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a b s t r a c t

The core inverse of matrix is generalized inverse which is in some sense in-between the
group and Moore–Penrose inverse. In this paper a generalization of core inverse and core
partial order to Hilbert space operator case is presented. Some properties are generalized
and some new ones are proved. Connections with other generalized inverses are obtained.
The useful matrix representations of operator and its core inverse are given. It is shown
that A is less than B under the core partial order if and only if they have specific kind of
simultaneous diagonalization induced by appropriate decompositions of Hilbert space.
The relation is also characterized by the inclusion of appropriate sets of generalized
inverses. The spectral properties of core inverse are also obtained.

� 2014 Elsevier Inc. All rights reserved.

1. An introduction

The core inverse and core partial order for complex matrices of index one were recently introduced in [2] by Baksalary
and Trenker. The core inverse is in some way in-between the group and Moore–Penrose inverse as well as the core partial
order is in-between the sharp and star partial orders. A matrix 2 C

n�n is core inverse of A 2 C
n�n if A ¼ PA and

Rð Þ#RðAÞ, where RðAÞ is range of A and PA is orthogonal projector onto RðAÞ. We write A B if A ¼ B and
A ¼ B . It is showed in [2] that for every matrix A 2 C

n�n of index one and rank r there exist unitary matrix U 2 C
n�n,

diagonal matrix R 2 C
r�r of singular values of A and matrices K 2 C

r�r ; L 2 C
r�ðn�rÞ such that KK� þ LL� ¼ Ir and

A ¼ U
RK RL

0 0

� �
U� and ¼ U

ðRKÞ�1 0

0 0

" #
U�

: ð1Þ

Also, A B if and only if

B ¼ U
RK RL

0 Z

� �
U�

; ð2Þ

where Z 2 C
ðn�rÞ�ðn�rÞ is some matrix of index one. Using the above representations many properties of core inverse and core

partial order are derived.
Our aim is to define an inverse of an Hilbert space bounded operator which coincides with core inverse in the finite

dimensional case. In Theorem 3.1 we have shown that X 2 C
n�n is core inverse of A 2 C

n�n if and only if
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AXA ¼ A; RðXÞ ¼ RðAÞ and NðXÞ ¼ N ðA�Þ. This equivalent characterization serves us as definition of core inverse in Hilbert
space settings. In Theorem 3.2 we have shown that A 2 LðHÞ has core inverse if and only if index of A is less or equal one in
which case A1 ¼ AjRðAÞ : RðAÞ#RðAÞ is invertible and

A ¼
A1 0

0 0

� �
:

RðAÞ

N ðAÞ

� �
!

RðAÞ

N ðA�Þ

� �
and

¼
A�1
1 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðAÞ

� �
:

Using these representations we give a number of properties of core inverse. In Theorem 3.5, we characterize the core inverse
of A 2 LðHÞ by the equations: AXA ¼ A; XAX ¼ X; ðAXÞ� ¼ AX; XA2 ¼ A and AX2 ¼ X. With assumption indðAÞ 6 1 these equa-
tions reduce to XAX ¼ X; ðAXÞ� ¼ AX and XA2 ¼ A and the latter ones characterized core inverse in finite dimensional case.
We have shown that A is EP if and only if any two elements of the set fA]

;Ay
; ; g are equal.

In Theorem 5.3 it is proved that A B if and only if

A ¼

A1 0 0

0 0 0

0 0 0

2
64

3
75 :

RðAÞ

RðBB] � AA]Þ

N ðBÞ

2
64

3
75 !

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75;

B ¼

A1 0 0

0 B1 0

0 0 0

2
64

3
75 :

RðAÞ

RðBB] � AA]Þ

N ðBÞ

2
64

3
75 !

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75;

where A1 and B1 are invertible operators and RðBÞ ¼ RðAÞ�?RðB� AÞ.
In Theorem 5.5 it is shown that A B if and only if ðAXÞ� ¼ AX and XA2 ¼ A for any X satisfying ðBXÞ� ¼ BX and XB2 ¼ B.

Compared to representations (1) and (2), our representations have more zeros and all nonzero entries are invertible. Because
of that our proofs are simpler.

It should be noted that, although we deal with Hilbert space operators, many of the presented results are new when they
are considered in finite dimensional setting. As the finite dimensional linear algebra techniques are not suitable for our work,
we use geometric approach instead, that is, we use decompositions of the space induced by the characteristic features of the
core inverse and core partial order.

2. Preliminaries

Let H and K be Hilbert spaces, and let LðH;KÞ denote the set of all bounded linear operators from H to K; we abbreviate
LðH;HÞ ¼ LðHÞ. For A 2 LðH;KÞ we denote by NðAÞ and RðAÞ, respectively, the null-space and the range of A.

Throughout the paper, we will denote direct sum of subspaces by �, and orthogonal direct sum by �?. Orthogonal direct
sum H1�?H2�?H3 means that Hi ? Hj, for i – j. An operator P 2 LðHÞ is projector if P2 ¼ P. A projector P is orthogonal if
P ¼ P�. If H ¼ K � L then PK;L denotes projector such that RðPK;LÞ ¼ K and NðPK;LÞ ¼ L. If H ¼ K�?L then we write PK instead
of PK;L.

An operator B 2 LðK;HÞ is an inner inverse of A 2 LðH;KÞ, if ABA ¼ A holds. In this case A is inner invertible, or relatively
regular. It is well-known that A is inner invertible if and only if RðAÞ is closed in K. If BAB ¼ B holds, then B is reflexive gen-
eralized inverse of A. If ABA ¼ A it is easy to see that RðAÞ ¼ RðABÞ and NðAÞ ¼ N ðBAÞ and we will often use these properties.
The Moore–Penrose inverse of A 2 LðH;KÞ is the operator B 2 LðK;HÞ which satisfies the Penrose equations

ð1Þ ABA ¼ A; ð2Þ BAB ¼ B; ð3Þ ðABÞ� ¼ AB; ð4Þ ðBAÞ� ¼ BA:

The Moore–Penrose inverse of A exists if and only ifRðAÞ is closed in K, and if it exists, then it is unique, and is denoted by Ay.
The ascent and descent of linear operator A : H ! H are defined by

ascðAÞ ¼ inf
p2N

fN ðApÞ ¼ NðApþ1Þg; dscðAÞ ¼ inf
p2N

fRðApÞ ¼ RðApþ1Þg:

If they are finite, they are equal and their common value is indðAÞ, the index of A. Also, H ¼ RðAindðAÞÞ � N ðAindðAÞÞ and
RðAindðAÞÞ is closed, see [6]. We will denote by L1ðHÞ the set of bounded operators on Hilbert space Hwith indices less or equal
one,

L1ðHÞ ¼ A 2 LðHÞ : indðAÞ 6 1f g:

The group inverse of an operator A 2 LðHÞ is the operator B 2 LðHÞ such that

ð1Þ ABA ¼ A; ð2Þ BAB ¼ B; ð5Þ AB ¼ BA:

The group inverse of A exists if and only if indðAÞ 6 1. If the group inverse of A exists, then it is unique, and it is denoted by A].
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If X satisfies equations i1; i2; . . . ; ik then X is an fi1; i2; . . . ; ikg inverse of A. The set of all fi1; i2; . . . ; ikg inverses of A is denoted
by Afi1; i2; . . . ; ikg. If RðAÞ is closed, then Af1;2;3;4g ¼ fAyg. The theory of generalized inverses on infinite dimensional Hil-
bert spaces can be found, for example, in [3,6,8].

Throughout this paper H will denote arbitrary Hilbert space. An operator A 2 LðHÞ is Hermitian if A ¼ A�. Closed range
operator A is EP (‘‘equal-projection’’) if one of the following equivalent conditions holds RðAÞ ¼ RðA�Þ or NðAÞ ¼ N ðA�Þ or
AAy ¼ AyA or Ay ¼ A]. Closed range operator A is partial isometry if A� ¼ Ay or AA�A ¼ A.

In Section 3 we present the results related to the core inverse of Hilbert space operators with index less or equal one.
Section 4 deals with spectral properties of core inverse and Section 5 is devoted to the study of core partial order. In Section 6
we collect some additional properties of core inverse and core partial order.

3. Core inverse and its properties

In this section we introduce the notion of core inverse for Hilbert space operators, as a generalization of core inverse for
matrices.

In [2], Baksalary and Trenkler introduced new generalized inverse of complex matrix, so called ‘‘core inverse’’.

Definition 3.1 [2]. Let A 2 Cn�n. A matrix 2 Cn�n satisfying A ¼ PRðAÞ and Rð Þ#RðAÞ is called core inverse of A.
They have shown that a complex matrix has core inverse if and only if its index is less or equal 1, and proved its unique-

ness when it exists. If we define core inverse of an operator A 2 LðHÞ in the same way as in matrix case, then we have the
problem because the index of A need not be less or equal 1, as we will see later in Remark 3.1. This is the reason why we find
another set of equivalent conditions which determines the core inverse.

Theorem 3.1. Let A;X 2 Cn�n. The following conditions are equivalent:

(i) AX ¼ PRðAÞ and RðXÞ#RðAÞ;

(ii) AXA ¼ A; RðXÞ ¼ RðAÞ and NðXÞ ¼ N ðA�Þ.

Proof. (i)) (ii): Suppose that (i) holds. By Theorem 1 from [2], X ¼ ; indðAÞ 6 1; X 2 f1;2g and XA ¼ A]A. Because of that
A ¼ AA]A ¼ A]AA ¼ XA2, so RðAÞ#RðXÞ, which means RðXÞ ¼ RðAÞ. From AX ¼ PRðAÞ, we have AX ¼ ðAXÞ� ¼ X�A�, so

A ¼ AXA ) A� ¼ A�X�A� ¼ A�AX ) NðXÞ#NðA�Þ:

Also, we have X ¼ XAX ¼ XX�A� ) NðA�Þ#NðXÞ, therefore NðXÞ ¼ N ðA�Þ.
(ii)) (i): Suppose that (ii) holds. Now RðXÞ ¼ RðAÞ implies rankðXÞ ¼ rankðAÞ. We already have X 2 Af1g, so X 2 Af1;2g

[1, p. 46]. It is evident that ðAXÞ2 ¼ AX and RðAXÞ ¼ RðAÞ. It remains to prove that NðAXÞ ¼ RðAÞ? ¼ NðA�Þ. But from
XAX ¼ X it follows that NðAXÞ ¼ N ðXÞ ¼ N ðA�Þ, so we have the proof. h

We use the condition (ii) from previous theorem as a definition of core inverse for Hilbert space operators.

Definition 3.2. Let H be arbitrary Hilbert space, and A 2 LðHÞ. An operator 2 LðHÞ is core inverse of A if

A A ¼ A; Rð Þ ¼ RðAÞ and Nð Þ ¼ NðA�Þ:

From Theorem 3.1 it follows that the Definitions 3.1 and 3.2 are equivalent in complex matrix case. More characteriza-
tions of core inverse can be found later in Theorem 3.8.

The next theorem describes the bounded linear operators having core inverse and gives appropriate matrix forms.

Theorem 3.2. Let A 2 LðHÞ. Then the core inverse of A exists if and only if indðAÞ 6 1 in which case the following representations

hold:

A ¼
A1 0

0 0

� �
:

RðAÞ

N ðAÞ

� �
!

RðAÞ

N ðA�Þ

� �
; ð3Þ

A ¼
A1 0

0 0

� �
:

RðAÞ

N ðAÞ

� �
!

RðAÞ

N ðAÞ

� �
; ð4Þ

¼
A�1
1 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðAÞ

� �
; ð5Þ

¼
A�1
1 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
; ð6Þ
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A] ¼
A�1
1 0

0 0

" #
:

RðAÞ

N ðAÞ

� �
!

RðAÞ

N ðAÞ

� �
; ð7Þ

A] ¼
A�1
1 0

0 0

" #
:

RðAÞ

N ðAÞ

� �
!

RðAÞ

N ðA�Þ

� �
; ð8Þ

where A1 2 LðRðAÞÞ is invertible operator.

Proof. Suppose that indðAÞ 6 1, it follows that H ¼ RðAÞ � N ðAÞ and RðAÞ is closed. Also, we have H ¼ RðAÞ�?NðA�Þ, so A

has the matrix forms (3) and (4), where A1 2 LðRðAÞÞ is invertible. Let us find the core inverse in the following form:

X ¼
X1 X2

X3 X4

� �
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðAÞ

� �
:

From the conditionRðXÞ ¼ RðAÞwe have X3 ¼ 0 and X4 ¼ 0, and the conditionNðXÞ ¼ N ðA�Þ implies X2 ¼ 0. From AXA ¼ A it
follows A1 ¼ A1X1A1, so X1 ¼ A�1

1 . Therefore,

X ¼
A�1
1 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðAÞ

� �
: ð9Þ

On the other side, if X has the representation (9), then it obviously obeys AXA ¼ A; RðXÞ ¼ RðAÞ; NðXÞ ¼ N ðA�Þ. Hence, we
proved the existence, and the uniqueness also, of core inverse. Since RðXÞ ¼ RðAÞ we also have the representation (6). The
representations (7) and (8) can be derived in a same manner.

Suppose now that exists, we prove that indðAÞ 6 1. From A A ¼ A we conclude that RðAÞ is closed. From the
conditions Rð Þ ¼ RðAÞ and Nð Þ ¼ NðA�Þ it follows that

¼
B1 0

0 0

� �
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
;

where B1 2 LðRðAÞÞ is invertible. It is clear that A has the following representation:

A ¼
A1 A2

0 0

� �
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �

for some A1 2 LðRðAÞÞ and A2 2 LðN ðA�Þ;RðAÞÞ. From A A ¼ A we obtain:

A1B1A1 A1B1A2

0 0

� �
¼

A1 A2

0 0

� �
;

so A1 ¼ A1B1A1 and A2 ¼ A1B1A2. From the second equality we have RðA2Þ#RðA1Þ, so RðAÞ ¼ RðA1Þ, which implies A1 is sur-
jective. Since RðAÞ is Hilbert space, A1 is right invertible so there exists T 2 LðRðAÞÞ such that A1T ¼ IRðAÞ 2 LðRðAÞÞ. By post-

multiplying A1B1A1 ¼ A1 by T, we obtain A1B1 ¼ IRðAÞ. Because of the invertibility of B1, we conclude A1 ¼ B�1
1 , so B1 ¼ A�1

1 .

From A2 ¼ A2
1 A1A2

0 0

� �
, and from the invertibility of A1, it follows RðAÞ ¼ RðA1Þ ¼ RðA2

1Þ#RðA2Þ. Therefore, RðAÞ ¼ RðA2Þ.

Let us prove that NðAÞ ¼ N ðA2Þ. It is obvious that NðAÞ#NðA2Þ, so we must prove the opposite inclusion. Let

x 2 NðA2Þ; x ¼ x1 þ x2 2 RðAÞ�?NðA�Þ. We have 0 ¼ A2x ¼ A2
1x1 þ A1A2x2 ¼ A1ðA1x1 þ A2x2Þ, so A1x1 þ A2x2 2 NðA1Þ. From

the invertibility of A1 it follows that A1x1 þ A2x2 ¼ 0, so Ax ¼ A1x1 þ A2x2 ¼ 0, which means x 2 NðAÞ. Therefore,

NðAÞ ¼ N ðA2Þ, and we have proved indðAÞ 6 1. h

Remark 3.1. If we assume in Theorem 3.1 that A;X 2 LðHÞ, where H is arbitrary Hilbert space, then the condition (ii) implies
the condition (i), but not vice versa.

For the first claim, suppose AXA ¼ A; RðXÞ ¼ RðAÞ and NðXÞ ¼ N ðA�Þ. It follows that AX is a projector with range RðAÞ. It
remains to prove that AX is Hermitian. Since AXA ¼ A, from NðA�Þ#NðXÞ it follows that X ¼ XX�A� ¼ XðAXÞ� (cf. Lemma 2.1
from [14]); therefore AX ¼ AXðAXÞ� is Hermitian.

To show that condition (i) does not imply condition (ii) in general, we give the following counterexample. Let H ¼ ‘2ðNÞ

where ‘2ðNÞ is the set of all complex sequences x ¼ ðxiÞ with property
P1

i¼1jxij
2
< 1. Recall that ‘2ðNÞ is a Hilbert space with

the inner product

ðx; yÞ ¼
X1

i¼1

xiyi:

Let A and X be the left and right shift operators on H respectively, defined by
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Aðx1; x2; x3; . . .Þ ¼ ðx2; x3; x4; . . .Þ; Xðx1; x2; x3; . . .Þ ¼ ð0; x1; x2; . . .Þ:

It is easy to check the following well known properties of these operators:

1. A and X are bounded linear operators.
2. A is right invertible but not left invertible and its right inverse is X.
3. X is left invertible but not right invertible and its left inverse is A.
4. A� ¼ X and X� ¼ A.

We obtain that RðAÞ ¼ H; AX ¼ I ¼ PRðAÞ; RðXÞ#RðAÞ, so (i) is satisfied. But, it is evident that RðXÞ – H ¼ RðAÞ so (ii) is
not satisfied. Note that for counterexample we could take any infinite dimensional Hilbert space H and any bounded
operators A and X on H such that A is right but not left invertible and AX ¼ I. This remark fully justifies Definition 3.2.

As in [2], dual core inverse of matrix A, denoted by eA in [2] and here by , can be defined in the following way.

Definition 3.3. Let H be arbitrary Hilbert space, and A 2 LðHÞ. An operator 2 LðHÞ is dual core inverse of A if

A A ¼ A; Rð Þ ¼ RðA�Þ and Nð Þ ¼ N ðAÞ:

Just as in Theorem 3.2, we can show the following result.

Theorem 3.3. Let A 2 LðHÞ. There exists the dual core inverse of A if and only if indðAÞ 6 1 in which case the following

representations hold:

A ¼
A2 0

0 0

� �
:

RðA�Þ

N ðAÞ

� �
!

RðAÞ

N ðAÞ

� �
; ð10Þ

A ¼
A2 0

0 0

� �
:

RðA�Þ

N ðAÞ

� �
!

RðAÞ

N ðA�Þ

� �
; ð11Þ

¼
A�1
2 0

0 0

" #
:

RðAÞ

N ðAÞ

� �
!

RðA�Þ

N ðAÞ

� �
; ð12Þ

¼
A�1
2 0

0 0

" #
:

RðAÞ

N ðAÞ

� �
!

RðA�Þ

N ðA�Þ

� �
; ð13Þ

Ay ¼
A�1
2 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðA�Þ

N ðAÞ

� �
; ð14Þ

Ay ¼
A�1
2 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðA�Þ

N ðA�Þ

� �
; ð15Þ

where A2 2 LðRðAÞÞ is invertible operator.

Proof. The proof is analogous to the proof of Theorem 3.2 and it is left to the reader. We only note that indðAÞ 6 1 if and only
if indðA�Þ 6 1. h

In the next theorem we show that properties of core inverses from [2] are valid for operator case, too. We also give some
new properties.

Theorem 3.4. Let A 2 L1ðHÞ and m 2 N. Then:

(i) 2 Af1;2g;
(ii) A ¼ AAy ¼ PRðAÞ, so ðA Þ

�
¼ A ;

(iii) A2 ¼ A;
(iv) Að Þ

2
¼ ;

(v) ¼ A]PRðAÞ;
(vi) A ¼ A]A;
(vii) ¼ A]AAy;
(viii) is EP;
(ix) ð Þ

y
¼ ð Þ

]
¼ ¼ APRðAÞ;

(x) ð Þ
2
A ¼ A];

(xi) ð Þ
m
¼ ;

(xii) = .
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Proof. In the proof we will use Definition 3.2, representations from Theorem 3.2, as well as the following unusual form for
orthogonal projector on RðAÞ:

PRðAÞ ¼
I 0

0 0

� �
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðAÞ

� �
: ð16Þ

Wemust show the existence of various expressions appearing in the theorem. First, the condition indðAÞ 6 1 provides the
existence of the group inverse A] and by Theorem 3.2 the existence of core inverse , too. Also, indðAÞ 6 1 implies that RðAÞ
is closed and it ensures the existence of the Moore–Penrose invesre Ay.

(i) This follows immediately from (3) and (5).
(ii) From (3), (5), (11) and (14) it follows

A ¼ AAy ¼
I 0

0 0

� �
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
:

(iii) By (4) we have

A2 ¼
A2
1 0

0 0

" #
:

RðAÞ

N ðAÞ

� �
!

RðAÞ

N ðAÞ

� �
;

so

A2 ¼
A2
1 0

0 0

" #
:

RðAÞ

N ðAÞ

� �
!

RðAÞ

N ðA�Þ

� �
: ð17Þ

Now, the proof follows by (17), (5) and (4).
(iv) By (6) we get

ð Þ
2
¼

A�2
1 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
;

so we can conclude

ð Þ
2
¼

A�2
1 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðAÞ

� �
: ð18Þ

Applying (18), (4) and (5) we get the result.
(v) By using decomposition (7) for A] and a form (16) for PRðAÞ, we have

A]PRðAÞ ¼
A�1
1 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðAÞ

� �
;

which, by (5) and the uniqueness of core inverse, is equal to .
(vi) By (v), A ¼ A]PRðAÞA ¼ A]A.
(vii) Follows by (v) since PRðAÞ ¼ AAy.
(viii) By Definition 3.2, we have Rð Þ ¼ RðAÞ, so Rð Þ is closed and by the representation (6) we have

Rðð Þ
�
Þ ¼ ðA�1

1 Þ
�
ðRðAÞÞ ¼ RðAÞ; therefore Rð Þ ¼ Rðð Þ

�
Þ, which means that is the EP.

(ix) We show that is closed so it is Moore–Penrose invertible. If we use the form (6), we have

¼
A�1
1 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
;

now it is easy to obtain

ð Þ
y
¼

A1 0

0 0

� �
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
;

which is precisely equal to APRðAÞ when (3) and (16) are used.
By (viii) is EP so indð Þ 6 1; ð Þ

]
¼ ð Þ

y
and

¼
ðvÞ

ð Þ
]
P
Rð Þ

¼ ð Þ
y
PRðAÞ ¼ AP2

RðAÞ ¼ APRðAÞ:

(x) Using (v), we obtain ð Þ
2
A ¼ A]PRðAÞA

]PRðAÞA ¼ A]PRðAÞA
]A ¼ A]PRðAÞAA

] ¼ A]AA] ¼ A].
(xi) By (4) we have
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Am ¼
Am
1 0

0 0

" #
:

RðAÞ

N ðAÞ

� �
!

RðAÞ

N ðAÞ

� �
;

so

Am ¼
Am
1 0

0 0

" #
:

RðAÞ

N ðAÞ

� �
!

RðAÞ

N ðA�Þ

� �
:

Since Am
1 is invertible it follows by (6) that

¼
ðAm

1 Þ
�1

0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
:

On the other hand, by (6) we obtain

ð Þ
m
¼

ðA�1
1 Þ

m
0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �

(xii) By (ix),

¼ P
Rð Þ

¼ PRðAÞ ¼ : �

As we saw in (vii) of preceding theorem, ¼ A]AAy so the core inverse is in-between the group and Moore–Penrose
inverse in some way. Therefore, it is expected that the core inverse shares the properties of two inverses. Recall, that the
group inverse of operator A is the unique operator X determined by equations

ð1Þ AXA ¼ A ð2Þ XAX ¼ X ð5Þ AX ¼ XA:

Note that these equations can be replaced by

ð1Þ AXA ¼ A ð2Þ XAX ¼ X ð6Þ XA2 ¼ A;

ð7Þ AX2 ¼ X ð8Þ A2X ¼ A ð9Þ X2A ¼ X:

Namely, AX ¼ XA2X ¼ XA. Of course, equation (7) follows by (2), (6) and (8). The Moore–Penrose inverse of operator A is
defined by equations

ð1Þ AXA ¼ A ð2Þ XAX ¼ X ð3Þ ðAXÞ� ¼ AX ð4Þ ðXAÞ� ¼ XA:

In the next theorem we give alternative definition of core inverse by the set of equations.

Theorem 3.5. Let A 2 LðHÞ. Then Af1;2;3;6;7g– ; if and only if indðAÞ 6 1. In this case Af1;2;3;6;7g ¼ f g i.e. the core

inverse of A is the unique operator X satisfying the following equations:

ð1Þ AXA ¼ A

ð2Þ XAX ¼ X

ð3Þ ðAXÞ� ¼ AX

ð6Þ XA2 ¼ A

ð7Þ AX2 ¼ X:

Proof. If indðAÞ 6 1 then exists and, by Theorem 3.2(i)–(iv), it satisfies above equations. Suppose now that there exists an
operator X 2 LðHÞ which satisfies the given equations. By (6) and (7), RðXÞ ¼ RðAÞ. By (2) and (3), X ¼ XAX ¼ XX�A� and
hence NðA�Þ#NðXÞ. Likewise, by (1) and (3),

A� ¼ A�X�A� ¼ A�ðAXÞ� ¼ A�AX;

so NðXÞ#NðA�Þ. Now, AXA ¼ A; RðXÞ ¼ RðA�Þ and NðXÞ ¼ N ðA�Þ, and therefore by definition, X ¼ . Since exist,
indðAÞ 6 1. h

When H is a finite dimensional, i.e. when A is a complex matrix, then we have simpler situation.

Theorem 3.6. Let A 2 C
n�n. Then Af2;3;6g– ; if and only if indðAÞ 6 1. In this case Af2;3;6g ¼ f g i.e. the core inverse of A is

the unique matrix X 2 C
n�n which satisfies the following equations:
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ð2Þ XAX ¼ X

ð3Þ ðAXÞ� ¼ AX

ð6Þ XA2 ¼ A:

Proof. If indðAÞ 6 1 then exists and it satisfies given equations. Suppose now that there exists matrix X which satisfies
Eqs. (2), (3) and (6). By (6), it follows NðA2Þ#NðAÞ, thus NðA2Þ ¼ N ðAÞ. Therefore, indðAÞ 6 1 so the group inverse A] exists.
Now, XA ¼ XAA]A ¼ XA2A] ¼ AA], so

AXA ¼ A2A] ¼ A

and

AX2 ¼ AXðXAXÞ ¼ AXAA]X ¼ AA]X ¼ XAX ¼ X:

By Theorem 3.5 it follows that X ¼ .
Note that in the matrix case the condition NðA2Þ ¼ N ðAÞ is sufficient for indðAÞ 6 1, but in the infinite dimensional case it

is not. If we suppose that A 2 LðHÞ has index less or equal one then the core inverse of operator is uniquely determined by
Eqs. (2), (3) and (6). We emphasize that none of the equations in Theorem 3.5 can be removed. For instance we have follow-
ing remark.

Remark 3.2. Let H ¼ ‘2ðNÞ and let A and X be right and left shift operators on H respectively, see Remark 3.1:

Aðx1; x2; x3; . . .Þ ¼ ð0; x1; x2; . . .Þ; Xðx1; x2; x3; . . .Þ ¼ ðx2; x3; x4; . . .Þ:

Then XA ¼ I so Eqs. (1), (2) and (6) hold. Also, in view of Remark 3.1, we have ðAXÞ� ¼ X�A� ¼ AX so (6) is satisfied. But,

AX2ðx1; x2; x3; . . .Þ ¼ ð0; x3; x4; . . .Þ;

so AX2
– X and (7) is not satisfied. Note that X is Moore–Penrose inverse of A.

The core inverse can be defined in many equivalent ways.

Theorem 3.7. Let A 2 L1ðHÞ. An operator X 2 LðHÞ is the core inverse of A if and only if X ¼ A]AAy if and only if X 2 f1;2;3g and

XA ¼ A]A.

Proof. If X is the core inverse of A then by Theorem 3.2(vii), X ¼ A]AAy. It is easy to show that A]AAy 2 f1;2;3g and
A]AAyA ¼ A]A. Suppose now that X 2 f1;2;3g and XA ¼ A]A. Then

RðXÞ ¼ RðXAÞ ¼ RðA]AÞ ¼ RðAÞ

and

NðXÞ ¼ N ðAXÞ ¼ NððAXÞ�Þ ¼ N ðX�A�Þ ¼ N ðA�Þ;

so X is the core inverse of A. h

We can summarize the results from Theorems 3.1, 3.5, 3.6 and 3.7 and obtain the following theorem which gives equiv-
alent definitions of core inverse of matrix.

Theorem 3.8. Let A and X be complex n� n matrices such that indðAÞ 6 1. Then the following statements are equivalent:

(i) X is core inverse of A in a sense of Definition 3.1.
(ii) X is core inverse of A in a sense of Definition 3.2.
(iii) X is a least square g-inverse of A satisfying XAX ¼ X;XA2 ¼ A and XA2 ¼ A, i.e. X 2 f1;2;3;6;7g.
(vi) X is a 2-inverse of A satisfying AX ¼ ðAXÞ� and XA2 ¼ A, i.e. X 2 f2;3;6g.
(v) X is a least square g-inverse of A satisfying XAX ¼ X and XA ¼ XA#.

The next theorem deals with some special cases of core inverse.

Theorem 3.9. Let A 2 L1ðHÞ. Then:

(i) ¼ 0 () A ¼ 0;
(ii) ¼ PRðAÞ () A2 ¼ A;
(iii) ¼ A () A3 ¼ A and A is EP;

(vi) ¼ A� () A is partial isometry and EP.
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Proof.

(i) It follows by 2 Af1;2g.
(ii) If ¼ PRðAÞ then A ¼ A A ¼ APRðAÞA ¼ A2. On the other hand, if A2 ¼ A then ¼ A]AAy ¼ A]A2Ay ¼ AAy ¼ PRðAÞ.

Therefore, A is an idempotent if and only if is orthogonal projector.
(iii) From ¼ A it follows A ¼ A A ¼ A3. From Theorem 3.4 (viii), we have is EP, so because of ¼ A we have A is

EP. Conversely, ¼ A]AAy ¼ A]A3Ay ¼ A2Ay ¼ A2A] ¼ A.
(vi) If ¼ A�, then A� ¼ AyAA� ¼ AyA ¼ AyAA]AAy ¼ Ay, so A is partial isometry. From RðAÞ ¼ Rð Þ ¼ RðA�Þ we have A

is EP. Conversely, from the EP-ness (Ay ¼ A]) and A being the partial isometry (A� ¼ Ay), we have
¼ A]AAy ¼ AyAA� ¼ A�.

Next theorem further characterizes EP-ness of A via its core inverse.

Theorem 3.10. Let A 2 L1ðHÞ. The following statements are equivalent:

(i) A is EP;

(ii) Any two elements of the set fA]
;Ay; ; g are equal;

(iii) ð Þ
]
¼ A;

(vi) ð Þ
y
¼ A;

(v) ¼ A;

(vi) A ¼ A ;

(vii) ¼ A;

(viii) ð Þ
y
¼ .

Proof. Let us show that (i) implies (ii)–(viii). Suppose that A is EP i.e. A] ¼ Ay. The proof of (ii) follows by ¼ A]AAy and
¼ AyAA]. By Theorem 3.4 (ix),

ð Þ
]
¼ ð Þ

y
¼ ¼ APRðAÞ ¼ AAAy ¼ AAA] ¼ A:

We just showed that EP-ness of A yields ¼ A], so (vi) follows. By (v) of Theorem 3.4, ¼ ðAyÞ
]
PRðAyÞ ¼ ðA]Þ

]
AyA ¼ A.

Finally, ð Þ
y
¼ ðAyÞ

y
¼ A ¼ , by (ii) and (vii).

Let us show that any of the conditions (ii)–(viii) implies that A is EP.

(ii) If ¼ Ay then RðAÞ ¼ Rð Þ ¼ RðAyÞ ¼ RðA�Þ, thus A is EP. In the same manner we can show the other cases.

(iii)–(v) By Theorem 3.4 (ix), any of the assumptions is equivalent to APRðAÞ ¼ A. Multiplying both sides by ðA]Þ
2
from the left,

we obtain A]AAy ¼ A], i.e. ¼ A], which is by (ii) equivalent to A is EP.

(vi) This is equivalent to A]A ¼ AAy, which reduces to previous case.

(vii) We have RðAÞ ¼ Rð Þ ¼ RðAyÞ ¼ RðA�Þ, so A is EP.

(viii) We have

RðA�Þ ¼ RðAyÞ ¼ Rð Þ ¼ Rðð Þ
y
Þ ¼ Rðð Þ

�
Þ ¼ N ð Þ

?
¼ NðA�Þ

?
¼ RðAÞ;

so A is EP. h

The next theorem is also given in [2] for complex matrix case. Here we present much shorter and elementary proof for
Hilbert space setting.

Theorem 3.11. Let A;B 2 LðHÞ be orthogonal projectors such that RðABÞ is closed. Then RðABAÞ is closed, indðABÞ 6 1 and

¼ ðABAÞy: ð19Þ

Proof. If RðABÞ is closed, then ðABÞy exists and
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AB ¼ ABðABÞ�ððABÞyÞ
�
¼ ABAðBAÞy

AB ¼ ððABÞyÞ
�
ðABÞ�AB ¼ ðBAÞyBAB

and similarly

BA ¼ BABðABÞy ¼ ðABÞyABA:

It follows that RðABÞ#RðABAÞ so RðABAÞ ¼ RðABÞ is closed. From above equations, it is easy to see that

AB ¼ ABABðABÞyðBAÞy ¼ ðBAÞyðABÞyABAB:

It follows that RðABÞ ¼ RðABABÞ ¼ RððABÞ2Þ and NðABÞ ¼ N ðABABÞ ¼ N ððABÞ2Þ, so indðABÞ 6 1.
We showed the existence of inverses in (39), so we can move to the proof of the formula. We will prove the equivalent

statement: ð Þ
y
¼ ABA. According to Theorem 3.4 (ix), we have ð Þ

y
¼ ABPRðABÞ ¼ ðABÞ2ðABÞy. By using well-known

formula Ty ¼ T�ðTT�Þy for any closed range operator T, and the fact that A and B are orthogonal projectors, we have:

ðABÞy ¼ ðABÞ�ðABðABÞ�Þ
y
¼ B�A�ðABB�A�Þ

y
¼ BAðABAÞy:

When we put this expression in formula above, we have
� �y

¼ ðABÞ2BAðABAÞy ¼ ABABAðABAÞy ¼ ABAABAðABAÞy ¼ ðABAÞ�ABAðABAÞy ¼ ðABAÞ� ¼ ABA: �

4. Spectral properties

In this section we are dealing with so-called spectral properties of group and core inverses. Spectral properties of group
inverse are well-known. Cline [4] has pointed out that square matrix A such that indðAÞ ¼ 1 has f1;2;3g – inverse whose
range is RðAÞ and as ‘‘least-squares’’ inverse it has some spectral properties. We consider some spectral properties of group
and core inverse of given operator A. Suppose that A 2 L1ðHÞ.

If 0 2 rpðAÞ, and x is its associated eigenvector, then x 2 NðAÞ, so NðAÞ – f0g. Since H ¼ RðAÞ � N ðAÞ ¼ RðAÞ�?NðA�Þ it
follows that Nð Þ ¼ NðA�Þ– f0g. Therefore 0 2 rpð Þ. Moreover, NðA]Þ ¼ N ðAÞ, so

0 2 rpðAÞ () 0 2 rpðA
]Þ () 0 2 rpð Þ

only for the same eigenvector x 2 ðN ðAÞ \ N ðA�ÞÞ n f0g. On the other side,

0 2 rpðAÞ () 0 2 rpðA
]Þ

always holds with an eigenvector x 2 NðAÞ n f0g.
Suppose now that 0– k 2 rpðAÞ with corresponding eigenvector x ¼ x1 þ x2 2 RðAÞ � N ðAÞ. Using representation (4) we

obtain

0 ¼ ðA� kIÞx ¼
A1 � kIRðAÞ 0

0 �kINðAÞ

� �
x1

x2

� �
:

This is equivalent to A1x1 ¼ kx1 and�kx2 ¼ 0. Since k– 0, we have x2 ¼ 0 and k 2 rpðA1Þ. Thus 0– k 2 rpðAÞwith eigenvector
x if and only if k 2 rpðA1Þ corresponding to x 2 RðAÞ.

If 0 – l 2 rpðA
]Þ corresponding to eigenvector y ¼ y1 þ y2 2 RðAÞ � N ðAÞ then using representation (7) we obtain

0 ¼ ðA] � lIÞy ¼
A�1
1 � lIRðAÞ 0

0 �lINðAÞ

" #
y1
y2

� �
:

This gives A�1
1 y1 ¼ ly1 and �ly2 ¼ 0 and this is equivalent with l�1 2 rpðA1Þ with corresponding eigenvector y ¼ y1 2 RðAÞ.

Finally, if 0 – m 2 rpð Þ corresponding to eigenvector z ¼ z1 þ z2 2 RðAÞ�?NðA�Þ then using representation (6) we
conclude

0 ¼ ð � mIÞz ¼
A�1
1 � mIRðAÞ 0

0 �mINðA�Þ

" #
z1

z2

� �
:

Therefore A�1
1 z1 ¼ mz1 and �mz2 ¼ 0, so m�1 2 rpðA1Þ and z2 ¼ 0. Hence 0 – m 2 rpð Þ corresponding to eigenvector z if and

only if m�1 2 rpðA1Þ corresponding to eigenvector z ¼ z1 2 RðAÞ.
It follows that for k– 0 we have

k 2 rpðAÞ () k�1 2 rpðA
]Þ () k�1 2 rpð Þ

corresponding to the same eigenvector x where x 2 RðAÞ is also an eigenvector of A1 corresponding to an eigenvalue
k 2 rpðA1Þ.
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5. Core partial order

Using various generalized inverses we can define various partial orders. Let A;B 2 LðHÞ. Similar to the matrix case we can
define minus, star and sharp partial order, respectively:

A<�B () AA� ¼ BA� and A�A ¼ A�B; for some A� 2 Af1g; ð20Þ

A<�B () AAy ¼ BAy and AyA ¼ AyB;

A<]B () AA] ¼ BA] and A]A ¼ A]B:

For minus and star order we require that RðAÞ and RðBÞ are closed and for sharp order we require that indðAÞ 6 1 and
indðBÞ 6 1. In [15,7] the minus and the star partial orders are generalized for arbitrary A; B 2 LðHÞ. In [14] the authors
defined the minus partial order for inner invertible Banach space operators as in (20) and showed that

A<�B () RðBÞ ¼ RðAÞ � RðB� AÞ () Bf1g#Af1g: ð21Þ

Also, when A<�B then RðAÞ#RðBÞ and NðBÞ#NðAÞ. In the same paper, it is shown that, when B is inner regular,

RðAÞ#RðBÞ () A ¼ BB�A for each B� 2 Bf1g and ð22Þ

N ðBÞ#NðAÞ () A ¼ AB�B for each B� 2 Bf1g: ð23Þ

It is not difficult to see that

A<�B () AA� ¼ BA� and A�A ¼ A�B; ð24Þ

A<]B () A2 ¼ AB ¼ BA: ð25Þ

The proof is the same as in the matrix case, see [13].
The core partial order for matrices was defined in [2] in the natural way. We use the same definition in the Hilbert space

setting.

Definition 5.1. Let H be arbitrary Hilbert space and A;B 2 L1ðHÞ. We say that A is below B under the core partial order,
denoted by A B, if A ¼ B and A ¼ B.

To define core partial order it is enough to assume that indðAÞ 6 1. We require that both operators have indices less or
equal one because this is crucial for developing properties of core partial order. Since 2 Af1g we see that A B implies
A<�B, so the core partial order satisfies all the properties of minus partial order.

Let us show that A ¼ B () A�A ¼ A�B. If A ¼ B then

A�B ¼ ðA AÞ
�
B ¼ A�A B ¼ A�A A ¼ A�A:

The proof for the opposite direction is similar. Also,

A ¼ B () A2 ¼ BA:

Indeed, if A ¼ B then BA ¼ B A2 ¼ A A2 ¼ A2. If A2 ¼ BA then B ¼ BAð Þ
2
¼ A2ð Þ

2
¼ A . It follows that

A B () A�A ¼ A�B and A2 ¼ BA ð26Þ

() AyA ¼ AyB and AA] ¼ BA]
; ð27Þ

so (see [10] for complex matrix case)

A B () A� < B and A < ]B; ð28Þ

where ‘‘� <’’ and ‘‘< ]’’ are left star and right sharp partial orders. Recall that A� < B if A�A ¼ A�B and RðAÞ#RðBÞ and A < ]B

if A2 ¼ BA and NðBÞ#NðAÞ, see [13]. We can conclude that the core partial order is in-between the star and the sharp partial
orders. The condition A B does not imply B� A B even in the matrix case, see [2]. The conditions under which the
property B� A B is valid, for A;B 2 C

n�n, are given in [11].

Theorem 5.1. Let A; B 2 L1ðHÞ. If A B then

(i) RðBÞ ¼ RðAÞ�?RðB� AÞ;
(ii) NðAÞ ¼ N ðBÞ � RðBB] � AA]Þ;
(iii) H ¼ RðAÞ�?RðB� AÞ�?NðB�Þ;
(iv) H ¼ RðAÞ � RðBB] � AA]Þ � N ðBÞ.
(v) RðBÞ ¼ RðAÞ � RðBB] � AA]Þ;
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Proof.

(i) Suppose that A B. By (26), we see that RðB� AÞ#NðA�Þ ¼ RðAÞ?. As A B implies A<�B, by (21),
RðBÞ ¼ RðAÞ � RðB� AÞ, so RðBÞ ¼ RðAÞ�?RðB� AÞ.

(ii) If A B then A ¼ A A ¼ B A ¼ A B, henceRðAÞ#RðBÞ and NðBÞ#NðAÞ. By (22) and (23), A ¼ BB�A ¼ AB�B, for
every A� 2 Af1g. Because of

AðBB] � AA]Þ ¼ ABB] � AAA] ¼ AB]B� A ¼ A� A ¼ 0;

we haveRðBB] � AA]Þ#NðAÞ. Let x 2 NðBÞ \ RðBB] � AA]Þ, which means Bx ¼ 0 and x ¼ ðBB] � AA]Þz for some z 2 H. We have

0 ¼ Bx ¼ BðBB] � AA]Þz ¼ BBB]z� BAA]z ¼ Bz� BA]Az ¼
ð27Þ

Bz� AA]Az ¼ Bz� Az;

so ðB� AÞz ¼ 0. From A2 ¼ BA we see that A4 ¼ B3A and consequently

B]z ¼ ðB]Þ
2
Bz ¼ ðB]Þ

2
Az ¼ ðB]Þ

2
A4ðA]Þ

3
z ¼ ðB]Þ

2
B3AðA]Þ

3
z ¼ BAðA]Þ

3
z ¼ A2ðA]Þ

3
z ¼ A]z:

It follows that

x ¼ ðBB] � AA]Þz ¼ ðBB] � BA]Þz ¼ 0;

which means NðBÞ \ RðBB] � AA]Þ ¼ f0g and we have NðBÞ � RðBB] � AA]Þ#NðAÞ.

Moreover, for any x 2 NðAÞwe have x ¼ ðBB] � AA]Þxþ ðx� ðBB] � AA]ÞxÞ. The first term belongs toRðBB] � AA]Þ, and the sec-

ond belongs to NðBÞ because BðBB] � AA]Þx ¼ Bx� BA]Ax ¼ Bx. We have proved that NðAÞ ¼ N ðBÞ � RðBB] � AA]Þ.
(iii) The decomposition follows by (i) and the fact that H ¼ RðBÞ�?NðB�Þ.
(iv) The decomposition follows by (ii) and by the fact that H ¼ RðAÞ � N ðAÞ.
(v) Note that RðAÞ#RðBÞ and hence RðBB] � AA]Þ#RðBÞ. Since

H ¼ RðBÞ � N ðBÞ ¼ RðAÞ � RðBB] � AA]Þ � NðBÞ;

we conclude that RðBÞ ¼ RðAÞ � RðBB] � AA]Þ. h

It will be nice to know if the condition (i) from Theorem 5.1 together with some additional condition imply A B.

Theorem 5.2. Let A;B 2 L1ðHÞ. Then A B if and only if RðBÞ ¼ RðAÞ�?RðB� AÞ and B B ¼ A.

Proof. The only if part follows by (i) of Theorem 5.1 and the fact B B ¼ A A ¼ A. Conversely, suppose that A;B 2 L1ðHÞ

such that RðBÞ ¼ RðAÞ�?RðB� AÞ and B B ¼ A. It follows that H ¼ RðAÞ � N ðAÞ and H ¼ RðBÞ�?NðB�Þ ¼

RðAÞ�?RðB� AÞ�?NðB�Þ. Since the orthogonal complement of RðAÞ is unique subspace NðA�Þ we conclude that
NðA�Þ ¼ RðB� AÞ�?NðB�Þ. From (3) and (5) of Theorem 3.2 we obtain

A ¼

A1 0

0 0

0 0

2
64

3
75 :

RðAÞ

N ðAÞ

� �
!

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75;

¼
A�1
1 0 0

0 0 0

" #
:

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75 !

RðAÞ

N ðAÞ

� �
;

where A1 2 LðRðAÞÞ is invertible. Since RðBÞ ¼ RðAÞ�?RðB� AÞ, the operator B has the following representation

B ¼

B1 B2

B3 B4

0 0

2
64

3
75 :

RðAÞ

N ðAÞ

� �
!

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75

for some operators Bi. Direct computation shows that condition B B ¼ A is equivalent to

B1A
�1
1 B1 B1A

�1
1 B2

B3A
�1
1 B1 B3A

�1
1 B2

0 0

2
64

3
75 ¼

A1 0

0 0

0 0

2
64

3
75:

From B1A
�1
1 B1 ¼ A1 we obtain A�1

1 B1A
�1
1 B1 ¼ B1A

�1
1 B1A

�1
1 ¼ IRðAÞ so B1 is invertible. Now, from B1A

�1
1 B2 ¼ 0 and B3A

�1
1 B1 ¼ 0 we

obtain B2 ¼ 0 and B3 ¼ 0. It follows that
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B� A ¼

B1 � A1 0

0 B4

0 0

2
64

3
75 :

RðAÞ

N ðAÞ

� �
!

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75:

For any x 2 RðAÞ we have ðB� AÞx ¼ ðB1 � A1Þx. It follows that ðB1 � A1Þx 2 RðB� AÞ \ RðAÞ ¼ f0g. Thus B1 ¼ A1. An easy
computation shows that A ¼ B and A ¼ B, i.e. A B. h

Most of the matrix partial orders are characterized by some kind of simultaneous diagonalization. It is proven in [2] that
A B if and only if

A ¼ U
RK RL

0 0

� �
U� and B ¼ U

RK RL

0 Z

� �
U�

; ð29Þ

where U is unitary matrix, RK is invertible and Z is some matrix of index one. We do not knowwhether the matrices RL and Z

are invertible or not. In the next theorem we consider infinite dimensional case and give better representations.

Theorem 5.3. Let A; B 2 L1ðHÞ. The following conditions are equivalent:

(i) A B

(ii) H ¼ RðAÞ�?RðB� AÞ�?NðB�Þ,

H ¼ RðAÞ � RðBB] � AA]Þ � N ðBÞ and

A ¼

A1 0 0

0 0 0

0 0 0

2
64

3
75 :

RðAÞ

RðBB] � AA]Þ

N ðBÞ

2
64

3
75 !

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75;

B ¼

A1 0 0

0 B1 0

0 0 0

2
64

3
75 :

RðAÞ

RðBB] � AA]Þ

N ðBÞ

2
64

3
75 !

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75;

where A1 2 LðRðAÞÞ and B1 2 LðRðBB] � AA]Þ;RðB� AÞÞ are invertible operators.

Proof. (i)) (ii): The decompositions of the space H follows from Theorem 5.1. Let H1 ¼ RðBB] � AA]Þ. The matrix represen-
tation for the operator A is obvious, because NðAÞ ¼ H1 �NðBÞ, by Theorem 5.1. Suppose that

B ¼

B11 B12 B13

B21 B22 B23

B31 B32 B33

2
64

3
75 :

RðAÞ

H1

NðBÞ

2
64

3
75 !

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75:

The domain of operators B13; B23 and B33 is NðBÞ, so B13 ¼ 0, B23 ¼ 0 and B33 ¼ 0. From RðBÞ ¼ RðAÞ�?RðB� AÞ we conclude

B31 ¼ 0 and B32 ¼ 0. As A B we have A�A ¼ A�B and A2 ¼ BA. Suppose now that x 2 RðAÞ, which means x ¼ Az for some
z 2 H. We conclude that Bx ¼ BðAzÞ ¼ AðAzÞ ¼ Ax 2 RðAÞ, which gives B21 ¼ 0 and B11 ¼ A1. Suppose x 2 H1, which means

x ¼ ðBB] � AA]Þz for some z 2 H. We have:

Bx ¼ BðBB] � AA]Þz ¼ Bz� A2A]z ¼ Bz� Az 2 RðB� AÞ

and therefore B12 ¼ 0, so we have:

B ¼

A1 0 0

0 B1 0

0 0 0

2
64

3
75 :

RðAÞ

H1

NðBÞ

2
64

3
75 !

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75;

where B1 ¼ B22. From RðBÞ ¼ RðAÞ�?RðB� AÞ we conclude B1 2 LðH1;RðB� AÞÞ is onto. Additionally, if x 2 H1 and B1x ¼ 0,
we have 0 ¼ B1x ¼ Bx, so x 2 NðBÞ. From x 2 H1 \NðBÞ ¼ f0g we conclude x ¼ 0; hence B1 is injective. Therefore, B1 is
invertible.

(ii)) (i): Let

C ¼

A�1
1 0 0

0 0 0

0 0 0

2
64

3
75 :

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75 !

RðAÞ

H1

NðBÞ

2
64

3
75:

It is easy to see that ACA ¼ A; RðCÞ ¼ RðAÞ and

NðCÞ ¼ RðB� AÞ�?NðB�Þ ¼ N ðA�Þ; ð30Þ
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because H ¼ RðAÞ�?NðA�Þ and H ¼ RðAÞ�?RðB� AÞ�?NðB�Þ. By definition, we conclude that C ¼ . We check at once
that:

A ¼ B ¼

I 0 0

0 0 0

0 0 0

2
64

3
75 :

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75 !

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75

and

A ¼ B ¼

I 0 0

0 0 0

0 0 0

2
64

3
75 :

RðAÞ

H1

NðBÞ

2
64

3
75 !

RðAÞ

H1

NðBÞ

2
64

3
75;

therefore A B. h

Remark 5.1. With the notation as in the proof of Theorem 5.3, we will show that

D ¼

A�1
1 0 0

0 B�1
1 0

0 0 0

2
64

3
75 :

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75 !

RðAÞ

H1

NðBÞ

2
64

3
75

is the core inverse of B. It is obvious that BDB ¼ B and NðDÞ ¼ N ðB�Þ. By (v) of Theorem 5.1,
RðDÞ ¼ RðAÞ � RðBB] � AA]Þ ¼ RðBÞ, so D ¼ .

The following theorem, for complex matrix case, can be found in [11].

Theorem 5.4. If A;B 2 L1ðHÞ then A B if and only if A ¼ BA]A ¼ AAyB.

Proof. If A B then A ¼ A A ¼ B A ¼ BA]A and A ¼ A A ¼ A B ¼ AAyB. For converse implication suppose that
A ¼ BA]A ¼ AAyB and recall that by Theorem 3.4 A ¼ A]AAy ¼ AAy ¼ A]A . We obtain that B ¼ BA]A ¼ A and

B ¼ AAyB ¼ A, so A B. h

Let us recall the equations from Theorem 3.5. It is known that the minus, sharp and star matrix partial orders can be char-
acterized in the following way, see [13]:

A<�B () Bf1g#Af1g;

A<]B () Bf1;5g#Af1;5g;

A<�B () Bf1;3;4g#Af1;3;4g:

Based on the properties of core inverse, it is natural to ask whether A B is equivalent to Bf1;3;6g#Af1;3;6g. For the
proof of our hypothesis, we need the following lemma.

Lemma 5.1. Let B 2 L1ðHÞ. Then B has the following representation

B ¼
B1 0

0 0

� �
:

RðBÞ

N ðBÞ

� �
!

RðBÞ

N ðB�Þ

� �
;

where B1 2 LðRðBÞÞ is invertible. We also have following characterizations:

(i) Bf1;3g ¼ B�1
1 0
X3 X4

� �
:

RðBÞ
N ðB�Þ

� �
!

RðBÞ
N ðBÞ

� �
: X3;X4arbitrary

� �
;

(ii) Bf6g ¼ B�1
1 X2

0 X4

� �
:

RðBÞ
N ðB�Þ

� �
!

RðBÞ
N ðBÞ

� �
: X2;X4arbitrary

� �
;

(iii) Bf3;6g ¼ B�1
1 0
0 X4

� �
:

RðBÞ
N ðB�Þ

� �
!

RðBÞ
N ðBÞ

� �
: X4arbitrary

� �
.

Proof. The representation of B follows by Theorem 3.2. Note that if indðBÞ 6 1 then

Bf3;6g ¼ Bf1;3g \ Bf6g: ð31Þ
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Indeed, suppose that X 2 Bf3;6g. Then XB2 ¼ B. Pre-multiplying this equation by B and post-multiplying by B# (which
exists as indðBÞ 6 1), we have BXB ¼ B, so Bf3;6g#Bf1;3g \ Bf6g. The converse inclusion is obvious. In view of this equality
it is enough to show (i) and (ii). It is easy to see that the operator matrices from the right hand side belongs to the sets from
the left hand side. Suppose that

X ¼
X1 X2

X3 X4

� �
:

RðBÞ

N ðB�Þ

� �
!

RðBÞ

N ðBÞ

� �
:

(i) The condition BXB ¼ B is equivalent to B1X1B1 ¼ B1 so, by the invertibility of B1;X1 ¼ B�1
1 . Direct computation shows

that

BX ¼
IRðBÞ B1X2

0 0

� �
:

RðBÞ

N ðB�Þ

� �
!

RðBÞ

N ðB�Þ

� �
:

Since ðBXÞ� ¼ BX and RðBÞ ? N ðB�Þ we obtain B1X2 ¼ 0, so X2 ¼ 0.
(ii) As in (17) we have

B2 ¼
B2
1 0

0 0

" #
:

RðBÞ

N ðBÞ

� �
!

RðBÞ

N ðB�Þ

� �
;

so

X1B
2
1 0

X3B
2
1 0

" #
¼ XB2 ¼ B ¼

B1 0

0 0

� �
:

RðBÞ

N ðBÞ

� �
!

RðBÞ

N ðBÞ

� �
:

We conclude that X1 ¼ B�1
1 and X3 ¼ 0. h

The equivalence of (i) and (ii) in the next theorem is proved for complex matrices in [12]. We note that the other equi-
valences have not been proved before, even in the case when A; B are complex matrices.

Theorem 5.5. Let A; B 2 L1ðHÞ. Then the following conditions are equivalent

(i) A B;
(ii) Bf1;3g#Af1;3g and Bf6g#Af6g;
(iii) Bf3;6g#Af3;6g;
(iv) Bf1g#Af1g and Bf3;6g#Af3;6g;
(v) A � < B and Bf6g#Af6g.

Proof. (i)) (ii): Suppose that A B and let H1 ¼ RðBB] � AA]Þ. By Theorem 5.1 it follows that

RðBÞ ¼ RðAÞ�?RðB� AÞ;

RðBÞ ¼ RðAÞ � H1;

H ¼ RðAÞ�?RðB� AÞ�?NðB�Þ;

H ¼ RðAÞ � H1 �NðBÞ:

By Theorem 5.3 it follows that

A ¼

A1 0 0

0 0 0

0 0 0

2
664

3
775 :

RðAÞ

H1

NðBÞ

2
664

3
775 !

RðAÞ

RðB� AÞ

N ðB�Þ

2
664

3
775;

B ¼

A1 0 0

0 B1 0

0 0 0

2
664

3
775 :

RðAÞ

H1

NðBÞ

2
664

3
775 !

RðAÞ

RðB� AÞ

N ðB�Þ

2
664

3
775;

where A1 2 LðRðAÞÞ and B1 2 LðH1;RðB� AÞÞ are invertible operators. It follows that we can write

B ¼
C1 0

0 0

� �
:

RðBÞ

N ðBÞ

� �
!

RðBÞ

N ðB�Þ

� �
;

where
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C1 ¼
A1 0

0 B1

� �
:

RðAÞ

H1

� �
!

RðAÞ

RðB� AÞ

� �
:

Since A1 and B1 are invertible we conclude that C1 is invertible and

C�1
1 ¼

A�1
1 0

0 B�1
1

" #
:

RðAÞ

RðB� AÞ

� �
!

RðAÞ

H1

� �
:

By Lemma 5.1, we conclude that X 2 Bf1;3g if and only if

X ¼
C�1
1 0

Y1 X3

" #
:

RðBÞ

N ðB�Þ

� �
!

RðBÞ

N ðBÞ

� �
;

where Y1 2 LðRðBÞ;NðBÞÞ and X3 2 LðN ðB�Þ;NðBÞÞ are arbitrary. Since RðBÞ ¼ RðAÞ�?RðB� AÞ we can write

Y1 ¼ X1 X2½ � :
RðAÞ

RðB� AÞ

� �
! NðBÞ

for some X1 2 LðRðAÞ;NðBÞÞ and X2 2 LðRðB� AÞ;NðBÞÞ. Also, since RðBÞ ¼ RðAÞ � H1, the null operator 0 2 LðN ðB�Þ;RðBÞÞ

can be written in the form

0 ¼
0

0

� �
: NðB�Þ !

RðAÞ

H1

� �
:

It follows that X 2 Bf1;3g if and only if

X ¼

A�1
1 0 0

0 B�1
1 0

X1 X2 X3

2
64

3
75 :

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75 !

RðAÞ

H1

NðBÞ

2
64

3
75 ð32Þ

for some Xi. By (30) we know that NðA�Þ ¼ RðB� AÞ�?NðB�Þ. Also, by Theorem 5.1, we have NðAÞ ¼ H1 �NðBÞ. Now, in the
same manner as in the proof of characterization (32), we can prove that Y 2 Af1;3g if and only if

Y ¼

A�1
1 0 0

Y1 Y2 Y3

Y4 Y5 Y6

2
64

3
75 :

RðAÞ

RðB� AÞ

N ðB�Þ

2
64

3
75 !

RðAÞ

H1

NðBÞ

2
64

3
75

for some Y i; i ¼ 1;6. It is now clear that Bf1;3g#Af1;3g. Using the same arguments, we can show that Bf6g#Af6g
similarly.

(ii)) (iii): We have proved that Bf3;6g ¼ Bf1;3g \ Bf6g, see (31) in the proof of Lemma 5.1. It is now clear that
Bf1;3g#Af1;3g and Bf6g#Af6g imply that Bf3;6g#Af3;6g.

(iii)) (i): Suppose now that Bf3;6g#Af3;6g and let us prove that A B. As we know

B ¼
B1 0

0 0

� �
:

RðBÞ

N ðBÞ

� �
!

RðBÞ

N ðB�Þ

� �
;

where B1 2 LðRðBÞÞ is invertible. (This operator B1 should not be confused with operator B1 2 LðH1;RðB� AÞÞwhich we used
in the proof of the part (i)) (ii).) Let

A ¼
A1 A2

A3 A4

� �
:

RðBÞ

N ðBÞ

� �
!

RðBÞ

N ðB�Þ

� �

and let

X ¼
B�1
1 0

0 0

" #
:

RðBÞ

N ðB�Þ

� �
!

RðBÞ

N ðBÞ

� �
:

Then X 2 Bf3;6g#Af3;6g. Since AX ¼ ðAXÞ� and RðBÞ ? N ðB�Þ it follows that A3B
�1
1 ¼ 0 and A1B

�1
1 ¼ ðA1B

�1
1 Þ

�
. Hence A3 ¼ 0

and

A�
1B1 ¼ ðA�

1B1Þ
�
: ð33Þ

Since the subspaces NðBÞ and NðB�Þ have the same complement subspace to H, namely RðBÞ, it follows that there exists

invertible operator C 2 LðN ðB�Þ;NðBÞÞ. Taking Z ¼ B�1
1 0
0 C

� �
2 Bf3;6g, we get
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AZ ¼
A1B

�1
1 A2C

0 A4C

" #
:

RðBÞ

N ðB�Þ

� �
!

RðBÞ

N ðB�Þ

� �
:

From AZ ¼ ðAZÞ� wee see that A2C ¼ 0, so A2 ¼ 0. Now,

A ¼
A1 0

0 A4

� �
and AXA ¼

A1B
�1
1 A1 0

0 0

" #

and since A ¼ AXA we conclude that A4 ¼ 0. It follows that RðAÞ ¼ RðA1Þ#RðBÞ so

A ¼
A1 0

0 0

� �
:

RðBÞ

N ðBÞ

� �
!

RðBÞ

N ðBÞ

� �
:

Therefore,

A2 ¼
A2
1 0

0 0

" #
:

RðBÞ

N ðBÞ

� �
!

RðBÞ

W

� �
;

where W can be either NðBÞ or NðB�Þ. Now,

B�1
1 A2

1 0

0 0

" #
¼ XA2 ¼ A ¼

A1 0

0 0

� �
:

RðBÞ

N ðBÞ

� �
!

RðBÞ

N ðBÞ

� �
;

which implies

B1A1 ¼ A2
1: ð34Þ

Since indðAÞ 6 1, we have indðA1Þ 6 1 so exists and

¼
0

0 0

" #
:

RðBÞ

N ðB�Þ

� �
!

RðBÞ

N ðBÞ

� �
:

Let us show that A ¼ B and A ¼ B . This is equivalent to A1 ¼ B1 and A1 ¼ B1 . Using (33) and (34) and
the basic properties of core inverse we deduce:

B1 ¼ ðA1 Þ
�
B1 ¼ ð Þ

�
A�
1B1 ¼ ð Þ

�
ðA�

1B1Þ
�

ðby ð33ÞÞ ¼ ðA�
1B1 Þ

�

¼ ðA�
1B1A1ð Þ

2
Þ
�

ðby ¼ A1ð Þ
2
Þ ¼ ðA�

1A
2
1ð Þ

2
Þ
�

ðby ð34ÞÞ ¼ ðA�
1A1 Þ

�

¼ ðA1 Þ
�
A1 ¼ A1

and

B1 ¼ B1A1ð Þ
2
¼ A2

1ð Þ
2
¼ A1 :

It follows that A B.

(i)) (iv) In view of (i) ) (iii) it is enough to show that Bf1g#Af1g. But A B implies that A<�B and as we now A<�B

implies that Bf1g#Af1g.

(iv)) (iii) is trivial.

(i)) (v) We have shown in (28) that A B implies A � < B. Also, we have shown in the part (i) ) (ii) that A B implies
Bf6g#Af6g.

(v)) (iii) Suppose that A � < B and Bf6g#Af6g. Let X 2 Bf3;6g. As we know Bf3;6g ¼ Bf1;3g \ Bf6g so BXB ¼ B. By
assumption it follows that X 2 Af6g. It remains to show that X 2 Af3g. As A � < B we have A�A ¼ A�B and
RðAÞ#RðBÞ. By (22), we have A ¼ BB�A for each B� 2 Bf1g. It follows that

AX ¼ AAyAX ¼ ðAyÞ
�
A�AX ¼ ðAyÞ

�
A�BX ¼ ðAAyÞ

�
ðBXÞ� ¼ ðBXAAyÞ

�
¼ ðBXBB�AAyÞ

�
¼ ðBB�AAyÞ

�
¼ ðAAyÞ

�
;

so ðAXÞ� ¼ AX. h

It remains to show that the core partial order is actually partial order on the set of bounded Hilbert space operators with
indices less or equal one.
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Theorem 5.6. The relation ‘‘ ’’ is a partial order on the set L1ðHÞ.

Proof. The reflexivity and transitivity follows by Theorem 5.5. Since A B implies A<�B and <� is a partial order, the anti-
symmetry of follows. Thus, is a partial order on L1ðHÞ. h

Theorem 5.6 can be proved without using Theorem 5.5.

6. Some remarks

1. Any A 2 LðHÞ can be written in the form

A ¼
A3 A4

0 0

� �
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
: ð35Þ

It is shown in [5] that if indðAÞ 6 1 then A3 is invertible. It is easy to check that

¼
A�1
3 0

0 0

" #
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
: ð36Þ

The representations (35) and (36) are analogous to representations (1) given by Baksalary and Trenkler in [2]. Using these
decompositions one can obtain the characterization of the core partial order analogous to (29). Similarly, if indðAÞ 6 1 then

A ¼
A3 0

A4 0

� �
:

RðA�Þ

N ðAÞ

� �
!

RðA�Þ

N ðAÞ

� �
;

¼
A�1
3 0

0 0

" #
:

RðA�Þ

N ðAÞ

� �
!

RðA�Þ

N ðAÞ

� �
:

2.We should emphasize the following. Although for the dual core inverse all properties analogous to those of core inverse
are valid, the proofs of some properties requires additional caution. Namely, we often use the following trick in the

proofs regarding the core inverse. Let C 2 LðHÞ;H ¼ H1 � H2 ¼ H3 � H4 ¼ H3 � H5 such that H1; H2; H3; H4; H5 are closed
subspaces of H and H2#NðCÞ;RðCÞ#H3. The operator C has the representation (C1 ¼ CjH1

: H1 # H3)

C ¼
C1 0

0 0

� �
:

H1

H2

� �
!

H3

H4

� �
:

We can also write the following

C ¼
C1 0

0 0

� �
:

H1

H2

� �
!

H3

H5

� �
: ð37Þ

Observe that a similar method can not be applied to the domain. Namely, if H ¼ H6 � H2, where H6 is closed, the only thing
we can write is

C ¼
C2 0

0 0

� �
:

H6

H2

� �
!

H3

H4

� �
; ð38Þ

where C2 ¼ CjH6
: H1 ! H3. In the proofs for some properties of dual core inverse (for example ð Þ

2
A ¼ or

A B () Bf4;8g#Af4;8g) the representation (37) is of no use, but the representation (38) is convenient. As a drawback
we have some new operator C2, but this fact appears not to be problem. The proofs of all properties of dual core inverse have
the same idea as those of core inverse, with the previously described observation.

3. For dual core inverse there is the following theorem analogous to the Theorem 3.4:

Theorem 6.1. Let A 2 L1ðHÞ and m 2 N. Then:

(i) 2 Af1;2g; (ii) A ¼ AyA ¼ PRðA�Þ, so ð AÞ
�
¼ A;

(iii) A2 ¼ A; (iv) ð Þ
2
A ¼ ; (v) ¼ PRðA�ÞA

];

(vi) A ¼ AA]; (vii) ¼ AyAA]; (viii) is EP;

(ix) ð Þ
y
¼ ð Þ

]
¼ ¼ PRðA�ÞA; (x) Að Þ

2
¼ A];

(xi) ð Þ
m
¼ ; (xii) ¼ .
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4. Similarly as in Theorems 3.5 and 3.7, one can show that X ¼ if and only if one of the following equivalent condi-
tions hold:
(i) (1) AXA ¼ A (2) XAX ¼ X (4) ðXAÞ� ¼ XA (8) A2X ¼ A (9) X2A ¼ X;
(ii) X ¼ AyAA];
(iii) X 2 Af1;2;4g and AX ¼ AA].

5. The following theorem for dual core inverse is analogous to the Theorem 3.9.

Theorem 6.2. Let A 2 L1ðHÞ. Then:

(i) ¼ 0 () A ¼ 0; (ii) ¼ PRðA�Þ () A2 ¼ A;
(iii) ¼ A () A3 ¼ A and A is EP;

(iv) ¼ A� () A is partial isometry and EP.

6. Theorem 3.11 also has equivalent form for dual core inverse.

Theorem 6.3. Let A; B 2 LðHÞ be orthogonal projectors such that RðABÞ is closed. Then RðBABÞ is closed, indðABÞ 6 1 and

¼ ðBABÞy: ð39Þ

Proof.

¼ ðABÞy AB ¼ ðABÞyðABAÞyAB ¼ ðABÞyðABBAÞyAB ¼ ðABÞyðABB�A�Þ
y
AB ¼ ðABÞyðB�A�Þ

y
¼ ðABÞyððABÞyÞ

�

¼ ðB�A�ABÞ
y
¼ ðBAABÞy ¼ ðBABÞy: �

7. Using dual core inverse we can define another partial order. For A;B 2 L1ðHÞ we write A B if A ¼ B and
A ¼ B. As in Theorem 5.3, it can be shown that A B if and only if

H ¼ RðA�Þ�?RððB� AÞ�Þ�?NðBÞ;

H ¼ RðAÞ � RðB� AÞ � N ðBÞ and

A ¼

A1 0 0

0 0 0

0 0 0

2
64

3
75 :

RðA�Þ

RððB� AÞ�Þ

N ðBÞ

2
64

3
75 !

RðAÞ

RðB� AÞ

N ðBÞ

2
64

3
75;

B ¼

A1 0 0

0 B1 0

0 0 0

2
64

3
75 :

RðA�Þ

RððB� AÞ�Þ

N ðBÞ

2
64

3
75 !

RðAÞ

RðB� AÞ

N ðBÞ

2
64

3
75;

where A1 and B1 are invertible operators.
8. As in Theorem 5.5, one can show that A B if and only if Bf1;4g#Af1;4g and Bf8g#Af8g if and only if

Bf4;8g#Af4;8g when A;B 2 L1ðHÞ. Also, the relation ‘‘ ’’ is a partial order on L1ðHÞ.

9. is reflexive generalized inverse, and ¼ Að1;2Þ
RðAÞ;NðA�Þ

; recall Ay ¼ Að1;2Þ
RðA�Þ;NðA�Þ

; A] ¼ Að1;2Þ
RðAÞ;NðAÞ. Also, ¼ Að1;2Þ

RðA�Þ;NðAÞ
.

10. A ; A are orthogonal, and A; A oblique projectors;

11. From Theorem 3.4 (ix), ¼ ðAPRðAÞÞ
y ¼ ðA2AyÞ

y
¼ ðA2AyÞ

]
;

12. From Theorem 3.4 (vii), ¼ A]AA�AAy ¼ PRðAÞ;NðAÞA
�PRðAÞ; for arbitrary A� 2 Af1g.

13. An easy computation shows that A� A ; A � A are nilpotent of order 2.

14. ð Þ
m
¼ ðA]Þ

m�1
Ay
; ð Þ

m
¼ AyðA]Þ

m�1
; mP 2. The proof is by induction on m.

15. ð Þ
m
¼ ðA]Þ

m�1
; ð Þ

m
¼ ðA]Þ

m�1
; mP 1. It follows by previous one.

16. Let pðtÞ ¼
Pn

k¼0akt
k be some polynomial. Then:

pð Þ ¼
Xn

k¼0

akð Þ
k
¼

Xn

k¼1

akðA
]Þ

k�1
þ a0I ¼ a0I þ qðA]Þ ;

where qðtÞ ¼ pðtÞ�a0
t

. Another way is

pð Þ ¼ pðA]ÞAAy þ a0I � a0AA
y ¼ a0ðI � AAyÞ þ pðA]ÞAAy

:

For dual core inverse we have pð Þ ¼ a0I þ qðA]Þ and

pð Þ ¼ a0ðI � AyAÞ þ AyApðA]Þ:

17. Recall the definition of Bott–Duffin inverse. Let A 2 LðHÞ and let L be closed subspace of H. The Bott–Duffin inverse of A
with respect to L is defined by

D.S. Rakić et al. / Applied Mathematics and Computation 244 (2014) 283–302 301



Að�1Þ
L ¼ PLðAPL þ PL? Þ

�1
;

where PL denotes an orthogonal projector on L. The Bott–Duffin inverse arises in electrical network theory, see for example
[1, Section 2.10]. The Bott–Duffin and core inverse are related in the following way:

Að�1Þ
RðAÞ ¼ PRðAÞ½APRðAÞ þ PNðA�Þ�

�1 ¼

provided that indðAÞ 6 1. It follows by representations (16), (3) and (5) and

PNðA�Þ ¼
0 0

0 INðA�Þ

� �
:

RðAÞ

N ðA�Þ

� �
!

RðAÞ

N ðA�Þ

� �
:

On analogous way one can prove that ¼ Að�1Þ
RðA�Þ

.
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