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1. An introduction

The core inverse and core partial order for complex matrices of index one were recently introduced in [2]| by Baksalary
and Trenker. The core inverse is in some way in-between the group and Moore-Penrose inverse as well as the core partial
order is in-between the sharp and star partial orders. A matrix A® ¢ C™" is core inverse of A e C™" if AA® =P, and
R(A®) C R(A), where R(A) is range of A and P, is orthogonal projector onto R(A). We write A<® B if A®A = A®B and
AA® = BA®, It is showed in [2] that for every matrix A € C™" of index one and rank r there exist unitary matrix U € C™",
diagonal matrix £ e C™" of singular values of A and matrices K € C™", L € C™"" such that KK* + LL" = I, and

XK ZL7. -
A:U{ }U* and A®=U (2K) 0 u. (1)
0 0 0
Also, A<®B if and only if
ZK XL
B=U U 2
- @)
where Z € C""*("" js some matrix of index one. Using the above representations many properties of core inverse and core

partial order are derived.
Our aim is to define an inverse of an Hilbert space bounded operator which coincides with core inverse in the finite
dimensional case. In Theorem 3.1 we have shown that X € C™" is core inverse of Aec C™" if and only if
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AXA=A, R(X) =R(A) and N (X) = N(A"). This equivalent characterization serves us as definition of core inverse in Hilbert
space settings. In Theorem 3.2 we have shown that A € £(H) has core inverse if and only if index of A is less or equal one in
which case Ay = Al : R(A) — R(A) is invertible and

A= [5 o) L] - L | o

0 0] [N@A N(AY)
-1
kAR

Using these representations we give a number of properties of core inverse. In Theorem 3.5, we characterize the core inverse
of A € £(H) by the equations: AXA = A, XAX = X, (AX)" = AX, XA = Aand AX? = X. With assumption ind(A) < 1 these equa-
tions reduce to XAX = X, (AX)" = AX and XA’ = A and the latter ones characterized core inverse in finite dimensional case.
We have shown that A is EP if and only if any two elements of the set {A*, A, A®, Ag} are equal.

In Theorem 5.3 it is proved that A <® B if and only if

[A; 0 O R(A) R(A)
A=|0 0 0|:|R(BB-AA")| — |R(B-A)
L0 0 0 N (B) N(BY)
(A, 0 O R(A) R(A)
B=|0 By 0|:|R(BB—-AA")| — |R(B-A) |,
|0 0 O N (B) N(B)

where A; and B; are invertible operators and R(B) = R(A)®*R(B — A).

In Theorem 5.5 it is shown that A <® B if and only if (AX)" = AX and XA? = A for any X satisfying (BX)" = BX and XB* = B.
Compared to representations (1) and (2), our representations have more zeros and all nonzero entries are invertible. Because
of that our proofs are simpler.

It should be noted that, although we deal with Hilbert space operators, many of the presented results are new when they
are considered in finite dimensional setting. As the finite dimensional linear algebra techniques are not suitable for our work,
we use geometric approach instead, that is, we use decompositions of the space induced by the characteristic features of the
core inverse and core partial order.

2. Preliminaries

Let H and K be Hilbert spaces, and let £(H, K) denote the set of all bounded linear operators from H to K; we abbreviate
L(H,H) = L(H). For A € L(H,K) we denote by A/(A) and R(A), respectively, the null-space and the range of A.

Throughout the paper, we will denote direct sum of subspaces by ¢, and orthogonal direct sum by &*. Orthogonal direct
sum H,&*H,®"H; means that H; L Hj, for i » j. An operator P € £(H) is projector if P> = P. A projector P is orthogonal if
P =P If H= K @ L then Py, denotes projector such that R(Px;) = K and N'(Px;) = L. If H= K&*L then we write Py instead
of PK,L-

An operator B € £(K,H) is an inner inverse of A € £L(H,K), if ABA = A holds. In this case A is inner invertible, or relatively
regular. It is well-known that A is inner invertible if and only if R(A) is closed in K. If BAB = B holds, then B is reflexive gen-
eralized inverse of A. If ABA = A it is easy to see that R(A) = R(AB) and NV (A) = N'(BA) and we will often use these properties.
The Moore-Penrose inverse of A € £(H,K) is the operator B € £(K, H) which satisfies the Penrose equations

(1) ABA=A, (2)BAB=B, (3)(AB)"=AB, (4) (BA)" =BA.

The Moore-Penrose inverse of A exists if and only if R(A) is closed in K, and if it exists, then it is unique, and is denoted by A'.
The ascent and descent of linear operator A : H — H are defined by

asc(A) = inf (N(A) = N(A"")),  dsc(A) = inf {(R(A) = R(A™)).

If they are finite, they are equal and their common value is ind(A), the index of A. Also, H = RA™MD) g N (A™PD) and
R(A™M®) is closed, see [6]. We will denote by £' (H) the set of bounded operators on Hilbert space H with indices less or equal
one,

LY(H) = {A € £(H) : ind(A) < 1}.
The group inverse of an operator A € £(H) is the operator B € £(H) such that
(1) ABA=A, (2)BAB=B, (5)AB=BA.

The group inverse of A exists if and only if ind(A) < 1. If the group inverse of A exists, then it is unique, and it is denoted by A*.
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If X satisfies equations iy, iz, . . ., iy then X is an {iy, iz, . .., iy} inverse of A. The set of all {iy, i, ..., i} inverses of A is denoted
by A{i1, iz, ...,i}. If R(A) is closed, then A{1,2,3,4} = {A'}. The theory of generalized inverses on infinite dimensional Hil-
bert spaces can be found, for example, in [3,6,8].

Throughout this paper H will denote arbitrary Hilbert space. An operator A € £(H) is Hermitian if A = A". Closed range
operator A is EP (“equal-projection”) if one of the following equivalent conditions holds R(A) = R(A") or N'(A) = N'(A") or
AA" = ATA or A" = A, Closed range operator A is partial isometry if A* = A’ or AA"A = A.

In Section 3 we present the results related to the core inverse of Hilbert space operators with index less or equal one.
Section 4 deals with spectral properties of core inverse and Section 5 is devoted to the study of core partial order. In Section 6
we collect some additional properties of core inverse and core partial order.

3. Core inverse and its properties

In this section we introduce the notion of core inverse for Hilbert space operators, as a generalization of core inverse for
matrices.
In [2], Baksalary and Trenkler introduced new generalized inverse of complex matrix, so called “core inverse”.

Definition 3.1 [2]. Let A € C"". A matrix A® € C"*" satisfying AA® = Py and R(A®) C R(A) is called core inverse of A.

They have shown that a complex matrix has core inverse if and only if its index is less or equal 1, and proved its unique-
ness when it exists. If we define core inverse of an operator A € £(H) in the same way as in matrix case, then we have the
problem because the index of A need not be less or equal 1, as we will see later in Remark 3.1. This is the reason why we find
another set of equivalent conditions which determines the core inverse.

Theorem 3.1. Let A, X € C™". The following conditions are equivalent:

(i) AXA = A, R(X) = R(A) and N'(X) = N(A").

Proof. (i) = (ii): Suppose that (i) holds. By Theorem 1 from [2], X = A®, ind(A) < 1, X € {1,2} and XA = A*A. Because of that
A = AA'A = A"AA = XA?, s0 R(A) C R(X), which means R(X) = R(A). From AX = Pr), we have AX = (AX)" = X"A", so

A=AXA= A" = AX'A" = A"AX = N (X) CN(A).

Also, we have X = XAX = XX"A" = N(A") C N (X), therefore V'(X) = N(A").

(ii) = (i): Suppose that (ii) holds. Now R(X) = R(A) implies rank(X) = rank(A). We already have X € A{1}, so X € A{1,2}
[1, p. 46]. It is evident that (AX)> = AX and R(AX) = R(A). It remains to prove that A(AX) = R(A)* = N(A"). But from
XAX = X it follows that A'(AX) = N (X) = N/(A"), so we have the proof. O

We use the condition (ii) from previous theorem as a definition of core inverse for Hilbert space operators.

Definition 3.2. Let H be arbitrary Hilbert space, and A € £(H). An operator A® ¢ £(H) is core inverse of A if

AACA =A, R(A9)=R(A) and N(AD)=N(A").
From Theorem 3.1 it follows that the Definitions 3.1 and 3.2 are equivalent in complex matrix case. More characteriza-
tions of core inverse can be found later in Theorem 3.8.

The next theorem describes the bounded linear operators having core inverse and gives appropriate matrix forms.

Theorem 3.2. Let A € L£(H). Then the core inverse of A exists if and only if ind(A) < 1 in which case the following representations

hold:
ol - )
by S5
e[y L)
s | 8 o) = L) ©
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e {Al o} : [R(m} B {R(A)} )

=

0 0] LNW N(A)

=

A=

o) Vel - L)

where A, € L(R(A)) is invertible operator.

Proof. Suppose that ind(A) < 1, it follows that H=R(A) ® N'(A) and R(A) is closed. Also, we have H = R(A)®* N (A"), so A
has the matrix forms (3) and (4), where A; € £L(R(A)) is invertible. Let us find the core inverse in the following form:

(X1 X2] {R(A) } {R(A)]

X3 Xa] [N(A) N@A) T

From the condition R(X) = R(A) we have X3 = 0 and X4 = 0, and the condition N'(X) = A/(A") implies X, = 0. From AXA = A it
follows A; = A1X4A;, so X; = A;'. Therefore,

SRR

X =

9)

On the other side, if X has the representation (9), then it obviously obeys AXA = A, R(X) = R(A), N'(X) = N'(A"). Hence, we
proved the existence, and the uniqueness also, of core inverse. Since R(X) = R(A) we also have the representation (6). The
representations (7) and (8) can be derived in a same manner.

Suppose now that 4® exists, we prove that ind(A) < 1. From AA®A = A we conclude that R(A) is closed. From the
conditions R(A®) = R(A) and N'(A®) = N(A*) it follows that

o= [o o] L] = [

where B; € £(R(A)) is invertible. It is clear that A has the following representation:

A |:A1 Az] . {R(A) } . {R(A)}

0 0] |NAY N(AY)

for some A; € L(R(A)) and A, € LNV (A*), R(A)). From AA®A = A we obtain:

{AlBlAl AlBlAz} _ {Al Az}

0 0 0 0]

so A1 = A1B1A:1 and A; = A;B1A;. From the second equality we have R(A;) C R(A1), so0 R(A) = R(A1), which implies A is sur-
jective. Since R(A) is Hilbert space, A; is right invertible so there exists T € £L(R(A)) such that A;T = Iz € L(R(A)). By post-
multiplying A;B1A; = A; by T, we obtain A;B; = Ir4). Because of the invertibility of B;, we conclude A, = B;', so B, = Al".

2
From A? = [’L(\)l Al(‘;‘z } and from the invertibility of A;, it follows R(A) = R(A;) = R(A?) C R(A%). Therefore, R(A) = R(A?).

Let us prove that A'(A) = A(A%). It is obvious that A/(A) C AN (A%), so we must prove the opposite inclusion. Let
X € N(A%),X = X1 + X2 € R(A)BN(A"). We have 0 = A%x = A2X; + A1Axxy = A1(A1X1 +AxXz), SO AiX1 +Axx; € N'(Ap). From
the invertibility of A; it follows that Aix; +A;x; =0, so Ax = Aix; +Axx; =0, which means x € N(A). Therefore,
N(A) = N(A?), and we have proved ind(A) < 1. O

Remark 3.1. If we assume in Theorem 3.1 that A,X € £(H), where H is arbitrary Hilbert space, then the condition (ii) implies
the condition (i), but not vice versa.

For the first claim, suppose AXA = A, R(X) = R(A) and N (X) = N'(A"). It follows that AX is a projector with range R(A). It
remains to prove that AX is Hermitian. Since AXA = A, from NV (A") C N'(X) it follows that X = XX"A" = X(AX)" (cf. Lemma 2.1
from [14]); therefore AX = AX(AX)" is Hermitian.

To show that condition (i) does not imply condition (ii) in general, we give the following counterexample. Let H = ¢>(N)
where ¢2(N) is the set of all complex sequences x = (x;) with property 5%, [xi|* < oo. Recall that ¢2(N) is a Hilbert space with
the inner product

%) = S X3
i=1

Let A and X be the left and right shift operators on H respectively, defined by
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AX1,X2,X3,...) = (X2,X3,X4,..),  X(X1,X2,%3,...) = (0,X1,%2,...).
It is easy to check the following well known properties of these operators:
1. A and X are bounded linear operators.
2. A is right invertible but not left invertible and its right inverse is X.

3. X is left invertible but not right invertible and its left inverse is A.
4, A =Xand X" =

We obtain that R(A) = H, AX =1 = Pgs), R(X) CR(A), so (i) is satisfied. But, it is evident that R(X) = H = R(A) so (ii) is
not satisfied. Note that for counterexample we could take any infinite dimensional Hilbert space H and any bounded
operators A and X on H such that A is right but not left invertible and AX = I. This remark fully justifies Definition 3.2.

As in [2], dual core inverse of matrix A, denoted by A in [2] and here by Agy can be defined in the following way.

Definition 3.3. Let H be arbitrary Hilbert space, and A € £(H). An operator Ag € £(H) is dual core inverse of A if

AdgA=A, R(4g)=R(A") and N(Ag)=N(A).
Just as in Theorem 3.2, we can show the following result.

Theorem 3.3. Let A € L(H). There exists the dual core inverse of A if and only if ind(A) <1 in which case the following
representations hold:

A= ﬁ)z g} 7/3;2‘\))}%{/7\3/((/:))} (10)
a=[5 ol [viw |~ Lieen ) o
=% g ) = D (12)
-5 9 - [55)

}
|
| (14)
|

0]

0]

0]
At R( . [R(A")
(A LN(A)

)
, 15
} ) (15)
where A, € L(R(A)) is invertible operator.

Proof. The proof is analogous to the proof of Theorem 3.2 and it is left to the reader. We only note that ind(A) < 1 if and only
ifindA) <1. O

In the next theorem we show that properties of core inverses from [2] are valid for operator case, too. We also give some
new properties.

Theorem 3.4. Let A € £!(H) and m € N. Then:

(i) A® € A{1,2};
(ii) AA® = AA" = Pry), s0 (AA®)" = AA®,
(iii) A®A? = A;
(iv) A(A®)° = A®;
(V) AD = A*Prip);
(vi) APA = AA;
(vii) A® = A*AAT;
(viii) A® is EP;

(ix) (A9) = (A9)" = (4®)® = APrn)
(%) (A9)’A = A%

(xi) (49)" = (A™)®;

(xii) ((A®)®)®=4@.
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Proof. In the proof we will use Definition 3.2, representations from Theorem 3.2, as well as the following unusual form for
orthogonal projector on R(A):

P[0 o] L |~ [ ®

We must show the existence of various expressions appearing in the theorem. First, the condition ind(A) < 1 provides the
existence of the group inverse A°* and by Theorem 3.2 the existence of core inverse A®, too. Also, ind(A) < 1 implies that R(A)
is closed and it ensures the existence of the Moore-Penrose invesre A'.

(i) This follows immediately from (3) and (5).

(ii) From (3), (5), (11) and (14) it follows
e A

(iii) By (4) we have

2 |AT O [RA)]_ [R(A)
=10 o [/\/(A)_ [N(A)]
o)
2 |A2 0] [RA)] R(A)
=10 o L)~ L) Y
Now, the proof follows by (17), (5) and (4).
(iv) By (6) we get
@2:-/\{2 0-' R(A) _ R(A)
=10 o] L) = L)
so we can conclude
o2 _ [A 0] [RA)]_[RA)
=% o) L) = v (18)

Applying (18), (4) and (5) we get the result.
(v) By using decomposition (7) for A* and a form (16) for Pr), we have
A o} | [ R(A) } = {R(A)}
O N b

: _
A'Prp) = 0 N@A) NA)

which, by (5) and the uniqueness of core inverse, is equal to 4®.
(vi) By (v), ABA = A'Pra)A = A'A.
(vii) Follows by (v) since Pr) = AA'.
(viii) By Definition 3.2, we have R(A®)=R(A), so R(AD) is closed and by the representation (6) we have
R((AD)") = (A;") (R(A)) = R(A); therefore R(A®) = R((AD)"), which means that 4® is the EP.
(ix) We show that 4® is closed so it is Moore-Penrose invertible. If we use the form (6), we have
oo |A 0 [MA) ] B [Rm)}
0 O N(A") NAY |

now it is easy to obtain

=[5 o) L] = L) |

which is precisely equal to APz, when (3) and (16) are used.
By (viii) A® is EP so ind(A®) < 1 (A®Y = (4®)" and

) i
(4®)0 Y (A@))tPR( A®, = (A®) Priay = APy ) = APryy

(x) Using (v), we obtain (A®)’A = APy A'PrA = A'PraA'A = APrAA' = AAAT = A',
(xi) By (4) we have
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<[4 S L-C0)

SO
o [AF 0] [RA] [RAT
A {5 oHN(AL {

Since A7 is invertible it follows by (6) that

(A o] [ R@A } _[R®A }

(Am)@: . X
0 o0 [NA)

On the other hand, by (6) we obtain

(AC)" = @ah" o], uz((:))] - [R(A) ]

(xii) By (ix),
(A9)D)® = AP g, = A®Priyy = A®. O

As we saw in (vii) of preceding theorem, A® = A*AA" so the core inverse is in-between the group and Moore-Penrose
inverse in some way. Therefore, it is expected that the core inverse shares the properties of two inverses. Recall, that the
group inverse of operator A is the unique operator X determined by equations

(1HAXA=A (2) XAX=X (5) AX=XA.
Note that these equations can be replaced by

(1) AXA=A (2) XAX =X (6)XA2:A,

(TYAX* =X  (8)AX=A (9 X*’A=X.

Namely, AX = XA%X = XA. Of course, equation (7) follows by (2), (6) and (8). The Moore-Penrose inverse of operator A is
defined by equations

(1 AXA=A (2)XAX=X (3) (AX)"' =AX (4) (XA) =XA.
In the next theorem we give alternative definition of core inverse by the set of equations.

Theorem 3.5. Let A € £L(H). Then A{1,2,3,6,7} # () if and only if ind(A) < 1. In this case A{1,2,3,6,7} = {A®} ie. the core
inverse of A is the unique operator X satisfying the following equations:

(1) AXA=A
(2) XAX =X
(3) (AX)" =AX
(6) XA* =A
(7) AX* =X

Proof. Ifind(A) < 1 then A® exists and, by Theorem 3.2(i)-(iv), it satisfies above equations. Suppose now that there exists an
operator X € £(H) which satisfies the given equations. By (6) and (7), R(X) = R(A). By (2) and (3), X = XAX = XX"A" and
hence N(A") C N'(X). Likewise, by (1) and (3),

=

A= AXA = A (AX) = A'AX,

so N(X) CN(A"). Now, AXA = A, R(X) = R(A") and N(X) = N(A"), and therefore by definition, X = A®. Since 4® exist,
indA)<1. O

When H is a finite dimensional, i.e. when A is a complex matrix, then we have simpler situation.

Theorem 3.6. Let A € C™", Then A{2,3,6} # () if and only if ind(A) < 1. In this case A{2,3,6} = {A®} i.e. the core inverse of A is
the unique matrix X € C™" which satisfies the following equations:
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(2) XAX =X
(3) (AX)" = AX
(6) XA* =A

Proof. If ind(A) < 1 then A® exists and it satisfies given equations. Suppose now that there exists matrix X which satisfies
Eqs. (2), (3) and (6). By (6), it follows A'(A?) C A/(A), thus A'(A*) = N'(A). Therefore, ind(A) < 1 so the group inverse A® exists.
Now, XA = XAA'A = XA’A* = AAY, so

AXA = A’A* = A
and

AX? = AX(XAX) = AXAA'X = AA*X = XAX = X.
By Theorem 3.5 it follows that X = A®,

Note that in the matrix case the condition A'(A%) = A/(A) is sufficient for ind(A) < 1, but in the infinite dimensional case it
is not. If we suppose that A € £(H) has index less or equal one then the core inverse of operator is uniquely determined by
Egs. (2), (3) and (6). We emphasize that none of the equations in Theorem 3.5 can be removed. For instance we have follow-
ing remark.

Remark 3.2. Let H = /2(N) and let A and X be right and left shift operators on H respectively, see Remark 3.1:
A(X],XQ,X3, .. ) = (O,X1,X2, .. .)7 )(()(1,)(2,?(3,7 .. ) = (Xz,X3,X4, .. )

Then XA =1 so Egs. (1), (2) and (6) hold. Also, in view of Remark 3.1, we have (AX)" = X"A" = AX so (6) is satisfied. But,
AX (%1, %5,%3,..) = (0,X3,Xa,..),

so AX* # X and (7) is not satisfied. Note that X is Moore—-Penrose inverse of A.

The core inverse can be defined in many equivalent ways.

Theorem 3.7. Let A € £'(H). An operator X € £(H) is the core inverse of A if and only if X = A’AAT if and only if X € {1,2,3} and
XA = A°A.

Proof. If X is the core inverse of A then by Theorem 3.2(vii), X = A*AA". It is easy to show that A'AA" € {1,2,3} and
A'AA'A = A’A. Suppose now that X € {1,2,3} and XA = A*A. Then

R(X) = R(XA) = R(A'A) = R(A)
and

N(X) = N(AX) = N((AX)) = N(X'A") = N(A),
so X is the core inverse of A. O

We can summarize the results from Theorems 3.1, 3.5, 3.6 and 3.7 and obtain the following theorem which gives equiv-
alent definitions of core inverse of matrix.

Theorem 3.8. Let A and X be complex n x n matrices such that ind(A) < 1. Then the following statements are equivalent:

(i) X is core inverse of A in a sense of Definition 3.1.
(ii) X is core inverse of A in a sense of Definition 3.2.
(iii) X is a least square g-inverse of A satisfying XAX = X,XA> = A and XA> = A, i.e. X € {1,2,3,6,7}.
(vi) X is a 2-inverse of A satisfying AX = (AX)" and XA® = A, i.e. X € {2,3,6}.
(v) X is a least square g-inverse of A satisfying XAX = X and XA = XA*.

The next theorem deals with some special cases of core inverse.
Theorem 3.9. Let A ¢ £!(H). Then:

(i) AD=0«<=A=0;

(ii) A® = Pry) = A® = A;

i

(iii) A=A < A®> =Aand A is EP;
(vi) A®D = A* = A is partial isometry and EP.
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Proof.

(i) It follows by A® ¢ A{1,2}.

(ii) If A® = Prs, then A =AA®A = APrsA = A’. On the other hand, if A*> = A then A® = A"AAT = A'A’AT = AAT = Pra).
Therefore, A is an idempotent if and only if 4® is orthogonal projector.

(iii) From A® = A it follows A = AA®A = A*. From Theorem 3.4 (viii), we have A® is EP, so because of A® = A we have A is
EP. Conversely, AD = A°AAT = A'APAT = A’AT = A’A* = A.

(vi) If A® = A", then A" = ATAA" = ATAA® = ATAA'AAT = AT, 50 A is partial isometry. From R(A) = R(4®) = R(A") we have A
is EP. Conversely, from the EP-ness (A'=A") and A being the partial isometry (A*=A"), we have
AD = AIAAT = ATAA" = A"

Next theorem further characterizes EP-ness of A via its core inverse.
Theorem 3.10. Let A € £!(H). The following statements are equivalent:

(i) Ais EP;
(i) Any two elements of the set {A*, AT,A® A} are equal;

(iii) (A9)" = A;
(vi) (A4%) = 4;
(V) (A®)® = A;
(vi) ABA = AAD;
(vii) (ANH)® =4;

(viii) (A®)" = (41)@.

Proof. Let us show that (i) implies (ii)—(viii). Suppose that A is EP i.e. A* = A'. The proof of (ii) follows by A® = A°’AA" and
Ag = ATAA’. By Theorem 3.4 (ix),

(A®) = (4®)' = (AD)® = APry) = AAA' = AAA* = A.
We just showed that EP-ness of A yields A® = A*, so (vi) follows. By (v) of Theorem 3.4, (41)® = (A*)uPR(At) — (AYAA=A.
Finally, (A®)' — (A")' = A = (A1)®, by (ii) and (vii).
Let us show that any of the conditions (ii)-(viii) implies that A is EP.

(ii) If A® — A" then R(A) = R(A®) = R(A") = R(A"), thus A is EP. In the same manner we can show the other cases.

(iii)-(v) By Theorem 3.4 (ix), any of the assumptions is equivalent to APz, = A. Multiplying both sides by (A“)2 from the left,
we obtain A"AA" = A%, i.e. A® = A*, which is by (ii) equivalent to A is EP.

(vi) This is equivalent to A°’A = AA, which reduces to previous case.
(vii)  We have R(A) = R((41)®) = R(A") = R(A"), so A is EP.

(viii)  We have

soAis EP. O

The next theorem is also given in [2] for complex matrix case. Here we present much shorter and elementary proof for
Hilbert space setting.

Theorem 3.11. Let A, B € L(H) be orthogonal projectors such that R(AB) is closed. Then R(ABA) is closed, ind(AB) < 1 and
(AB)® = (ABA)'. (19)

Proof. If R(AB) is closed, then (AB)' exists and
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AB = AB(AB)"((AB)")" = ABA(BA)'
AB = ((AB)")' (AB)"AB = (BA)'BAB

and similarly

BA = BAB(AB)" = (AB)'ABA.
It follows that R(AB) C R(ABA) so R(ABA) = R(AB) is closed. From above equations, it is easy to see that

AB = ABAB(AB)'(BA)" = (BA)'(AB)'ABAB.

It follows that R(AB) = R(ABAB) = R((AB)?) and N'(AB) = N'(ABAB) = N'((AB)?), so ind(AB) < 1.

We showed the existence of inverses in (39), so we can move to the proof of the formula. We will prove the equivalent
statement: ((A B)C@)T = ABA. According to Theorem 3.4 (ix), we have ((A B)®)T = ABPrap) = (AB)?(AB)'. By using well-known
formula T' = T*('[T*)T for any closed range operator T, and the fact that A and B are orthogonal projectors, we have:

(AB)" = (AB)"(AB(AB)*)i = B*A*(ABB"A")T = BA(ABA)'.
When we put this expression in formula above, we have

((AB)®)" = (AB)’BA(ABA)' = ABABA(ABA)' — ABAABA(ABA)' = (ABA)"ABA(ABA)' = (ABA)" = ABA. O

4. Spectral properties

In this section we are dealing with so-called spectral properties of group and core inverses. Spectral properties of group
inverse are well-known. Cline [4] has pointed out that square matrix A such that ind(A) =1 has {1,2,3} - inverse whose
range is R(A) and as “least-squares” inverse it has some spectral properties. We consider some spectral properties of group
and core inverse of given operator A. Suppose that A € £'(H).

If 0 € g,(A), and x is its associated eigenvector, then x € A'(A), so N'(A) # {0}. Since H = R(A) @ N (A) = R(A)*N (A7) it
follows that A (A®) = A/(A") # {0}. Therefore 0 € g,(A®). Moreover, N (A*) = N'(A), s0

0 € 0,(A) <= 0 € g,(A") <= 0 € 7,(AD)
only for the same eigenvector x € (M (A) NN (A7) \ {0}. On the other side,
0 € 0,(A) <= 0 e g,(A")

always holds with an eigenvector x € A'(A) \ {0}.
Suppose now that 0 # 4 € g,(A) with corresponding eigenvector x = x; +x, € R(A) & N (A). Using representation (4) we
obtain

0:(A—AI)X:{A1_MR(A) 0 Hxl}.

0 7/‘LI/\/’(A) X2

This is equivalent to A1x; = Ax; and —/x, = 0. Since . # 0, we have x, = 0 and 4 € g, (A;). Thus 0 # 1 € 7,(A) with eigenvector
x if and only if 1 € g,(A;) corresponding to x € R(A).
If 0 » u € 0,(A") corresponding to eigenvector y =y, +y, € R(A) @ N'(A) then using representation (7) we obtain

A - Wrn 0 Y1
0= (A" — Ny = 1 (A) |: :| )
( HD { 0 — Wy | LY2

This gives A]”y1 = py, and —uy, = 0 and this is equivalent with u~!' € 0,,(A;) with corresponding eigenvectory = y, € R(A).
Finally, if 0 v € 6,(A9) corresponding to eigenvector z = z; + 2z, € R(A)&*N(A*) then using representation (6) we
conclude

0= (A@—vl)zz A]*l —VIR(A) 0 |:Z]:|.
0 7\}[/\0’(}\") V4

Therefore A{lzl =vz; and —vz; =0, s0 v-! € 6,(A;1) and z; = 0. Hence 0 # v € JP(A@) corresponding to eigenvector z if and
only if v-! € 0,,(A1) corresponding to eigenvector z = z; € R(A).
It follows that for 4 # 0 we have
e 0,(A) = 1 € 0,(A) = 1! € 5,(A9)

corresponding to the same eigenvector x where x € R(A) is also an eigenvector of A; corresponding to an eigenvalue
rE Gp(Al )
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5. Core partial order

Using various generalized inverses we can define various partial orders. Let A, B € £(H). Similar to the matrix case we can
define minus, star and sharp partial order, respectively:
A< B<AA =BA" and A A=A B, forsomeA €cA{1l}, (20)
A<'B<= AA"=BA" and A'A=A'B,
A<'B < AA'=BA* and A'A=AB.
For minus and star order we require that R(A) and R(B) are closed and for sharp order we require that ind(A) <1 and

ind(B) < 1. In [15,7] the minus and the star partial orders are generalized for arbitrary A,B € £(H). In [14] the authors
defined the minus partial order for inner invertible Banach space operators as in (20) and showed that

A<B<= R(B)=R(A)® R(B-A) < B{1} CA{1}. (21)
Also, when A<~ B then R(A) CR(B) and NV (B) C N (A). In the same paper, it is shown that, when B is inner regular,

R(A)CR(B) < A=BB A foreachB” € B{1} and (22)
N(B)CN(A) < A=AB B foreach B” € B{1}. (23)

It is not difficult to see that

A<’B<= AA"=BA" and A’A=A'B, (24)
A<'B < A> =AB = BA. (25)
The proof is the same as in the matrix case, see [13].

The core partial order for matrices was defined in [2] in the natural way. We use the same definition in the Hilbert space
setting.

Definition 5.1. Let H be arbitrary Hilbert space and A,B < £!(H). We say that A is below B under the core partial order,
denoted by A<® B, if AA® = BA® and A®A = A®B,

To define core partial order it is enough to assume that ind(A) < 1. We require that both operators have indices less or
equal one because this is crucial for developing properties of core partial order. Since A® € A{1} we see that A <® B implies
A<™B, so the core partial order satisfies all the properties of minus partial order.

Let us show that A®A = A®B «— A*A = A'B. If A®A = A®B then

A'B = (AA®A)'B = A"AADB = A"AAQA = A"A.
The proof for the opposite direction is similar. Also,
AA® = BA® «— A’ = BA.
Indeed, if AA® = BA® then BA = BA®A> = AA®A> — A2, If A’ = BA then BA® = BA(A®)* = A*(A®)’ = AA®, It follows that
A<®B < A'A=AB and A>=BA (26)
< A/A=A'B and AA'=BA', (27)
so (see [10] for complex matrix case)
A<®B < Ax<B and A<{tB, (28)

where “x <” and “< #” are left star and right sharp partial orders. Recall that Ax < Bif A"A =A"Band R(A) CR(B) and A < B
if A2 = BA and \(B) C NV (A), see [13]. We can conclude that the core partial order is in-between the star and the sharp partial
orders. The condition A <® B does not imply B — A <® B even in the matrix case, see [2]. The conditions under which the
property B— A <®B is valid, for A,B € C™", are given in [11].

Theorem 5.1. Let A,B € £'(H). IfA<® B then

(i) R(B) = R(A)®'R(B — A);

(i) NV (A) = N'(B) ® R(BB* — AAY);
(iii) H = R(A)®R(B — A)a* N (B");
(iv) H = R(A) & R(BB* — AA") & N (B).

(v) R(B) = R(A) ® R(BB* — AA");
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Proof.

(i) Suppose that A<®B. By (26), we see that R(B—A)CN(A) =R(A)". As A<®PB implies A< B, by (21),
R(B) = R(A) & R(B —A), 50 R(B) = R(A)&-R(B — A).

(ii) IfFA<®B then A = AA®A = BA®A = AA®B, hence R(A) C R(B) and N'(B) C N'(A). By (22) and (23), A = BB"A = AB™B, for
every A~ € A{1}. Because of
1‘\(BBt — AA") = ABB" — AAA* =ABFB-A=A—-A= 0,
we have R(BB* — AA") C N (A). Let x € N'(B) N R(BB* — AA*), which means Bx = 0 and x = (BB’ — AA")z for some z € H. We have

0 = Bx = B(BB' — AA’)z = BBB'z — BAA'z = Bz — BA'Az 2 Bz — AA'Az = Bz — Az,

so (B— A)z = 0. From A% = BA we see that A* = B*A and consequently

Bz = (B')'Bz = (B')'Az = (B')'A*(A))’z = (B’ BPA(A) z = BA(A)) 2 = A2 (A") 2 = A'z.
It follows that

x = (BB — AA"z = (BB* — BA")z = 0,

which means N (B) N R(BB* — AA*) = {0} and we have \/(B) & R(BB* — AA*) C N (A).
Moreover, for any x € A'(A) we have x = (BB* — AA*)x + (x — (BB* — AA*)x). The first term belongs to R (BB’ — AA"), and the sec-
ond belongs to A(B) because B(BB* — AA*)x = Bx — BA'Ax = Bx. We have proved that AV'(A) = N'(B) & R(BB* — AAY).

(iii) The decomposition follows by (i) and the fact that H = R(B)®&*N'(B").

(iv) The decomposition follows by (ii) and by the fact that H = R(A) & N'(A).

(v) Note that R(A) C R(B) and hence R(BB* — AA*) C R(B). Since

H=R(B)®N(B) = R(A) & R(BB — AA") & N'(B),
we conclude that R(B) = R(A) @ R(BB" — AA"). O
It will be nice to know if the condition (i) from Theorem 5.1 together with some additional condition imply A <® B.
Theorem 5.2. Let A,B € £'(H). Then A<® B if and only if R(B) = R(A)&*R(B — A) and BA®B = A,
Proof. The only if part follows by (i) of Theorem 5.1 and the fact BA®B = AA®A = A. Conversely, suppose that A,B € £' (H)
such that R(B)=R(A)®'R(B—-A) and BA®PB=A. It follows that H=R(A)®N(A) and H=R(B)o N (B)=

R(A)®TR(B—A)®*N(B"). Since the orthogonal complement of R(A) is unique subspace AN(A") we conclude that
N(A") = R(B—A)@*N(B*). From (3) and (5) of Theorem 3.2 we obtain

A O R(A)
A=|0 0 :{f/(/:)}a R(B-A) |,
0 0 @ N(BY)
4 R(A)
A — A(]) g 8]; R(B-A) H{ff((’:))}
N(B)
where A; € £(R(A)) is invertible. Since R(B) = R(A)&*R(B — A), the operator B has the following representation
B: B R(A)
B=|B; Bi|: {ff((i))} — | R(B-A)
0 0 N(B)

for some operators B;. Direct computation shows that condition BA®B = A is equivalent to
BiA;'Bi BiA;'B, A 0
B:A;'B; B3A;'B,| =0 O0}.
0 0 0 0

From B1A;'B; = A; we obtain A;'B;A;'B; = BiA;'B1A;" = Ir 50 By is invertible. Now, from B;A;'B; = 0 and BsA;'B; = 0 we
obtain B, = 0 and B3 = 0. It follows that
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Bi—-A O R(A)
- [RAT i
B-A=| 0 B '{/\/(A} R(B *A)

0 0 N(B')

For any x € R(A) we have (B —A)x = (B; — Ay)x. It follows that (B; — A;)x € R(B—A) N R(A) = {0}. Thus B; = A;. An easy
computation shows that AA® = BA® and A®A = A®B, ie. A<®B. O

Most of the matrix partial orders are characterized by some kind of simultaneous diagonalization. It is proven in [2] that
A<® B if and only if
K XL

0 0 (29)

A:U{

, XK Z2L7 .
}U* and B:U{ }Uﬂ

0 Zz

where U is unitary matrix, XK is invertible and Z is some matrix of index one. We do not know whether the matrices £L and Z
are invertible or not. In the next theorem we consider infinite dimensional case and give better representations.

Theorem 5.3. Let A, B € £!(H). The following conditions are equivalent:

(i) A<®B
(i) H = R(A)S'R(B — A)B N (B"),

H=TR(A) ® R(BB* — AA*) ® N'(B) and

[A; 0 O R(A) R(A)
A=|0 0 0|:|R(BB-AA")| — |R(B-A)|,
L0 0 0 N(B) N(BY)
[A; 0 O R(A) R(A)
B=|0 By 0|:|R(BB -AA)| — |R(B-A) |,
L0 0 0 N(B) N(B)

where A; € £L(R(A)) and B; € L(R(BB* — AA*), R(B — A)) are invertible operators.

Proof. (i) = (ii): The decompositions of the space H follows from Theorem 5.1. Let H; = R(BB* — AA*). The matrix represen-
tation for the operator A is obvious, because A'(A) = H; & N(B), by Theorem 5.1. Suppose that

Bll BlZ Bl3 R(A) R(A)
B=|By By Bi|:| Hi | — |RB-A)
B31 B32 B33 N(B) N(B*)

The domain of operators By3, B,3 and Bss is AV'(B), so B3 = 0, B3 = 0 and B33 = 0. From R(B) = R(A)&-R(B — A) we conclude
B3; =0 and Bs; = 0. As A<® B we have A'A = A'B and A? = BA. Suppose now that x € R(A), which means x = Az for some
z € H. We conclude that Bx = B(Az) = A(Az) = Ax € R(A), which gives B;; = 0 and By; = A;. Suppose x € H;, which means
x = (BB' — AA")z for some z € H. We have:

Bx = B(BB* — AA")z = Bz — A’A'z = Bz — Az € R(B — A)

and therefore B;; = 0, so we have:

Al 0 0 R(A) R(A)
B=|0 B, 0|:| H | = |RB-A)
0 0O N(B) N(B)

where By = By,. From R(B) = R(A)®&*R(B — A) we conclude B; € £(Hy,R(B — A)) is onto. Additionally, if x € H; and B1x =0,
we have 0 = Byx = Bx, so x € N(B). From x € H; N N'(B) = {0} we conclude x = 0; hence B; is injective. Therefore, B; is
invertible.

(ii) = (i): Let
A 00 R(A) R(A)
cC=|0 0 o0|:|RB-A)|—| H
0 00 N(B) N(B)

It is easy to see that ACA = A, R(C) = R(A) and
N(C)=R(B-A)D'N(B) =N(A"), (30)
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because H = R(A)&*N(A*) and H = R(A)& R (B — A)&*N(B*). By definition, we conclude that C = A®, We check at once
that:

I 00 R(A) R(A)
AAD=BA®—= |0 0 O R(B—-A)| — | R(B-A)
00O N (B") N(B)
and
I 00 R(A) R(A)
APA=A®B=|0 0 O|:| H |—=| Hi |,

00 0| N (B) N(B)

therefore A<®B. O

Remark 5.1. With the notation as in the proof of Theorem 5.3, we will show that

A 0 0 R(A) R(A)
D=1 0 31*1 0|:|RB-A)|— | H;
0 0 0 N(B) N (B)

is the core inverse of B. It is obvious that BDB=B and WN(D)=A(B"). By (v) of Theorem 5.1,
R(D) = R(A) ® R(BB* — AA*) = R(B), so D = BO.
The following theorem, for complex matrix case, can be found in [11].

Theorem 5.4. If A,B € £'(H) then A<® B if and only if A = BA'A = AA'B.

Proof. If A<®B then A =AA®A = BA®A = BA'A and A = AA®PA = AA®B = AA'B. For converse implication suppose that
A = BA’A = AA'B and recall that by Theorem 3.4 A = A'AA" = A®AA" = A’AA®. We obtain that BA® = BA’AA® = AA® and
A®B = ADAAB = A®PA, s0 A<®B. O

Let us recall the equations from Theorem 3.5. It is known that the minus, sharp and star matrix partial orders can be char-
acterized in the following way, see [13]:

A<"B <= B{1} CA{1},
A<'B <= B{1,5} CA{1,5},
A<'B <= B{1,3,4} CA{1,3,4}.

Based on the properties of core inverse, it is natural to ask whether A <® B is equivalent to B{1,3,6} CA{1,3,6}. For the
proof of our hypothesis, we need the following lemma.

Lemma 5.1. Let B € £'(H). Then B has the following representation
5 o] Ly~ Lviw)]
B= : — ,
0 0 N (B) N (B)
where By € L(R(B)) is invertible. We also have following characterizations:
. _J[B" O] .[RB)]_ [RB)]. . .
(i) B{1,3} = {{X3 XJ : {/\/’(B*) N(B) : X3, Xsarbitrary ;;

(ii) B{6} — {{Bg §j : m((BB))} - m((g))} :XZ,X4arbitrary};
R(B)

(iii) B{3,6} — {{Bg )?J : {N((g)} - mggﬂ :X4arbitrary}.

Proof. The representation of B follows by Theorem 3.2. Note that if ind(B) < 1 then
B{3,6} = B{1,3} N B{6}. (31)



D.S. Rakic et al./Applied Mathematics and Computation 244 (2014) 283-302 297

Indeed, suppose that X € B{3,6}. Then XB*> = B. Pre-multiplying this equation by B and post-multiplying by B* (which
exists as ind(B) < 1), we have BXB = B, so B{3, 6} C B{1,3} n B{6}. The converse inclusion is obvious. In view of this equality

it is enough to show (i) and (ii). It is easy to see that the operator matrices from the right hand side belongs to the sets from
the left hand side. Suppose that

=[x ) L] = Lo )

(i) The condition BXB = B is equivalent to B;X;B; = B; so, by the invertibility of B;,X; = B{l. Direct computation shows
that

- ") (20 (28]

Since (BX)" = BX and R(B) L N(B") we obtain B;X; =0, so X; =0.
(ii) As in (17) we have

#=[3 o) [Vl - [Vl

o o) =o=[0 o] (]~ [V

SO

We conclude that X; = B;' and X; =0. O

The equivalence of (i) and (ii) in the next theorem is proved for complex matrices in [12]. We note that the other equi-
valences have not been proved before, even in the case when A, B are complex matrices.

Theorem 5.5. Let A, B € £!(H). Then the following conditions are equivalent

(i) A<®B;

(i) B{1,3} CA{1,3} and B{6} CA{6};
(iii) B{3,6} CA{3,6};
(iv) B{1} CA{1} and B{3,6} CA{3,6};
(v) Ax < Band B{6} CA{6}.

Proof. (i) = (ii): Suppose that A<® B and let H; = R(BB* — AA"). By Theorem 5.1 it follows that
R(B) = R(A)&"R(B - A),
R(B) = R(A) & Hy,

H=RA)& R(B - A& N (B,

H=R(A)® H; ® N(B).

By Theorem 5.3 it follows that

[Ay 0 O R(A) R(A)
A=|0 0 O|:| Hi |— |RB-4)
L0 0 O N (B) N(B)
[Ay 0 O R(A) R(A)
B={0 B, O0|:| Hi |—=|RB-A)],
L 0 0 N (B) N(B")
where A; € L(R(A)) and B, € L(Hy,R(B — A)) are invertible operators. It follows that we can write
B [Cy 0}:[76(3)}%{76(3)}
L0 O N (B) NBY ]

where
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A 0 R(A) R(A)
: — .
0 B H; R(B—-A)
Since A; and B; are invertible we conclude that C; is invertible and

L5 Rl ]l

|

By Lemma 5.1, we conclude that X € B{1,3} if and only if

¢’ O}Z'R(B)}H{R(B)}y

=y x| ve)] T lve)

where Yy € £(R(B),N(B)) and X3 € L(N(B"), N'(B)) are arbitrary. Since R(B) = R(A)&'R(B — A) we can write

R(A)

Yi=[X Xal: [R(B_A)

]HN(B)

for some X; € L(R(A),N(B)) and X, € L(R(B —A), N (B)). Also, since R(B) = R(A) & Hy, the null operator 0 € £L(N(B"), R(B))
can be written in the form

_ 07 vripe R(A)
SHEC !
It follows that X € B{1,3} if and only if
A' 0 0 R(A) R(A)
X=10 B' 0|:|RB-A)|—| H (32)
X X2 X3 N(B) N(B)

for some X;. By (30) we know that A/(A") = R(B — A)®*N(B"). Also, by Theorem 5.1, we have N'(A) = H; ® N/ (B). Now, in the
same manner as in the proof of characterization (32), we can prove that Y € A{1,3} if and only if

A 0 0 R(A) R(A)
Y=|Y, Y, Ys|:|RB-A)| = | H,
Yo Ys Yo N(B) N(B)

for some Y;, i =1,6. It is now clear that B{1,3} CA{1,3}. Using the same arguments, we can show that B{6} C A{6}
similarly.
(ii) = (iii): We have proved that B{3,6} = B{1,3} nB{6}, see (31) in the proof of Lemma 5.1. It is now clear that
B{1,3} CA{1,3} and B{6} C A{6} imply that B{3,6} C A{3,6}.
(iii) = (i): Suppose now that B{3,6} C A{3,6} and let us prove that A<® B. As we know
B {Bl 0} _ {R(B)} [R(B) ]
L0 0] N(B N(B) |
where B; € £(R(B)) is invertible. (This operator B; should not be confused with operator B; € £(H;, R(B — A)) which we used
in the proof of the part (i) = (ii).) Let

o[l A1 )
and let

x_ B 0. { R(B) } _ {R(B)}
0 o [WNB) NB) |
Then X € B{3,6} CA{3,6}. Since AX = (AX)" and R(B) L N (B) it follows that AsB;" = 0 and A;B;' = (A;B;")". Hence A; = 0
and

AiB, = (A}By)". (33)

Since the subspaces A(B) and N(B") have the same complement subspace to H, namely R(B), it follows that there exists
—1
invertible operator C € £(N'(B"),N'(B)). Taking Z = {Bé 2} € B{3,6}, we get
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a7 {A]Bll Azc} : [R(B) ] . [R(B) ]

0 AC| [NB) NB) |

From AZ = (AZ)" wee see that A,C = 0, so A, = 0. Now,

-1
A:|:A1 0:| aﬂd AXA — A]Bl A1 0
0 A 0 0
and since A = AXA we conclude that A4 = 0. It follows that R(A) = R(A1) CR(B) so
A {Al 0} ) {R(B)} {R(B)}
Lo o] |NB) N@B) ]|

Therefore,

s [Af o} : {R(B)} - {R(B)}
0 0 N(B) w
where W can be either A/(B) or N(B"). Now,
"ot o ea=[5 o) [Xe] - (V)
which implies
BiA; = A2 (34)
Since ind(A) < 1, we have ind(A;) < 1 so AED exists and
AP o] , [ R(B) } B [Rw)}
0 0] LN(GB) N(B) ]

Let us show that A®A = A®B and AA® = BA®, This is equivalent to APA; = A®B, and A, A? = B, A%, Using (33) and (34) and
the basic properties of core inverse we deduce:

A® —

APy = AP(A,AD) By = AP(AP) AiB, = AP(AD) (A;By)  (by (33)) = AP(A;B,AP)’
— APABA(AP))  (by AP = A, (AD)) = APAAZ(AD)) (by (34)) = AP(A;A AP
= AP(AAP) A = APA,
and
BAP = BiA (A7) = A2(a)” = A, AP.
It follows that A<®B.

(i) = (iv) In view of (i) = (iii) it is enough to show that B{1} C A{1}. But A <® B implies that A<~B and as we now A<"B
implies that B{1} CA{1}.

(iv) = (iii) is trivial.
(i)= (v) We have shown in (28) that A<® B implies A « < B. Also, we have shown in the part (i) = (ii) that A <® B implies

B{6} CA{6}.

(v) = (iii) Suppose that A* < B and B{6} CA{6}. Let X € B{3,6}. As we know B{3,6} = B{1,3} nB{6} so BXB =B. By
assumption it follows that X € A{6}. It remains to show that X € A{3}. As Ax < B we have A"A=A"B and
R(A) C R(B). By (22), we have A = BB"A for each B~ € B{1}. It follows that

AX = AATAX = (ATY A'AX = (AT)'A"BX = (AAT) (BX)" = (BXAA')" = (BXBB AA")" = (BB AA")" = (AA"),
so (AX)" =AX. O

It remains to show that the core partial order is actually partial order on the set of bounded Hilbert space operators with
indices less or equal one.
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Theorem 5.6. The relation “<® ” is a partial order on the set £!(H).

Proof. The reflexivity and transitivity follows by Theorem 5.5. Since A <® B implies A<~B and <~ is a partial order, the anti-
symmetry of <® follows. Thus, <@ is a partial order on £'(H). O

Theorem 5.6 can be proved without using Theorem 5.5.

6. Some remarks

1.Any A € £(H) can be written in the form
A; A R(A R(A
=[5 5] Lo = Lo )
0 O N(AY) N(AY)
It is shown in [5] that if ind(A) < 1 then As is invertible. It is easy to check that
A 0} A {R(A) } B [R(A) }

@ —
=0 o] vy T vy |

(36)

The representations (35) and (36) are analogous to representations (1) given by Baksalary and Trenkler in [2]. Using these
decompositions one can obtain the characterization of the core partial order analogous to (29). Similarly, if ind(A) < 1 then

L o - )

o (3 4] G110

2. We should emphasize the following. Although for the dual core inverse A all properties analogous to those of core inverse
A® are valid, the proofs of some properties requires additional caution. Namely, we often use the following trick in the
proofs regarding the core inverse. Let C € £(H),H = H, ® H, = H3 ® Hy = H3 ® Hs such that H,, H,, Hs, H4, Hs are closed
subspaces of H and H, C NV (C), R(C) C Hs. The operator C has the representation (C; = C\H1 :Hy — H3)

C] 0 H] H3
C= : — .
0 O Hz H4
We can also write the following
¢, 0 H, H;
C= : — . 37
[ 0 0} {Hz} {Hs} @7
Observe that a similar method can not be applied to the domain. Namely, if H = Hg ® H,, where Hg is closed, the only thing
we can write is

<[5 3 (- (2}

where C; = Cl, :Hi — Hs. In the proofs for some properties of dual core inverse (for example (A®)2A:A® or

A<®B < B{4,8} CA{4,8}) the representation (37) is of no use, but the representation (38) is convenient. As a drawback
we have some new operator C,, but this fact appears not to be problem. The proofs of all properties of dual core inverse have
the same idea as those of core inverse, with the previously described observation.

3. For dual core inverse there is the following theorem analogous to the Theorem 3.4:
Theorem 6.1. Let A € £!(H) and m € N. Then:

(i) Ag e A{1,2}; (ii) AgA = A'A = Pra, 50 (Agh)’ = Agh;

(i) A’Ag = A; (iv) (Ag)*A = Ag; (V) Ag = Pra A';

(vi) Adg = AA"; (vii) Ag = ATAA; (viii) Ag is EP;

(ix) (Ae)' = (Ag) = (4g)e = PrarA; (X) A(Ag)” = A;

(xi) (4g)" =(4p)™; (xii) (Ae)e)e = Ae
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4. Similarly as in Theorems 3.5 and 3.7, one can show that X = Ag, if and only if one of the following equivalent condi-
tions hold:

(i) (NAXA=A (2)XAX=X (4) (XA =XA (8)A’X=A (9)X*A=X;
(ii) X = ATAA%;
(iii) X € A{1,2,4} and AX = AA,
5. The following theorem for dual core inverse is analogous to the Theorem 3.9.

Theorem 6.2. Let A € £!(H). Then:
(i) Ap=0 <= A=0; (ii) Ag = Pru) <= A> = A;
(iii) Ag=A<=A>=AandAis EP;
(iv) Ag=A" <= A is partial isometry and EP.
6. Theorem 3.11 also has equivalent form for dual core inverse.

Theorem 6.3. Let A,B € L(H) be orthogonal projectors such that R(AB) is closed. Then R(BAB) is closed, ind(AB) < 1 and
(AB)g = (BAB)'. 39)
Proof.
(AB)g = (AB)'(AB)®AB = (AB)'(ABA)'AB = (AB)'(ABBA)'AB = (AB)'(ABB'A")'AB = (AB)'(B'A")' = (AB)'((AB)")’
= (B'A"AB)' = (BAAB)' = (BAB)'. O

7. Using dual core inverse Ag we can define another partial order. For A,B € £'(H) we write A<@B if AAg = BAg and
AgpA = AgB. As in Theorem 5.3, it can be shown that A<gB if and only if

H=R(AYD*R((B-A)" )@ *N(B),
H=RA) ®R(B-A) oN(B) and

Al 0 0 R(A) R(A)
A=|0 0 0|:|R(B-A)|— |RB-A) |,
[0 00 N (B) N(B)
Ay 0 0 R(A%) R(A)
B=|0 B 0|:|R(B-A)|— |RB-A)],
0 0 0 N(B) N(B)

where A; and B, are invertible operators.
8. As in Theorem 5.5, one can show that A<@B if and only if B{1,4} CA{1,4} and B{8} CA{8} if and only if
B{4,8} C A{4,8} when A, B < £'(H). Also, the relation “<@" is a partial order on £'(H).
9. A® is reflexive generalized inverse, and A® = AZ:4 | s recall AT = ATZ) AT = AR L Also, Ag = AR
10. AA®, AgA are orthogonal, and A®A, AAg oblique projectors;
11. From Theorem 3.4 (ix), A® = (APzy)) = (A%A")' = (A2A1);
12. From Theorem 3.4 (vii), A® = AAA AAT = PraynayA Prea; for arbitrary A~ € A{1}.
13. An easy computation shows that APA — AA®, AAg — AgA are nilpotent of order 2.
14. (AD)" = (49" AT, (Ag)™ —A'(A)™", m > 2. The proof is by induction on m.
15. (A®)" = (At)mflA@), (Ap)" = A@(A”)mfl, m > 1. It follows by previous one.
16. Let p(t) = S_r_oart* be some polynomial. Then:
p(A®) = z":a,((w)k = Xn:ak(A”)k_lA@) + aol = al + q(AHA®,
k=0 k=1
where q(t) = 22-%. Another way is
P(A®) = p(A)AAT + agl — apAA" = ao(I — AA") + p(A)AA'.
For dual core inverse we have p(Ag) = aol + Agq(A*) and
P(Ag) = ao(I — A'A) + ATAp(A%).

17. Recall the definition of Bott-Duffin inverse. Let A € £(H) and let L be closed subspace of H. The Bott-Duffin inverse of A
with respect to L is defined by
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AY = P (AP, + P ),

where P; denotes an orthogonal projector on L. The Bott-Duffin inverse arises in electrical network theory, see for example
[1, Section 2.10]. The Bott-Duffin and core inverse are related in the following way:

Aga_(}*)) = Pra)[APr@) + PN(A~)]’1 — A®
provided that ind(A) < 1. It follows by representations (16), (3) and (5) and
0 0 ].[R(A)} {R(A)}

P = | ST RO

0 If\/(A*)

On analogous way one can prove that Ag = Agz‘(:,l).
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