Abstract

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz–Schur form.

Key words and phrases: generalized Drazin inverse, Schur complement, block matrix.

2010 Mathematics subject classification: 46H05, 47A05, 15A09.

1 Introduction

The Drazin inverse plays an important role in Markov chains, singular differential and difference equations, iterative methods in numerical linear algebra, etc. Representations for the Drazin inverse of block matrices under certain conditions were given in the literature [2, 3, 4, 10, 11, 12, 14, 15, 17]. Deng [7] investigated necessary and sufficient conditions for a partitioned operator matrix on a Hilbert space to have the Drazin inverse with the generalized Banachiewicz–Schur form. In [8], a representation for the Drazin inverse of an anti-triangular block matrix under some conditions was obtained, generalizing in different ways results from [6, 14]. Block anti-triangular matrices arise in numerous applications, ranging from constrained optimization problems to solution of differential equations, etc. Deng [9] presented some formulas for the generalized Drazin inverse of an anti-triangular operator matrix $M = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}$, acting on a Banach space, with the assumption that CA^4B is invertible.

*The authors are supported by the Ministry of Education and Science, Republic of Serbia, grant no. 174007.
In this paper, we study the generalized Drazin inverse of anti-triangular matrices in a Banach space, getting as particular cases recent results from [7, 8, 9].

Let \mathcal{A} be a complex unital Banach algebra with unit 1. For $a \in \mathcal{A}$, we use $\sigma(a)$, $r(a)$ and $\rho(a)$, respectively, to denote the spectrum, the spectral radius and the resolvent set of a. The sets of all invertible, nilpotent and quasinilpotent elements ($\sigma(a) = \{0\}$) of \mathcal{A} will be denoted by \mathcal{A}^{-1}, \mathcal{A}^{nil} and \mathcal{A}^{qnil}, respectively.

The generalized Drazin inverse of $a \in \mathcal{A}$ (or Koliha–Drazin inverse of a) is the element $b \in \mathcal{A}$ which satisfies

$$bab = b, \quad ab = ba, \quad a - a^2b \in \mathcal{A}^{qnil}.$$

If the generalized Drazin inverse of a exists, it is unique and denoted by a^d, and a is generalized Drazin invertible. The set of all generalized Drazin invertible elements of \mathcal{A} is denoted by \mathcal{A}^d. The Drazin inverse is a special case of the generalized Drazin inverse for which $a - a^2b \in \mathcal{A}^{nil}$ instead of $a - a^2b \in \mathcal{A}^{qnil}$. Obviously, if a is Drazin invertible, then it is generalized Drazin invertible. The group inverse is the Drazin inverse for which the condition $a - a^2b \in \mathcal{A}^{nil}$ is replaced with $a = aba$. We use $a^\#$ to denote the group inverse of a, and we use $\mathcal{A}^\#$ to denote the set of all group invertible elements of \mathcal{A}.

Recall that $a \in \mathcal{A}$ is generalized Drazin invertible if and only if there exists an idempotent $p = p^2 \in \mathcal{A}$ such that

$$ap = pa \in \mathcal{A}^{qnil}, \quad a + p \in \mathcal{A}^{-1}.$$

Then $p = 1 - a a^d$ is the spectral idempotent of a corresponding to the set $\{0\}$, and it will be denoted by a^π. The generalized Drazin inverse a^d double commutes with a, that is, $ax = xa$ implies $a^d x = x a^d$.

Let $p = p^2 \in \mathcal{A}$ be an idempotent. Then we can represent element $a \in \mathcal{A}$ as

$$a = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},$$

where $a_{11} = pap$, $a_{12} = pa(1 - p)$, $a_{21} = (1 - p)ap$, $a_{22} = (1 - p)a(1 - p)$.

We use the following lemmas.

Lemma 1.1. [5, Lemma 2.4] Let $b, q \in \mathcal{A}^{qnil}$ and let $qb = 0$. Then $q + b \in \mathcal{A}^{qnil}$.

Lemma 1.2. Let $b \in \mathcal{A}^d$ and $a \in \mathcal{A}^{qnil}$.

2
(i) [5, Corollary 3.4] If $ab = 0$, then $a + b \in \mathcal{A}^d$ and $(a + b)^d = \sum_{n=0}^{+\infty} (b^d)^{n+1} a^n$.

(ii) If $ba = 0$, then $a + b \in \mathcal{A}^d$ and $(a + b)^d = \sum_{n=0}^{+\infty} a^n (b^d)^{n+1}$.

Specializing [5, Corollary 3.4] (with multiplication reversed) to bounded linear operators N. Castro González and J. J. Koliha [5] recovered [13, Theorem 2.2] which is a special case of Lemma 1.2(ii).

Lemma 1.3. Let \mathcal{A} be a complex unital Banach algebra with unit 1, and let p be an idempotent of \mathcal{A}. If $x \in p\mathcal{A}p$, then $\sigma_{p\mathcal{A}p}(x) \cup \{0\} = \sigma_{\mathcal{A}}(x)$, where $\sigma_{\mathcal{A}}(x)$ denotes the spectrum of x in the algebra \mathcal{A}, and $\sigma_{p\mathcal{A}p}(x)$ denotes the spectrum of x in the algebra $p\mathcal{A}p$.

Let $x = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{A}$ relative to the idempotent $p \in \mathcal{A}$. It is well known that if $a \in (p\mathcal{A}p)^{-1}$ and the Schur complement $s = d - ca^{-1}b \in ((1 - p)\mathcal{A}(1 - p))^{-1}$, then the inverse of x has Banachiewicz–Schur form

$$\begin{bmatrix} a^{-1} + a^{-1}bs^{-1}ca^{-1} & -a^{-1}bs^{-1} \\ -s^{-1}ca^{-1} & s^{-1} \end{bmatrix}.$$

We investigate equivalent conditions under which x^d has the generalized Banachiewicz–Schur form in Banach algebra. Also, we obtain several representations for the generalized Drazin inverse of an anti-triangular matrix $x = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$ under different conditions. Thus, we extend some results from [7, 8, 9] to more general settings.

2 Results

In the following lemma, we present necessary and sufficient conditions for an element $x = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ of Banach algebra to have the generalized Drazin inverse with the generalized Banachiewicz–Schur form. We recover recent result concerning the Drazin inverse of Hilbert space operators (see [7, Corollary 3]).

Lemma 2.1. Let $x = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{A}$ relative to the idempotent $p \in \mathcal{A}$, $a \in (p\mathcal{A}p)^\#$, and let $s = d - ca^\#b \in ((1 - p)\mathcal{A}(1 - p))^\#$ be the generalized Schur complement of a in x. Then the following statements are equivalent:
(i) \(x \in \mathcal{A}^d \) and
\[
x^d = \begin{bmatrix}
a^\# + a^\# b s^\# c a^\# & -a^\# b s^\#
s^\# c a^\# & s^\#
\end{bmatrix};
\] (1)

(ii) \(a^\# b s^\# = a^\# b s^\# \), \(s^\# c a^\# = s^\# c a^\# \) and \(z = \begin{bmatrix} 0 & b s^\# \\
c a^\# & 0 \end{bmatrix} \in \mathcal{A}^{qnil}; \)

(iii) \(a^\# b = b s^\#, \ s^\# c = c a^\# \) and \(z = \begin{bmatrix} 0 & a^\# b \\
s^\# c & 0 \end{bmatrix} \in \mathcal{A}^{qnil}. \)

Proof. (i) \(\iff \) (ii): If the right side of (1) is denoted by \(y \), then we obtain
\[
xy = \begin{bmatrix}
a a^\# - a^\# b s^\# c a^\# & a^\# b s^\#
s^\# c a^\# & s^\# s^\#
\end{bmatrix},
\]
\[
yx = \begin{bmatrix}
a^\# a - a^\# b s^\# c a^\# & a^\# b s^\#
s^\# c a^\# & s^\# s^\#
\end{bmatrix}.
\]

So, \(xy = yx \) if and only if \(a^\# b s^\# = a^\# b s^\# \) and \(s^\# c a^\# = s^\# c a^\# \), because these equalities imply \((a^\# b s^\#) c a^\# = a^\# b (s^\# c a^\#) = a^\# b s^\# c a^\# \). Further, we can verify that \(yxy = y \). Using \(s = d - c a^\# b, a^\# b s^\# = a^\# b s^\# \) and \(s^\# c a^\# = s^\# c a^\# \), we have
\[
x - x^2 y = \begin{bmatrix}
- b s^\# c a^\# & b s^\#
c a^\# & 0
\end{bmatrix}.
\]

From \(a^\# b s^\# = a^\# b s^\# = (p - a a^\#) b s^\# = b s^\# - a a^\# b s^\# \), we obtain \(b s^\# = a^\# b s^\# + a a^\# b s^\# \) which gives \(c a^\# b s^\# = 0 = b s^\# c a^\# b s^\# \) and
\[
x - x^2 y = \begin{bmatrix}
p & - b s^\#
0 & 1 - p
\end{bmatrix} z \begin{bmatrix}
p & b s^\#
0 & 1 - p
\end{bmatrix}.
\]

Since \(r(x - x^2 y) = r\left(\begin{bmatrix} p & b s^\# \\
0 & 1 - p \end{bmatrix} \begin{bmatrix} p & - b s^\# \\
0 & 1 - p \end{bmatrix} z\right) = r(z) \), we deduce that \(x - x^2 y \in \mathcal{A}^{qnil} \) is equivalent to \(z \in \mathcal{A}^{qnil}. \)

(ii) \(\iff \) (iii): We prove that \(a^\# b s^\# = a^\# b s^\# \) is equivalent to \(a^\# b = b s^\#. \) Indeed, multiplying \(a^\# b s^\# = a^\# b s^\# \) from the right side by \(s \) and from the left side by \(a \), respectively, we obtain \(a^\# b s^\# s^\# = 0 \) and \(a a^\# b s^\# = 0 \). Therefore, \(b s^\# s = a a^\# b s^\# s = a a^\# b \) and
\[
a^\# b = b - a a^\# b = b - b s^\# s = b s^\#.
\]

On the other hand, if \(a^\# b = b s^\# \), then \((a^\# b) s^\# = b s^\# s^\# = 0 \) and \(a^\# (b s^\#) = a^\# a^\# b = 0 \), i.e. \(a^\# b s^\# = a^\# b s^\# \).

In the same manner, we can verify that \(s^\# c a^\# = s^\# c a^\# \) is equivalent to \(s^\# c = c a^\#. \) Hence, the equivalence (ii) \(\iff \) (iii) holds.

By Lemma 2.1, the following corollary recovers [1, Theorem 2]

Corollary 2.1. Let
\[x = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in A \] relative to the idempotent \(p \in A \),
\(a \in (pA)^\# \), and let \(s = d - ca^\# b \in ((1 - p)A(1 - p))^\# \) be the generalized Schur complement of \(a \) in \(x \). Then \(x \in A^\# \) and
\[x^\# = \begin{bmatrix} a^\# + a^\# bs^\# ca^\# & -a^\# bs^\# \\ -s^\# ca^\# & s^\# \end{bmatrix} \]
if and only if
\[a^\pi b = 0 = bs^\pi, \quad s^\pi c = 0 = ca^\pi. \]

Now, we extend the well known result concerning the Drazin inverse of complex matrices to the generalized Drazin inverse of Banach algebra elements, see [8, Theorem 3.5].

Theorem 2.1. Let
\[x = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \in A \] relative to the idempotent \(p \in A \), \(a \in (pA)^d \) and let \(s = -ca^d b \in ((1 - p)A(1 - p))^d \). If
\[ss^d ca^\pi b = 0, \quad ss^d ca^\pi a = 0, \quad aa^d bs^\pi c = 0, \quad bs^\pi ca^\pi = 0, \quad (3) \]
then \(x \in A^d \) and
\[x^d = \left(r + \sum_{n=0}^{+\infty} \begin{bmatrix} aa^\pi & a^\pi bs^\pi \\ s^\pi ca^\pi & 0 \end{bmatrix}^{n} \begin{bmatrix} 0 & a^\pi bs^d \\ s^\pi ca^d & 0 \end{bmatrix} \right)^{x+n+2} \times \begin{bmatrix} 1 + r \\ 0 \end{bmatrix}, \quad (4) \]
where
\[r = \begin{bmatrix} a^d + a^\pi d^d & -a^\pi bs^d \\ -s^d ca^d & s^d \end{bmatrix}. \quad (5) \]

Proof. Applying \(aa^d + a^\pi = p \) and \(ss^d + s^\pi = 1 - p \), we have
\[x = \begin{bmatrix} a^2 & a^\pi d \\ ss^d c & 0 \end{bmatrix} + \begin{bmatrix} aa^\pi & a^\pi b \\ s^\pi c & 0 \end{bmatrix} := u + v. \]
The equalities \(a^d a^\pi = 0 \) and (3) give \(uv = 0 \).
First, we show that $u \in \mathcal{A}^d$. If we write

$$u = \begin{bmatrix} a^2 a^d & aa d s s d \\ ss^d c a a^d & 0 \end{bmatrix} + \begin{bmatrix} 0 & aa d s s^p \\ ss^d c a^p & 0 \end{bmatrix} := u_1 + u_2,$$

we can get $u_2 u_1 = 0$ and $u_2^2 = 0$. Let $A u_1 \equiv a^2 a^d$, $B u_1 \equiv aa d s s d$, $C u_1 \equiv ss^d c a a^d$ and $D u_1 \equiv 0$. Then $u_1 = \begin{bmatrix} A u_1 & B u_1 \\ C u_1 & D u_1 \end{bmatrix}$ and, by $(a^2 a^d)^# = a^d$, $A u_1 \in (pAp)^#$. Also, from $s = -ca^d b$, $S u_1 \equiv D u_1 - C u_1 A u_1^# B u_1 = s^2 s d \in ((1-p) A(1-p))^#$ and $(s^2 s d)^# = s^d$. Consequently, $A u_1^# B u_1 S u_1^# = 0 = A u_1^# B u_1 S u_1^#, S u_1 C u_1 A u_1^# = 0 = S u_1^# C u_1 A u_1^#$ and $\begin{bmatrix} 0 & B u_1 S u_1^# \\ C u_1 A u_1^# & 0 \end{bmatrix} = 0 \in \mathcal{A}^{qnil}$. By Lemma 2.1, notice that $u_1 \in \mathcal{A}^d$ and

$$u_1^d = \begin{bmatrix} A u_1^# + A u_1^# B u_1 S u_1^# C u_1 A u_1^# & -A u_1^# B u_1 S u_1^# \\ -S u_1^# C u_1 A u_1^# & S u_1^# \end{bmatrix} = r.$$

Using Lemma 1.2(i), $u \in \mathcal{A}^d$ and $u^d = u_1^d + (u_1^d)^2 u_2 = r + r^2 u_2$.

To prove that $v \in \mathcal{A}^{qnil}$, observe that

$$v = \begin{bmatrix} a a^p & a^p b s s^p \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ s^p c a^p & 0 \end{bmatrix} + \begin{bmatrix} 0 & a a^p b s s^d \\ s^p c a a^d & 0 \end{bmatrix} := v_1 + v_2 + v_3.$$

If $z = \begin{bmatrix} m & t \\ 0 & n \end{bmatrix}$, then $\lambda I - z = \begin{bmatrix} \lambda p - m & -t \\ 0 & \lambda (1-p) - n \end{bmatrix}$. Therefore

$$\lambda \in \rho_{pAp}(m) \cap \rho((1-p) A(1-p))(n) \Rightarrow \lambda \in \rho(z),$$

i.e.

$$\sigma(z) \subseteq \mathcal{A}^{qnil}(m) \cup \mathcal{A}^{qnil}(n).$$

Notice that, by $aa^\pi \in (pAp)^{qnil}$, $v_1 \in \mathcal{A}^{qnil}$. It can be verified that $v_1 v_2 = 0$ and $v_2^2 = 0$, i.e. $v_2 \in \mathcal{A}^{nil}$. Now, by Lemma 1.1, $v_1 + v_2 \in \mathcal{A}^{qnil}$. Using Lemma 1.1 again, from $v_3^2 = 0$ and $v_3(v_1 + v_2) = 0$, we conclude that $v \in \mathcal{A}^{qnil}$.

Applying Lemma 1.2(ii), we deduce that $x \in \mathcal{A}^d$ and

$$x^d = \left(1 + \sum_{n=0}^{+\infty} v^{n+1} (u^d)^{n+2} \right) u^d = \left(1 + \sum_{n=0}^{+\infty} v^{n+1} (u^d)^{n+2} \right) r(1 + ru_2).$$
Since \(u_2r = u_2u_1^d = (u_2u_1)(u_1^d)^2 = 0 \), then \((u^d)^{n+2} = (r + r^2u_2)^{n+2} = r^{n+2}(1+ru_2)\). From \(r = \begin{bmatrix} a_0b_{ss}d & 0 \\ 0 & ssd \end{bmatrix} \), we obtain \(vr = v \begin{bmatrix} a_0b_{ss}d & 0 \\ 0 & ssd \end{bmatrix} r = \begin{bmatrix} 0 & a_0b_{ss}d \\ s_0c_0d & 0 \end{bmatrix} \). By \(v^{n+1} = (v_1 + v_2)^n v \), we have \(v^{n+1}(u^d)^{n+2} = (v_1 + v_2)^n r^{n+1}(1+ru_2) \). Applying \(u_2r = 0 \) again, we get (4).

From Theorem 2.1, we get the following consequence.

Corollary 2.2. Let \(x \) be defined as in (2), \(a \in (pA)^d \) and let \(r \) be defined as in (5).

1. If \(ca^π = 0 \) and the generalized Schur complement \(s = -ca^db \) is invertible, then \(x \in \mathcal{A}^d \) and
 \[
 x^d = r + \sum_{n=0}^{+\infty} \begin{bmatrix} aa^π & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_0^db & 0 \\ 0 & 0 \end{bmatrix} r_{n+2}.
 \]

2. If \(ca^π = 0 \), \(a^πb = 0 \) and the generalized Schur complement \(s = -ca^db \) is invertible, then \(x \in \mathcal{A}^d \) and
 \[
 x^d = \begin{bmatrix} a^d + a^ds^{-1}ca^d & -a^ds^{-1} \\ s^{-1} & s^{-1} \end{bmatrix}.
 \]

3. If \(ca^πb = 0 \), \(ca^πa = 0 \) and the generalized Schur complement \(s = -ca^db \) is invertible, then \(x \in \mathcal{A}^d \) and
 \[
 x^d = \left(r + \sum_{n=0}^{+\infty} \begin{bmatrix} 0 & a^na^πb \\ 0 & 0 \end{bmatrix} r_{n+2} \right) \left(1 + r \begin{bmatrix} 0 & 0 \\ ca^π & 0 \end{bmatrix} \right).
 \]

In the following theorems, we assume that \(s = -ca^db \) is the generalized Drazin invertible, and we prove representations of the generalized Drazin inverse of anti-triangular block matrices. Several results from [9] are extended.

Theorem 2.2. Let \(x \) be defined as in (2), \(a \in (pA)^d \) and let \(s = -ca^db \in ((1-p)A(1-p))^d \). If \(bca^π = 0 \) and \(aa^db^π = 0 \), then \(x \in \mathcal{A}^d \) and

\[
 x^d = \sum_{n=0}^{+\infty} \begin{bmatrix} aa^π & a^πb \\ ca^π & 0 \end{bmatrix} \left(1 + \begin{bmatrix} 0 & 0 \\ s^πc & 0 \end{bmatrix} r \right) r_{n+1},
\]

where \(r \) be defined as in (5).
Proof. We can write

\[
x = \begin{bmatrix}
a^2a^d & aa^db \\
caa^d & 0
\end{bmatrix} + \begin{bmatrix}
aa^\pi & a^\pi b \\
ca^\pi & 0
\end{bmatrix} := y + q.
\]

Now, we get \(yq = 0\), by the assumption \(bca^\pi = 0\).

In order to prove that \(y \in A^d\), note that

\[
y = \begin{bmatrix}
a^2a^d & aa^dbss^d \\
ss^dcaa^d & 0
\end{bmatrix} + \begin{bmatrix}
0 & aa^db^\pi \\
ss^dc^\pi a^d & 0
\end{bmatrix} := y_1 + y_2.
\]

\(y_1y_2 = 0\) and \(y_2^2 = 0\). Using Lemma 2.1, we have \(y_1 \in A^d\) and \(y_1^d = r\). By Lemma 1.2(ii), \(y \in A^d\) and \(y^d = y_1^d + y_2(y_1^d)^2 = r + y_2r^2\).

Further, we verify that \(q \in A^{qnil}\). Let

\[
q = \begin{bmatrix}
aa^\pi & a^\pi b \\
0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
ca^\pi & 0
\end{bmatrix} := q_1 + q_2.
\]

Thus, we deduce that \(q_1 \in A^{qnil}\) and \(q_2 \in A^{nil}\), because \(aa^\pi \in (pAp)^{qnil}\) and \(q_2^2 = 0\). Since \(q_1q_2 = 0\), by Lemma 1.1, \(q \in A^{qnil}\).

By Lemma 1.2(ii), \(x \in A^d\) and

\[
x^d = \sum_{n=0}^{+\infty} q^n (y^d)^{n+1} = \sum_{n=0}^{+\infty} q^n (1 + y_2r)^{n+1}.
\]

The equality \(r = \begin{bmatrix}
aa^d & 0 \\
0 & ss^d
\end{bmatrix} r\) give \(y_2r = \begin{bmatrix}
0 & 0 \\
s^\pi c & 0
\end{bmatrix} r\) implying (6). \(\square\)

Replacing the hypothesis \(aa^dbs^\pi = 0\) with \(ss^dc^\pi a^d = 0\) in Theorem 2.2, we get the following theorem.

Theorem 2.3. Let \(x\) be defined as in (2), \(a \in (pAp)^d\) and let \(s = -ca^d b \in ((1 - p)A(1 - p))^d\). If \(bca^\pi = 0\) and \(s^\pi caa^d = 0\), then \(x \in A^d\) and

\[
x^d = \sum_{n=0}^{+\infty} \left[\begin{array}{cc} aa^\pi & a^\pi b \\ ca^\pi & 0 \end{array} \right] \left(1 + r \begin{bmatrix} 0 & bs^\pi \\ 0 & 0 \end{bmatrix} \right)^n, \tag{7}
\]

where \(r\) is defined in the same way as in (5).
Proof. In the similar way as in the proof of Theorem 2.2, using
\[y = \begin{bmatrix} a^2d & aa^dbss^d \\ ss^dcaa^d & 0 \end{bmatrix} + \begin{bmatrix} 0 & aa^db\pi \\ 0 & 0 \end{bmatrix} := y_1 + y_2 \]
and \(g_2y_1 = 0\), we check this theorem. \(\square\)

If \(s = -ca^db \in ((1-p)A(1-p))^{-1}\) and \(s' = -s\), then \(s\pi = 0\) and \((s')^{-1} = -s^{-1}\). As a special case of Theorem 2.2 (or Theorem 2.3), we obtain the following result which recovers [9, Theorem 3.1] for bounded linear operators on a Banach space.

Corollary 2.3. Let \(x\) be defined as in (2), \(a \in (pAp)^d\) and let \(s' = ca^db \in ((1-p)A(1-p))^{-1}\). If \(bca\pi = 0\), then \(x \in A^d\) and
\[x^d = \sum_{n=0}^{+\infty} \begin{bmatrix} aa\pi & a\pi b \\ ca\pi & 0 \end{bmatrix}^n t^{n+1}, \]
where \(t = \begin{bmatrix} a^d - a^db(s')^{-1}ca^d & a^db(s')^{-1} \\ (s')^{-1}ca^d & -(s')^{-1} \end{bmatrix} \).

Sufficient conditions under which the generalized Drazin inverse \(x^d\) is represented by (6) or (7) are investigated in the following result.

Theorem 2.4. Let \(x\) be defined as in (2), \(a \in (pAp)^d\) and let \(s = ca^db \in ((1-p)A(1-p))^{-1}\). Suppose that \(aa^dbca\pi = 0\) and \(ca\pi b = 0\).

(1) If \(aa^db\pi = 0\) and \((aa\pi b = 0 \text{ or } ca\pi = 0)\), then \(x \in A^d\) and (6) is satisfied.

(2) If \(s\pi caa^d = 0\) and \((aa\pi b = 0 \text{ or } ca\pi = 0)\), then \(x \in A^d\) and (7) is satisfied.

Proof. This result can be proved similarly as Theorem 2.2 and Theorem 2.3, applying \(g_2q_1 = 0\) when \(ca\pi = 0\), and the decomposition
\[q = \begin{bmatrix} aa\pi & 0 \\ ca\pi & 0 \end{bmatrix} + \begin{bmatrix} 0 & a\pi b \\ 0 & 0 \end{bmatrix} \]
when \(aa\pi b = 0\). \(\square\)

Remark. In the preceding theorem, if \(ca^db \in ((1-p)A(1-p))^{-1}\), then we obtain as a particular case [9, Theorem 3.2] for Banach space operator.

The following result is well-known for complex matrices (see [16]).
Lemma 2.2. Let \(x = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{A} \) relative to the idempotent \(p \in \mathcal{A} \), \(a \in (pAp)^d \) and let \(w = aa^d + a^dbca^d \) be such that \(aw \in (pAp)^d \). If \(ca^\pi = 0 \), \(a^\pi b = 0 \) and the generalized Schur complement \(s = d - ca^db \) is equal to 0, then

\[
x^d = \begin{bmatrix} p & 0 \\ ca^d & 0 \end{bmatrix} \begin{bmatrix} [(a\omega)^d]^2a & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p & a^d b \\ 0 & 0 \end{bmatrix}.
\]

(8)

Proof. Denote by \(y \) the right side of (8). Then we obtain

\[
xy = \begin{bmatrix} (a + bca^d)(a\omega)^d(a^d) & (a + bca^d)(a\omega)^d(bca^d) \\ (c + dca^d)(a\omega)^d(a^d) & (c + dca^d)(a\omega)^d(bca^d) \end{bmatrix},
\]

\[
yx = \begin{bmatrix} [(a\omega)^d]^2(a^2 + bc) & [(a\omega)^d]^2(ab + bd) \\ ca^d[(a\omega)^d]^2(a^2 + bc) & ca^d[(a\omega)^d]^2(ab + bd) \end{bmatrix}.
\]

By \(ca^\pi = 0 \) and \(a^\pi b = 0 \), we can conclude that \(a + bca^d \) commutes with \(\omega \).

Indeed,

\[
(a + bca^d)(a\omega) = (a^2 + bca^d)(aa^d + a^dbca^d) = (a^2 + aa^dbca^d)a^d(a + bca^d) = (a\omega)(a + bca^d).
\]

Since \(a + bca^d \) commutes with \(\omega \), it also commutes with \((a\omega)^d \) and we have

\[
(a + bca^d)(a\omega)^d(a^d) = [(a\omega)^d]^2(a + bca^d)a = [(a\omega)^d]^2(a^2 + bc).
\]

From \(s = 0 \), we get \(c + dca^d = ca^d(a + bca^d) = ca^d(a + bca^d) \). Thus,

\[
(c + dca^d)(a\omega)^d(a^d) = ca^d(a + bca^d)(a\omega)^d(a^d) = ca^d[(a\omega)^d]^2(ab + bc).
\]

Also, \(ab + bd = ab + bca^d b = (a + bca^d) b \) and we obtain

\[
(a + bca^d)(a\omega)^d(bca^d) = [(a\omega)^d]^2(ab + bd)
\]

\[
(c + dca^d)(a\omega)^d(bca^d) = ca^d[(a\omega)^d]^2(ab + bd).
\]

So, we proved that

\[
xy = yx = \begin{bmatrix} [(a\omega)^d]^2(a + bca^d)a & [(a\omega)^d]^2(a + bca^d)b \\ ca^d[(a\omega)^d]^2(a + bca^d)a & ca^d[(a\omega)^d]^2(ab + bd) \end{bmatrix}.
\]
Further, we can verify that \(yxy = y \). Indeed, we have

\[
yxy = \begin{bmatrix}
[(a\omega)^d]^2 a & [(a\omega)^d]^2 b \\
cad[(a\omega)^d]^2 a & ca^d[(a\omega)^d]^2 b
\end{bmatrix}
\times
\begin{bmatrix}
[(a\omega)^d]^2 (a + bca^d) a & [(a\omega)^d]^2 (a + bca^d) b \\
ca^d[(a\omega)^d]^2 (a + bca^d) a & ca^d[(a\omega)^d]^2 (a + bca^d) b
\end{bmatrix}
= \begin{bmatrix}
[(a\omega)^d]^4 (a + bca^d)^2 a & [(a\omega)^d]^4 (a + bca^d)^2 b \\
ca^d[(a\omega)^d]^4 (a + bca^d)^2 a & ca^d[(a\omega)^d]^4 (a + bca^d)^2 b
\end{bmatrix}.
\]

The equalities \(a + bca^d = a - a^2 d + a^2 a^d + bca^d = aa^\pi + aw \) and \(a^\pi w = 0 = \omega a^\pi \) give \((a + bca^d)^2 = a^2 a^\pi + (a\omega)^2 \). Therefore,

\[
(a\omega)^d (a + bca^d)^2 = (a\omega)^d (a^2 a^\pi + (a\omega)^2) = [(a\omega)^d]^2 (a\omega a^\pi a^2 + (a\omega)^d (a\omega)^2) = (a\omega)^d (a\omega)^2
\]

and \([(a\omega)^d]^4 (a + bca^d)^2 = [(a\omega)^d]^4 (a\omega)^2 = [(a\omega)^d]^2\) implying

\[
yxy = \begin{bmatrix}
[(a\omega)^d]^2 a & [(a\omega)^d]^2 b \\
ca^d[(a\omega)^d]^2 a & ca^d[(a\omega)^d]^2 b
\end{bmatrix} = y.
\]

We obtain

\[
x - x^2 y = \begin{bmatrix}
(a\omega)^\pi a & (a\omega)^\pi b \\
ca^d(a\omega)^\pi a & ca^d(a\omega)^\pi b
\end{bmatrix} = \begin{bmatrix}
p & 0 \\
ca^d & 0
\end{bmatrix} \begin{bmatrix}
(a\omega)^\pi a & (a\omega)^\pi b \\
0 & 0
\end{bmatrix} = 0.
\]

Notice that, by \(a + bca^d = aa^\pi + aw, (a\omega)^\pi (a + bca^d) = aa^\pi + (a\omega)(a\omega)^\pi \). Since \(aa^\pi, (a\omega)(a\omega)^\pi \in (pA\omega)^{\text{nil}} \) and \(aa^\pi (a\omega)(a\omega)^\pi = 0 \), by Lemma 1.1, we have that \(aa^\pi + (a\omega)(a\omega)^\pi \in (pA\omega)^{\text{nil}} \) and \(r_{pA\omega}((a\omega)^\pi (a + bca^d)) = 0 \). From

\[
r(x - x^2 y) = r \begin{bmatrix}
(a\omega)^\pi a & (a\omega)^\pi b \\
0 & 0
\end{bmatrix} \begin{bmatrix}
p & 0 \\
ca^d & 0
\end{bmatrix} = r_{pA\omega}((a\omega)^\pi (a + bca^d)) = 0,
\]

we deduce that \(x - x^2 y \in A^{\text{nil}} \) and prove that \(x^d = y \).

In the following theorem, we extend [9, Theorem 3.3 and Theorem 3.4] for Banach space operators to elements of a Banach algebra.

Theorem 2.5. Let \(x \) be defined as in (2), \(a \in (pA\omega)^d \) and let \(k = a^2 a^d + aa^d bca^d \in (pA\omega)^d \). If \(ca^d b = 0 \) and if one of the following conditions holds:

\[\]
(1) $bc\pi = 0$;
(2) $a a^d b c a^\pi = 0$, $a a^\pi b = 0$ and $c a^\pi b = 0$;
(3) $a a^d b c a^\pi = 0$, $c a a^\pi = 0$ and $c a^\pi b = 0$;

then $x \in A^d$ and

$$x^d = \sum_{n=0}^{+\infty} \begin{bmatrix} a a^\pi & a^\pi b \\ c a^\pi & 0 \end{bmatrix}^n \begin{bmatrix} (k^d)^2 a & (k^d)^2 b \\ c a^d (k^d)^2 a & c a^d (k^d)^2 b \end{bmatrix}^{n+1}.$$

(9)

Proof. To prove the part (1) suppose that $x = y + q$, where s and y are defined as in the proof of Theorem 2.2. It follows that $y q = 0$ and $q \in A^{\text{nil}}$. Applying Lemma 2.2, we conclude that $y \in A^d$ and

$$y^d = \begin{bmatrix} p & 0 \\ c a^d & 0 \end{bmatrix} \begin{bmatrix} (k^d)^2 a^2 a^d & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p & a^d b \\ 0 & 0 \end{bmatrix}.$$

Since $k a a^d = k$, then $k^d a a^d = k^d$ and

$$y^d = \begin{bmatrix} (k^d)^2 a & (k^d)^2 b \\ c a^d (k^d)^2 a & c a^d (k^d)^2 b \end{bmatrix}.$$

Using Lemma 1.2(ii), we conclude that $x \in A^d$ and $x^d = \sum_{n=0}^{+\infty} q^n (y^d)^{n+1}$. Thus, (9) holds.

The parts (2) and (3) can be checked in the similar manner as in the part (1) and in the proof of Theorem 2.4.

If $c = 0$ or $b = 0$ in Theorem 2.5, we have $k = a^2 a^d \in (p A p)^d$ and $k^d = a^d$. As a consequence of Theorem 2.5, we obtain the following result.

Corollary 2.4. Let x be defined as in (2) and let $a \in (p A p)^d$.

(1) If $c = 0$, then $x \in A^d$ and

$$x^d = \begin{bmatrix} a^d & (a^d)^2 b \\ 0 & 0 \end{bmatrix}.$$

(2) If $b = 0$, then $x \in A^d$ and

$$x^d = \begin{bmatrix} a^d & 0 \\ c (a^d)^2 & 0 \end{bmatrix}.$$
References

Address:

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

E-mail

M. Z. Kolundžija: mkolundzija@pmf.ni.ac.rs
D. Mosić: dijana@pmf.ni.ac.rs
D. S. Djordjević: dragan@pmf.ni.ac.rs