)× exists,
(iii) 1− p + a×bp is invertible and (1− p + a×bp)−1 = 1− p + b×ap,
(iv) q + (1− q)ba× is invertible and (q + (1− q)ba×)−1 = q + (1− q)ab×.

As a consequence of Theorem 3.3, we obtain the following result which gives the
form of the image-kernel (p, q)-inverse of a perturbed element.

Corollary 3.5. Let p, q ∈ R• and let a, b, e ∈ R be such that b = a + e. If a×

exists, then the following statements are equivalent:

(i) b× exists,
(ii) 1 + a×ep is invertible,
(iii) 1 + (1− q)ea× is invertible.

If any of the previous statements is valid, then

b× = (p + a×ep)−1
pRpa

× = a×(1− q + (1− q)ea×)−1
(1−q)R(1−q).
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We can prove the next result.

Theorem 3.6. Let p, q ∈ R• and let a, b ∈ R be such that a× and b× exist. Then

(i) 1 + a×bp− a×a is invertible and (1 + a×bp− a×a)−1 = 1− p + b×a,
(ii) 1 + (1− q)ba× − aa× is invertible and (1 + (1− q)ba× − aa×)−1 = q + ab×.

In addition,

b× = (1 + a×bp− a×a)−1a× = a×(1 + (1− q)ba× − aa×)−1.

Proof. (i) By Lemma 3.2, we have a×bb×a = a×a and b×aa×bp = p. Also, by
(1 − aa×)R = qR, we have (1 − aa×) = q(1 − aa×). Set x = 1 + a×bp − a×a and
y = 1− p + b×a. Then

xy = 1− p + b×a + a×bb×a− a×a + p− a×ab×a

= 1 + b×a− a×apb×a = 1 + b×a− b×a = 1

and

yx = 1− p + b×a + b×aa×bp− b×aa×a

= 1 + b×(1− aa×)a = 1 + b×q(1− aa×)a = 1.

So, x is invertible, x−1 = y and

x−1a× = (1− p + b×a)a× = b×aa×

= b×bb×aa× = b×bb×(1− q)aa×

= b×bb×(1− q) = b×.

The part (ii) follows in a similar way.

In the following theorem, we give necessary and sufficient conditions for aa× =
bb×.

Theorem 3.7. Let p, q ∈ R• and let a, b ∈ R be such that a× and b× exist.
Then, the following statements are equivalent:

(i) aa× = bb×,
(ii) ab×ba× = ba×ab×,
(iii) aa×bb× = bb×aa×,
(iv) ab× ∈ R# and (ab×)# = ba×,
(v) ba× ∈ R# and (ba×)# = ab×,
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(vi) ba× ∈ (ab×){1, 5},
(vii) ab× ∈ (ba×){1, 5}.

If any of the previous statements is valid, then

a× = b×(ab×)#.

Proof. (i) ⇔ (ii): The equalities

aa× = apa× = ab×bpa× = ab×ba×,(3.1)

bb× = bpb× = ba×ab×,(3.2)

imply that the part (i) is equivalent to the part (ii).

(i) ⇔ (iii): From

aa× = aa×(1− q) = aa×(1− q)bb× = aa×bb×,

bb× = bb×aa×,

we conclude that (i) ⇔ (iii).

(ii) ⇔ (iv): Applying the equalities (3.1) and (3.2), we obtain

ab×ba×ab× = ab×bb× = ab×,

ba×ab×ba× = ba×aa× = ba×.

Thus, ab×ba× = ba×ab× is equivalent to (ab×)# = ba×.

(iv) ⇔ (v): It follows by the fact (a#)# = a for a ∈ R#.

By the part (iv), we have

a× = b×bpa× = b×ba× = b×(ab×)#.

(iv) ⇒ (vi): Obvious.

(vi) ⇒ (iv): Notice that ba× ∈ (ab×){2}. Indeed, by (3.1),

ba×ab×ba× = ba×aa× = ba×.

So, (iv) holds.
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(v) ⇔ (vii): Similar to (iv) ⇔ (vi).

Now, we present some equivalent conditions for a×a = b×b.

Theorem 3.8. Let p, q ∈ R• and let a, b ∈ R be such that a× and b× exist. Then
the following statements are equivalent:

(i) a×a = b×b,
(ii) a×bb×a = b×aa×b,
(iii) a×ab×b = b×ba×a,
(iv) a×b ∈ R# and (a×b)# = b×a,
(v) b×a ∈ R# and (b×a)# = a×b,
(vi) b×a ∈ (a×b)#{1, 5},
(vii) a×b ∈ (b×a)#{1, 5}.

If any of the previous statements is valid, then

b× = (a×b)#a×.

Proof. (i) ⇔ (ii): This equivalence follows from

a×a = a×aa×(1− q)bb×a = a×bb×a

and b×b = b×aa×b.

The rest of the proof can be verified similarly as in the proof of Theorem 3.7.

In the following theorem, we consider equivalent conditions which ensure that the
reverse order law (ab)× = b×p,ra

×
s,q holds, where a×s,q is the image-kernel (s, q)-inverse

of a and b×p,r is the image-kernel (p, r)-inverse of b.

Theorem 3.9. Let p, q, r, s ∈ R• and let a, b ∈ R be such that the image-kernel
(s, q)-inverse a×s,q of a and the image-kernel (p, r)-inverse b×p,r of b exist. Then the
following statements are equivalent:

(i) bb×p,r = a×s,qa,
(ii) b×p,r = b×p,ra

×
s,qa and a×s,q = bb×p,ra

×
s,q.

If any of the previous statements is valid, then

(ab)× = b×p,ra
×
s,q.

Proof. (i) ⇒ (ii): We see that b×p,r = b×p,rbb
×
p,r = b×p,ra

×
s,qa and a×s,q = a×s,qaa×s,q =

bb×p,ra
×
s,q.
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(ii) ⇒ (i): Observe that bb×p,r = bb×p,ra
×
s,qa = a×s,qa.

Hence, (i) ⇔ (ii). In order to prove that (ab)× = b×p,ra
×
s,q, we assume that (ii)

holds. Then

b×p,ra
×
s,qabb×p,ra

×
s,q = b×p,rbb

×
p,ra

×
s,q = b×p,ra

×
s,q,

b×p,ra
×
s,qabR = b×p,rbR = pR,

Rabb×p,ra
×
s,q = Raa×s,q = R(1− q).

So, (ab)× = b×p,ra
×
s,q.

Remark 3.10. In the same way as in Theorems 3.7–3.9, we can show the follow-
ing: Let p, q ∈ R• and let a, b ∈ R be such that a× and b× exist. Then the following
statements are equivalent:

(i) bb× = a×a,
(ii) b× = b×a×a and a× = bb×a×,
(iii) a×ab× = b×a×a and a×bb× = bb×a×,
(iv) ba×ab× = a×bb×a,
(v) bb×aa× = b×ba×a.

If any of the previous statements is valid, then

(ab)× = b×a×.

We investigate necessary and sufficient conditions for aa× = a×a in the next
result.

Theorem 3.11. Let p, q ∈ R• and let a ∈ R be such that a× exists. Then the
following statements are equivalent:

(i) aa× = a×a,
(ii) aa×R = pR and Ra×a = R(1− q),
(iii) a× = a(a×)2 = (a×)2a,
(iv) (aa×)× = aa× and (a×a)× = a×a.

If any of the previous statements is valid, then

a× = a×(aa×)× = (a×a)×a×.
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Proof. (i) ⇒ (ii): Clear.

(ii) ⇒ (i): Since aa×R = a×aR and Ra×a = Raa×, there exist x, y ∈ R such
that

aa× = a×ax = a×aa×ax = a×aaa×

and

a×a = yaa× = yaa×aa× = a×aaa×.

Hence, we conclude that aa× = a×a.

(i) ⇔ (iii): This is trivial.

(ii) ⇔ (iv): First, note that (aa×)3 = aa× and (a×a)3 = a×a. Also, R(aa×)2 =
Raa× = R(1−q) and (a×a)2R = a×aR = pR. By (aa×)2R = aa×R and R(a×a)2 =
Ra×a, we deduce that (iv) holds if and only if (ii) is satisfied.

4. Final remarks. A ring R is called a Rickart ring if for every a ∈ R there
exist some idempotent elements p, q ∈ R such that a◦ = pR and ◦a = Rq.

Let R be a (von Neumann) regular ring. Then, for every b ∈ R there exists a ∈ R
such that b = a×, where p = ba and q = ab, and we have ◦b = R(1− p) and b◦ = qR.
Thus, every regular ring is a Rickart ring and every element of a regular ring is the
image-kernel inverse of some element of that ring.

Notice that the image-kernel (p, q)-inverse coincides with the (p, q, l)-outer gen-
eralized inverse of Cao and Xue [2]. In [2], the authors discussed the existence of a

(2)
p,q

and the (p, q, l)-outer generalized inverse, and gave some explicit representations for
these inverses by the group inverses and (1, 5)-inverses in Banach algebras. However,
we have proved different results.
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