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Abstract

We define and study the inner image-kernel inverse as natural al-
gebraic extension of the inner inverse with prescribed idempotents of
elements in rings and the inner inverse of linear operators with pre-
scribed range and kernel. Also, we give applications to perturbation
bounds and reverse order laws.
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1 Introduction

Let R be an associative ring with unit 1. We use R*® to denote the set
of all idempotents of R. For a € R, we define the following kernel ideals
a® ={zr € R :ax = 0}, °a = {xr € R : za = 0}, and image ideals
aR ={ar:z € R} and Ra = {za:z € R}

Let a € R. An element b € R is an inner inverse of a if aba = a,
and we write b € a{l}. In this case a is called inner regular (or relatively
regular). If there exists b € R such that 0 # b = bab holds, then we say
that b is an outer inverse for a, and write b € a{2}. For such an a we say
that it is outer regular. If b is both inner and outer inverse of a, then it is
a reflexive generalized inverse of a. If b is an inner generalized inverse of a,
then bab is a reflexive generalized inverse of a. So, inner regularity implies
outer regularity of a.

Recall that inner or outer inverses of a given a € R do not necessarily
exist. Also, neither inner, outer nor reflexive inverses are unique in general.

The outer inverse is unique if we fix the idempotents ab and ba ([3]):
let p,q € R®, the (p, q)-outer generalized inverse of a is the unique element
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b € R (in the case when it exists) satisfying
bab=0>b, ba=p, 1—ab=4g,
(2)

In this case, we write b = ap 4.

The inner inverse with prescribed idempotents was defined and investi-
gated in [6]. If an inner inverse with prescribed idempotents exists, it is not
necessarily unique.

For outer inverses, instead of prescribing the idempotents ab and ba,
Kantun-Montiel ([5]) prescribed certain kernel and image ideals related to
these idempotents: let p,q € R®, an element b € R is the image-kernel
(p, q)-inverse of a if

bab="5b, baR =pR and (1—ab)R =q¢R.

The image-kernel (p, ¢)-inverse b is unique if it exists ([5]), and it will be
denoted by al(f&i’k). Observe that the image-kernel (p, ¢)-inverse of Kantin-
Montiel ([5]) coincides with the (p, ¢, [)-outer generalized inverse of Cao and
Xue ([1]), but his approach is different.

In this paper, we define and study the inner inverse prescribing certain
kernel and image ideals in a ring. Beside this, in Section 2, we consider the
reverse order rule for new inner inverses of elements of a ring. In Section
3, some properties of new inner inverses are investigated in a ring with
involution. In Section 4, a generalization of the condition number in a
normed algebra is given and some perturbation bounds are obtained.

Several generalizations of invertibility, such as the Moore-Penrose and
the group inverse, are special types of outer inverses or inner inverses. An
element a € R is group invertible if there is b € R such that

(1) aba =a, (2) bab=>, (5) ab= ba.

Recall that b is uniquely determined by previous equations and it is called
the group inverse of a. The group inverse of a will be denoted by a.

An involution a — a* in a ring R is an anti-isomorphism of degree 2,
that is, (a*)* = a,(a + b)* = a* + b*, (ab)* = b*a*. An element a € R is
self-adjoint (or Hermitian) if a* = a.

Let R be a ring with involution. The Moore—Penrose inverse of a € R
is the element b € R, if the following equations hold [7]:

(1) aba = a, (2) bab=">, (3) (ab)* =ab, (4) (ba)* = ba.

There is at most one b such that above conditions hold (see [7]), and such b
is denoted by af. In [4] it was proved that each inner regular element ¢ in a



C*-algebra has a Moore-Penrose inverse. In rings with involution the inner
regularity is not enough to ensure the existence of a Moore—Penrose inverse.

If 0 € {1,2,3,4,5} and b satisfies the equations (i) for all i € 0, then b is
an d—inverse of a. The set of all 0—inverse of a is denoted by a{d}. Obviously,
a{1,2,5} = {a*} and a{1,2,3,4} = {al}.

For u,v € R®, notice that u® = (1 — u)R and °u = R(1 — u). Also, we
have

uR=9R < °u="v

and
Ru=TRv & u’ =0v°.
We will use the following auxiliary result.
Lemma 1.1. [8] Let ¢,s € R salisfy cs = sc and s € R*. Then c is

invertible in R if and only if cs is invertible in sRs and c(1 —s) is invertible
in (1 —8)R(1 —s). In this case

= [cs};és + [e(1 — 8)](11—3)R(1—s)'

2 Inner image-kernel (p, g)-inverses in rings

In [6], the authors presented the definition of the inner inverse with pre-
scribed idempotents in rings: let a € R and let p,q € R®. An element b € R
satisfying

aba =a, ba=p and 1—ab=q (1)

is called a (p, g)-inner inverse of a (or an inner inverse of a with prescribed
idempotents p and ¢). If an inner inverse of a with prescribed idempotents
exists, it is not necessarily unique |2, 6].

We prescribing the image ideal baR and the kernel ideal (ab)® = (1—ab)R
in the following sense:

Definition 2.1. Let a € R and let p,q € R®*. An element b € R satisfying
(1) aba = a, (3p) baR =pR and (4q) (1 —ab)R =q¢R
is called an inner image-kernel (p, g)-inverse of a.

Notice that condition (1 — ab)R = ¢R is equivalent to Rab = R(1 — q).

Since the above conditions involve ideals, we present an equivalent condi-
tion for the existence of the inner image-kernel (p, ¢)-inverse without explicit
reference to ideals.



Theorem 2.1. Let p,q € R® and let a € R. Then the following statements
are equivalent:

(1,3,k)

(i) the inner image-kernel (p, q)-inverse ap g’ exists,
(ii) there exists some b € R such that

aba = a, pba = ba’ bap =p, abq = O’ 1-— q= (]_ — q)ab

Proof. (i) = (ii): Denote by b = aﬁ[f’k). From baR = pR, we obtain
that ba = pba and p = bap. Also, by Rab = R(1 — q), we deduce that
(1 —-¢q)=(1—q)ab and ab = ab(1 — q) implying abq = 0.

(ii) = (i): Observe that

baR = pbaR C pR = bapR C baR
and
R(1—q)=R(1—q)ab C Rab=Rab(1 —q) C R(1 —q).

give baR = pR and R(1 — q) = Rab. Thus, b is the inner image-kernel
(p, q)-inverse of a. O

Obviously, if b satisfies (1), then b € a{l,3p,4q}. Conversely, if b is the
inner image-kernel (p, ¢)-inverse of a, then ba = pba and 1 — ab = ¢(1 — ab)
implying b is the (pba, ¢(1 — ab)—inner inverse of a.

The following example shows that the image-kernel (p, ¢)-inner inverse
is not the same as the (p, ¢)-inner inverse.

Example 2.1 Let M3(R) be the ring of 2 x 2 matrices with real entries.
Suppose that «, 3,7 € R\ {0} and a,b,p,q € Ma(R) defined by

0o [0 ot (1P 1y
e ) B L B R R

By elementary computations, we prove that aba = a, pba = ba, bap = p,
abq = 0 and (1—¢q)ab = 1—q. Thus, b is the inner image-kernel (p, ¢)-inverse
of a, but it is not the (p, ¢)-inner inverse of a, since ba # p and 1 — ab # ¢

(8 #0#7).

In order to establish the uniqueness, following [6], we require an extra
condition: if r € R, then we consider the equation

(5r) 7 = b — bab.



Theorem 2.2. There exists at most one element in the set a{l,3p,4q,5r}.

Proof. Let d’,a"” € a{1,3p,4q,5r}. Using Theorem 2.1, we show that
a'a=pda=d"apaa=a"ad'a=ad"a

and

aa' = ad' (1 — q) = ad' (1 — q)ad” = ad’ad” = ad”

which yield a’aa’ = a”aa’ = a”aa”. Therefore,
/ n !/ / n n
a—d" =r+dad — (r+ad"ad”) =0.

O]

We will denote by ag&f;ﬂk) the unique element of the set a{1,3p,4q,5r},

in the case when this set is non-empty.

(1,3,k)

Lemma 2.1. Let a,r € R and p,q € R® be such that ap gy’ ewists. Then

)
q,"

We will show that if we know one inner image-kernel (p, ¢)-inverse ag, qzrk)

of a, then we can describe all of them.
Lemma 2.2. Let a,r € R and p,q € R* be such that a](;i’;;}k) exists. Then

a{l,3p,4q} = {aél,’j;,k) —r+s: s=(1- al(j;lf;,k)a)u(l aa 1(, )),u € R}
= {aélqlrk)aaplqzrk) +s:s=(1- az(;gﬁ;ﬂk)a)u(l Iglqlrk)) u € R}

Proof. 1f b € a{1,3p,4q} and s = b — bab, by Theorem 2.1,

17'7k 17-7k —_— 17'71{: 17'7k‘. —_— 17'7k _— 17'7k
So,
— (LK) — aaMRY = pagLbR) (LK) (L,i,k) (L,i,k)

(1= apgr’a)b(l —aay57) = b—baayg:” — ap g7 ab + ap " abaay g
— 1,k 1,3,k
= b— paj(mw Jab = b — bapa}(O o )ab
= b—bab=s

and

(1,i,k) _ _ (14k) , (1,i,k) _ _
ap g T+ s =ay,aa, . + 8= cac+ s =c.



; — (Lik) _ (Lik) (1,3,k) (1,3,k) —
Converse, since s = © — uaap gy — Apgr AU+ Gpgr auaapgr , set b=

i,k k k k k k k
apart) —r+s = abor aabls ) +u—uaalyy? — ahe au+ by auachyy.
It follows ba = al(,lt’] ;«k)a which gives aba = a, bap = aélqzrk)ap = p and
pba = pa,(jlt’;}k)a = aélqlrk)a = ba. Also, we get ab = aal(,lqr) implying (1 —

q)ab = (1 —q)aaélf’;’rk) =1—qgandab(l1—q) = aaélglz;«k)(l q) = aaél(’;’rk) = ab.

We can check that b — bab = al(jlqzrk) b—b=u-— uaaz(7 quk) az(,lqlrk)au +
(1,3,k) (1,z,k)
apgr auaay gy’ = S. [

Now we prove one important result.

Theorem 2.3. Let a,b,r € R and p,q € R® be such that a&[ﬁ}k) and bgj;’rk)

exist. Then '
1+ a5 P (b —a), 14 (b—a)alH e R

p,q,r

and

Proof. Denote by z = 1+ag(’lf;~k)b—agéf;nk) aandy = 1+bz(31qzrk) bl(,léi’rk)b No-

tice that ra = (i) —apqs aapar)a = 0, br = b(bar —bjai bbls) =
0,
ap by = (r+ apgPaaf bl = afiiPaag i (1 - q)bby
a1 - 0) = il ®
1,4,k 1,4,k _ 1,i,k 1,3, k 1 i, k 171 k 1,4,k 1,4,k
1,4,k 1,4,k 1,4,k 1,3,k
BN Sl 8
and
(1 - apgPabyiiPa = (1 afyPa)(r+ bygtPbbyitD)a
1,i,k i,k i,k 1,4,k
= (bLSMIﬂ“ b - azg,qn“ )ab(,q )b)bz() q,r a
1,3,k 1,0,k 1,4,k
= (bLSMIﬂ“ b zqu ) bj(oq, )b)bz(ﬂqr )
1 z k 1,4,k 1,z,k
1,1 k 1 KR k 1,3, k



which imply

vy = 14N a =00+ afiPb + ap il a — a0
_ (1,6,k),,  (Li,k) 71.(1,5,k) (1,3,k) ,1.(1,i,k)
apﬂvr a apv‘b"' ava‘]aT a+ apaQJ“ abpv‘LT b

= 1+ (1 —aflfPa)piliNa — b0 4 afliPa — afl #9004 b
= 1.

In the same way, we obtain yx = 1. Hence, x =1 + ag,}f;«k)(b —a) € R71
and 7! = y. As the equalities (2) and (3), we can prove bg(}f}«k)aag(}l,%k) =

Lik);, (1,k Lik), (14k Lik) (Lik . .
b bbpr and bl baggn”) = afigi aahgy which give

e tapat) = (L by a — 0 b)ag
— 17'7k 17'7]{: 1747]{: 17'7k 17'7k
- az(mql,r ) + bz(o,qz,r )aaz(o,qfr ) - bz(hqfr )baz(?,ql,r )
— 17'7k 17'7k/‘ 1747]{: 17'7k 17'7k
- az(qu,r ) + bz(qu,r )bbz(o,qfr ) - aé,ql,r )aa:g,ql,r )
— 17'7k 17'7]6 J— 17'7k
o . (Lik)y—1 _ (1,3,k)
Similarly, we verify that (1 + (b — a)apgr’)”" = 1+ (a — b)bpgr’ and
b = aban) (1+ (b — a)afys”) . 0

We also prove the following result.

Theorem 2.4. Let a,b,r € R and p,q € R® be such that a&,}f;«k) and bl(,}’f’rk)

exist. Then
L—p+aldPop, g+ (1 - q)al;5H) e R7,

(1—-p+ a&é’;’r’“)bp)fl =1—-p+ bg,léf;k)ap
and

(¢ + (1 — @)bals )™t = g + (1 — q)ablk).

Proof. Set x =1—p+ a](,}éf}k)bp andy=1-p+ bﬁ’f;;ﬂk)ap. From

Phpa = p(r+ bbb )a = phlig bl Pa
= bhs W a = (b —ra =t Pa (4)
and (2), we get
zy = 1=ptbygap = pbiPap+ ay P bpbyNap
= 1—p+apPovgPap
= 1-p+afgtaalDap

= 1



In the similar manner, we show that yz = 1. So, x € R™! and 27! =y
The rest of the proof follows as the first part of proof. O

Observe that we do not assume that bg(}f;«k) exists in the next theorem.

Theorem 2.5. Let a,b,r € R and p,q € R*® be such that a](,lqzrk) exists. If

1-p+ aﬁ[ﬁ}k)bp € R~! and rb =0 = br, then

(i) 7+ (1= p+ abad bp) " abyi aall) € b{3p, 4q, 57},

(1,2,3,k 1,4,k 1,3,k 1,3,k i, 1,2,4,k
(i) (bp) ) = =(1-p+ aé,q,r )bp) laz(ﬁ q.r )aa,&q, ) = (aaz(%qm )b)éq )7

(1,3,k) 17 (1,2,3,k k 1,3,k
(iii) (g '0) 250 = (1= p+ apy o) aflia,
p,l—ap.q,r
(1,i.4) (Lik)y . .
Proof. We can prove that pay g ’b = apgr b similarly as (4). By Lemma
1.1, sincex =1—p+ al(,lgﬁ’k)bp =1-p —G—pal(, [;’k)bp is invertible and pr =

a,(glqlrk)bp = xp, we deduce that

=1 p et (afg ) ry

(i) Denote by y = r+ o~ apar aapir” =+ (apir bp)gyapas agpis -
19 7k 19 7k
From (aé qzr )bp)p’Rp p(aé qzr )bp)p’lép’ we get

(T+( ;léi,rk)bp)pnp }(Olqzrk) ](quzrk))b_( Z()lqi;"k)bp)pnp(alglqzrk) T‘)b

1,3,k 1,4,k 1,3,k 1,3,k
= ( ]()q7 )bp)pRp ]()qT)b:p(a’z(Lq,’r‘)bp)pRp ](qu)b

yb

which gives ypR C pR. By p = (al()léf’k)bp);Rpal(,léf’k)b = ybp, we have

pR C ybR. So, ybR = pR.
The equalities

by = b(a(l,z k)bp) (1 i k)aa(l,z k) _ b( (1, i,k)bp) (1,z,k)aa(1 7, k)( Q)

D, pRpp,q,r Vp,q,r Ap,q,r pRpIp,q,r Ypq,r
and
(1-q) = (1—qaalyH =(1- q)apa%;« Jaafl;5)
1,3,k 1, k Lk 1,6 ,k

= (1-qby

yield Rby = R(1 — q).



Also,
yby =

pRp p,q,r pq'r p'Rp p,q,r p,q,r

(1 7, k)bp(a(l,z,k)bp) (1 i k)aa(l,i,k)

pRp p,q,T p,q,r pRp p,q,T p,q,r

1 (14k), (1,ik)

)%

a(l,i,k)bp) (1 7, k)b( ( (1,3, k)bp) (1 7, k)aa(l,i,k))
)R

bp)pRpap ar ‘w;,qm

implies y — yby = r.
In the same manner as (i), we can verify parts (ii) and (iii). O

Similarly as Theorem 2.5, we can check the next result.

Theorem 2.6. Let a,b,r € R and p,q € R*® be such that 1(0’ k) exists. If
g+ (1 - q)bagqfrk) e R~ and rb= 0= br, then
(i) r+ abar aapqr (¢ + (1 — q)bagg) ™' € b{3p, 4q, 5},
1,2,4,k 1,i,k 1,4,k i,k 1,4,k 1,24,k
(i1) (1=l = apii ey (+(1-bapgi”) ™! = (Gapia)p™,

Lyi,k) (1,2,6,k Lyi,k Lyi,k
(iii) (bapr) 0 = aapii (a+ (1= q)bas) ™
PyqT
Applying Theorem 2.4, Theorem 2.5 and Theorem 2.6, we get the follow-
ing result concerning some reverse order laws for inner image-kernel inverses
as a consequence.

Corollary 2.1. Let a,b,7 € R and p,q € R*® be such that agg;;»k) and bz(,}(}f’rk)

exist. Then

2.k 1,3,k )y \s 1,2,k
(i) ()™ = b aapar) = (aafg e,
(14

1,,k) 5+ (1,2,0,k i,
(i) ( pqz, )( ol 1(1),2-,1@) bpq )a.
P, _aqu‘ a

1,2,4,k ik 1,4,k 1,4,k 1,24,k
(iii) [(1 — @)blo ™™ = apiyabilei = (babgi?a)Si ™Y,

)

. 1,3,k (1,2,0,k 1,i,k
(iv) (bapgy) 00 = abp.
Ap,q,r s

Proof. We only prove the part (i), because parts (ii)—(iv) follow similarly.
By Theorem 2.5 and Theorem 2.4, we obtain

()5 = (1= p+af B op) all i aaf )
= (L—p+biiap)alliaallil) = bt aall i,
Also, we conclude that (a ,(,C’,’ )b)l(,lf k) — b(fg,f;a’“) ,(”’1’ ).



More results related to the reverse order law in a ring are presented in
the next theorems.

Theorem 2.7. Let a,b € R and p,q € R® be such that a{1,3p} # 0 and
b{1,4q} # 0. Then the following statements are equivalent:

(1) b'a’ € (ab){1} for some o’ € a{1,3p} and for some b' € b{1,4q},
(ii) V'a' € (ab){1} for all a’ € a{1,3p} and for all b/ € b{1,4q}.

Proof. (i) = (ii): Assume that abb'a’ab = ab for some da’ € a{1,3p} and for
some b’ € b{1,4q}. Let a” € a{1,3p} and " € b{1,4q} be arbitrary. Then

bb" = bb"(1 — q) = bb" (1 — q)bb/ = bb"bb = bl (5)
and
a"a =pa’a=dapa’a=dad"a=da. (6)

Therefore,
abb”a”ab = abb'a’ab = ab,
ie. v'a" € (ab){1}.
(ii) = (i): It follows obviously. O

Theorem 2.8. Let a,b € R and p,q € R® be such that a{l,2,3p} # 0 and
b{1,2,4q} # 0. Then the following statements are equivalent:

(i) b'a’ € (ab){1,2} for some a’ € a{l,2,3p} and for somet/ € b{1,2,4q},
(i1) b'a’ € (ab){1,2} for all ' € a{1,2,3p} and for all V' € b{1,2,4q}.

Proof. (i) = (ii): Let abb'a’ab = ab and b'd'abl/a’ = b'a’ for some o
a{l,2,3p} and for some b’ € b{1,2,4q}. 1If a" € a{1,2,3p} and V'
b{1,2,4q} are arbitrary, then the equalities (5) and (6) hold. So, b”
bbb = bbb’ and a” = a"aa” = a’aa”. Now, we get

I mm

I/ /11 /! /! " /! /! " /! /! / ! 1 // / ! " I/w/
b'a"abb’a” =b"bb'a aa”abb’bb'a’'aa” = b"bb'a’'abb’'a’'aa” = b"bb'a'aa” =b"a".

Hence, b"a” € (ab){2}. By Theorem 2.7, "a” € (ab){1}.
(ii) = (i): This is trivial. O

Theorem 2.9. Let a,b € R and p,q € R® be such that there exist a €
a{l,3p} and b € b{1,4q}. Then the following statements are equivalent:

(i) b'a’ € (ab){1,2} for some a' € a{2,3p} and for some b’ € b{2,4q},

10



(it) Va' € (ab){1,2} for all a’ € a{2,3p} and for all b € b{2,4q}.

Proof. (i) = (ii): Suppose that, for some a’ € a{2,3p} and for some V' €
b{2,4q}, abb/a’ab = ab and bV'a’abb'a’ = V'a'. Notice that bb = bb(1 — q) =
bb(1 — q)bb’ = bbbl = bb' and @a = paa = da'apaa = d'aga = a'a. Also,
for arbitrary a” € a{2,3p} and 0" € b{2,4q}, we have bb = bb", aa = a"a,
b = b"bb" = b'bb and " = a’aa” = aaa”. Then, we obtain

abb”a” a = abbaab = abb'a’ab = ab
and

b a" abb" o = b bbaabb”bbaaa” = bbb’ a’abb’a’ad” = V'vb d'ad” = v"a".

So, Vv"a" € (ab){1,2}.
(ii) = (i): Obviously. O

3 Inner image-kernel (p,q)-inverses in rings with
involution

Let R be a ring with involution. An element p € R*® is called projection if
p*=p
An element a € R is *-cancellable if

a'ar=0=ax =0 and zaa"=0= za=0. (7)
Applying the involution to (7), we observe that a is *-cancellable if and

only if a* is *-cancellable. In C'*-algebras all elements are x-cancellable.

Lemma 3.1. Let a,r € R and p,q € R be projections such that a;(,lqzrk)

(1, k) (1,i,k)

exists. Then (apgr’)* € a*{1,3(1 — q),4(1 — p),5r*}, that is (apgr’)*
* (1,2,]6)

(a’ )17(1,171),7‘*'

Proof. First, observe that a* = (a I(,lt’zf;«k)a) = a*( I(,lff;»k)) a* and r* =
1,4,k 1,4,k 1,4,k 1,3,k 1K)\ % % 1,3,k

(abar” = ablyPaaga ) = (abiP) — (ahd)ra* (abis”)*. Further, we

deduce that a]() [;’T MR = PR is equivalent to Ra*( 1(,217 )) = Rp* = Rp.
Also, Raal(,%qfrk) = R(1 —q) is equivalent to (aél(’;’rk))* *R = (1-¢)R. Thus,

1,k 1,k
(ap)r = ()8 L O

11



The following result holds.

Theorem 3.1. Let a,a’ € R and p € R be projection such that a’'ap =
p. Then (a')*pa’ € (apa*){1,2}. Moreover, apa’ = (apa’)* if and only if
(apa)# = (&)"pe’ = (apa®)',
Proof. We have (a')*pa’ € (apa*){1,2}, by

* 2 %

apa*(a’)*pa’apa® = a(a'ap)*p®a* = ap*pa* = apa*
and

(a)"pa’apa”(a’)*pa’ = (a)"p(a’ap)*pa’ = (a’)"pa’.
Since apa*(a’)*pa’ = apa’ and (a’)*pd’apa* = (a’')*pa* = (apd’)*, we con-
clude that (a')*pa’ € (apa*){3,4,5} if and only if apa’ = (apa’)*. O

Similarly to Theorem 3.1, we can prove the next result.

Theorem 3.2. Let a,a’ € R and ¢ € R be projection such that (1 —q)aa’ =
1 —gq. Then (1 — q)(a")* € [a*(1 — q)al{1,2}. Moreover, a'(1 — q)a =
[@'(1 = g)a]* if and only if [a*(1 — g)a]* = d/(1 - ¢)(a')* = [a*(1 - g)a]".

Using Theorem 3.1 and Theorem 3.2, we obtain the following corollary.
Corollary 3.1. Let a € R and p,q € R*® be projections such that ang k)
exists. Then

apa(m,k) (apa(m,k)) & (apa®)# = (a(1 i,k))*pa]g ik) _ (apa*)?

and

a9 (1-g)a = [0 (1-ga" & [e"(1=ga = i (1-g)(af )"

In the following theorem, we consider expressions for the inner image-
kernel inverses of a*a and aa™ under corresponding conditions.
Theorem 3.3. Let a € R and p,q € R*® be projections such that a,(,lqZ k)
exists. Then the following statements hold:

N 1,3,5) x 1k v \(1ik Lik) , (1,i,k)\x
(i) if (aaé,q )) = aaé,q )> then (a a)g(;,kp) = az(ﬂz )(aéq )) ;

L Lik) \x Lik oy (1,0,k 1ik)vs  (1,ik
(i) zf(aé,q )a) = Qpyq )a, then (aa )gfqg):(aéq )) z(ﬂz )’

), zf(aaélql k)) = aaz(qul *) and (az(qul k) a)* a](g}éi’k)a, then a is x-cancelable.
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Proof. (i) The condition a&}i’k) aR = pR is equivalent to R(alg}éi’k)a)* =

Rp* = Rp. Since (aa&j’k))* = aagéi’k), then

a*aap}(}z,k) (a(l,z,k))*a*a _ a*aa(l i,k) (aa(l z,k))*a _ a*aa(l,z,k)aa(l z,k)a _ a*a’

3
Q-

P.a
alg}(’;’k) (ag’z’k))*a*aR = al()};;’k) (aal()}gl”k))*aR a&”’k)aR =pR,
1,4,k 1,3,k 1,3,k 1,3,k 1,4,k 1,4,k
Ra*aafi ™ (aptP) = Ra*(aaf; ™) (af )" = R(apyPaafiHa)*
1,3,k
= R(aé#’]” )a)* = Rp.
Thus, we conclude that (a*a)gffg = aggf’k)(afg}[j’k))*.
(ii) Similarly as part (i), we can prove this part.
(iii) Suppose that a*axz = 0. Then
ax = aa&é"’k)ax = (aagg]i’k))*ax = (al(,}’i’k))*a*ax = 0.
If zaa™ = 0, we get
Ta = :caag(}i’k)a = a:a(ag(’]i’k)a)* = xaa*(ag&i’k))* =0.
So, a is *-cancelable. O

In some way, the next result is converse to Theorem 3.3.

Theorem 3.4. Let a € R and p,q € R® be projections. If a is x-cancelable
and there exist the inner image-kernel (p, 1 —p)-inverse of a*a and the inner
image-kernel (1—q, q)-inverse of aa*, then there exists an inner image-kernel
(p, q)-inverse of a. In addition, any inner image-kernel (p, q)-inverse of a is

given with

a/(]‘?Z?k)

v = ba"aa’c,

where b and ¢ are the inner image-kernel (p,1 — p)-inverse of a*a and the
inner image-kernel (1 — q, q)-inverse of aa™, respectively.

Proof. Assume that b € (a*a){1,3p,4(1 —p)} and ¢ € (aa*){1,3(1 —q),4q}.
Set z = ba*aa*c and x = (za — 1)a*. Since a is *-cancelable, from

a*ar = a*aba*aa*caa® — a*aa* = a*aa*caa® — a*aa* = a*aa* — a*aa* =0,

we get ax = 0. Hence, (az — 1)aa® = 0 implying (az — 1)a = 0, that is
aza = a.

13



We have
(z — ba™)aa™ = ba*aa*caa™ — ba*aa™ = ba*aa* — ba*aa* =0

which gives (z — ba*)a = 0, i.e. za = ba*a. Thus, zaR = ba*aR = pR.
Observe that

a*a(z —a*c) = a*aa*c —a*aa*c =0

yields a(z — a*c) = 0 implying Raz = Raa*c = Rq. So, z = agéi’k). O

4 Inner image-kernel (p,q)-inverses in Banach al-

gebras
Let R ba a normed algebra. If aj(gl k) and bz(,l(’lz;nk) exist, then a = b —u =
b— (b— a) is called the (p, q,r)-splitting of a.

The condition number of a is related to the sensitivity of the equation
ax = b to perturbation of a. If a is invertible, the condition number of a is
defined by k(a) = ||al|||a!||. If a is not invertible, we use the generalized
condition number.

The generalized condition number &y, ; (a) of a is defined with k, , ,(a) =

(1,3,k)
lallafiaIl

Now, we can prove the following result.
Theorem 4.1. Let a,b,r € R and p,q € R® be such that aﬁ;}(}f}k) and bg(}f’rk)
exist. Then the following statements hold:

(Z) a(llk (I’LIC) b(llk)(b a)a(llk) (llk)(b )b(llk)

p,q,T Pq, p,q,r p,q,T Pq, p,q,r >

(ii) If R is a Banach algebra and ||ag(’;i;nk)(b —a)|| <1, then

(1,4,k 1,4,k (1,3,k) (1,i,k
labis” (b — a)apgsal b — apia” |
1,3,k) 1,3,k)
bpar @+ PN —al) 5]
1,3,k

ua;m ) kpgr(@)]b—al/lja]

~llapii o =)l ~ 1~ Fnar(@)lo = all/lal

(i1i) If R is a normed algebra and ||a£(’1f}k)(b —a)|| <1, then
lagiai | labia|
Qp,q 1,1,k H ap,q,r
(1,8 ,k - p»v - 1,4,k '
1+ [lapis (b — a>|| 1 [laba? (b - a)|
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Proof. (i) Using Theorem 2.3, we check this part.
(ii) The part (i) implies

a(l,i,k)(b - a)a(l i k)a _ a(l,i,k) (b - a)a(l,z; k)(l + (b - a)a(l,i,k))—l

[Ag)
p,q,T p,q,T

o P D.q,T
x (14 (b= a)azi)a
= a0 - P 1+ (b - a)afyP)a
= (@l = b (1 + (b - a)agy)a

Consequently, the first inequality holds.
By Theorem 2.3, we obtain

1,3,k 1ik) 1,3,k -1 _(14,k 1,3,k
b;s),qm ) - Ap,q,r ) = (1 + a;g,qn“ )(b B a)) a’z(v,q,r ) - CL;SML?“ )
= (Z(—l)”(aﬁg’,;’“)(b —a))" =1 | afl;i"
n=0
= > (D)@l (b - a) al P
n=1

implying the second and the third inequalities.
(iii) Obviously. O
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