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Abstract

We give several necessary and sufficient conditions for a closed oper-
ator to be upper (lower) semi-Browder. We also apply these results to
give some characterizations of upper (lower) semi-Browder spectrum.
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1 Introduction and preliminaries

Let X be an infinite dimensional Banach space. We denote by L(X) the
set of all linear operators on X. The class C(X) (BL(X)) consists of all
closed (linear bounded) operators on X. As usual, K(X) (F(X)) is the
set of all compact (finite rank) operators on X. Let T ∈ C(X). We use
D(T ) to denote the domain of the operator T and, in general, D(T ) 6= X.
The null space of T , denoted by N (T ), is the set N (T ) = {x ∈ D(T ) :
Tx = 0}. The set R(T ) = {Tx : x ∈ D(T )} is the range of T . Let
α(T ) = dimN (T ) if N (T ) is finite dimensional, and let α(T ) = ∞ if N (T )
is infinite dimensional. Similarly, let β(T ) = dimX/R(T ) = codimR(T )
if X/R(T ) is finite dimensional, and let β(T ) = ∞ if X/R(T ) is infinite
dimensional.

Let N (N0) denote the set of all positive (non-negative) integers, and let
C denote the set of all complex numbers. For T ∈ C(X) we consider iterates

1The authors are supported by the Ministry of Science, Republic of Serbia, grant no.
174007.
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T 2, T 3, . . . of T . If n > 1, then

D(Tn) = {x ∈ X : x, Tx, . . . , Tn−1x ∈ D(T )},
and Tnx = T (Tn−1x). It is well known that N (Tn) ⊂ N (Tn+1) and
R(Tn+1) ⊂ R(Tn) if n ∈ N0. Let T 0 = I (the identity operator on X,
with D(I) = X). Thus N (T 0) = {0} and R(T 0) = X. It is also well
known that if N (Tn) = N (Tn+1), then N (T k) = N (Tn) for k ≥ n. In
this case the ascent of T , denoted by asc(T ), is the smallest n ∈ N0 such
that N (Tn) = N (Tn+1). If such an n does not exist, then asc(T ) = ∞.
Similarly, if R(Tn+1) = R(Tn), then R(T k) = R(Tn) for k ≥ n. In this
case the descent of T , denoted by dsc(T ), is the smallest n ∈ N0 such that
R(Tn) = R(Tn+1). If such an n does not exist, then dsc(T ) = ∞.

For T ∈ C(X) we can also define the generalized kernel of T by N∞(T ) =
∪∞n=1N (Tn) and the generalized range of T by R∞(T ) =

⋂∞
n=1R(Tn).

We need the following auxiliary result (see [16, Lemma 3.4] and [3,
Lemma 2.1])

Lemma 1.1. Let T : D(T ) → X, D(T ) ⊂ X, be a linear operator.
(i) If asc(T ) < ∞, then N∞(T ) ∩R∞(T ) = {0}.
(ii) If α(T ) < ∞ and N∞(T ) ∩R∞(T ) = {0}, then asc(T ) < ∞.

Let X ′ be the space of bounded linear functionals on X. The adjoint
operator T ′ of the densely defined closed operator T is defined by

D(T ′) = {y′ ∈ X ′ : y′T is bounded on D(T )},
and for y′ ∈ D(T ′), T ′y′ = y′T , where y′T is the unique continuous linear
extension of y′T to all of X.

We prove the following result.

Lemma 1.2. Let T ∈ C(X) be a densely defined operator and S ∈ BL(X).
Then (T − S)′ = T ′ − S′.

Proof. The operator T −S is densely defined because D(T −S) = D(T ) and
thus (T −S)′ exists. For y′ ∈ X ′, y′(T −S) is bounded on D(T ) if and only
if y′T is bounded on D(T ), and hence, D((T − S)′) = D(T ′) = D(T ′ − S′).
For y′ ∈ D((T − S)′) = D(T ′ − S′) it follows that

(T − S)′y′ = y′(T − S) = y′T − y′S,

(T ′ − S′)y′ = T ′y′ − S′y′ = y′T − y′S.

Since the functionals y′T − y′S and y′T−y′S coincide onD(T ), they coincide
on X. Therefore, (T − S)′ = T ′ − S′.
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An operator T ∈ C(X) is bounded below if there exists c > 0 such that

c‖x‖ ≤ ‖Tx‖ for every x ∈ D(T ).

Recall that T ∈ C(X) is bounded below if and only if T is injective with
closed range [15, Theorem 5.1, p. 70].

Let consider following subsets of C(X):

Φ+(X) = {T ∈ C(X) : α(T ) < ∞ and R(T ) is closed},
Φ−(X) = {T ∈ C(X) : β(T ) < ∞},
Φ±(X) = Φ+(X) ∪ Φ−(X),
Φ(X) = Φ+(X) ∩ Φ−(X),
B+(X) = {T ∈ C(X) : T ∈ Φ+(X) and asc(T ) < ∞},
B−(X) = {T ∈ C(X) : T ∈ Φ−(X) and dsc(T ) < ∞},
B(X) = B+(X) ∩ B−(X).

The classes Φ+(X),Φ−(X),Φ±(X),Φ(X),B+(X),B−(X) and B(X), respec-
tively, consist of all upper semi-Fredholm, lower semi-Fredholm, semi-Fred-
holm, Fredholm, upper semi-Browder, lower semi-Browder and Browder op-
erators. For upper and lower semi-Fredholm operators the index is defined
by i(A) = α(A) − β(A). If A ∈ Φ+(X)\Φ−(X), then i(A) = −∞, and if
A ∈ Φ−(X)\Φ+(X), then i(A) = +∞. Corresponding spectra of T ∈ C(X)
are defined as:

σa(T ) = {λ ∈ C : T − λ is not bounded below}-the approximate point
spectrum,

σd(T ) = {λ ∈ C : T − λ is not surjective}-the defect spectrum,

σΦ+(T ) = {λ ∈ C : T − λ 6∈ Φ+(X)}-the upper semi-Fredholm spectrum,

σΦ−(T ) = {λ ∈ C : T − λ 6∈ Φ−(X)}-the lower semi-Fredholm spectrum,

σB+(T ) = {λ ∈ C : T − λ 6∈ B+(X)}-the upper semi-Browder spectrum,

σB−(T ) = {λ ∈ C : T − λ 6∈ B−(X)}-the lower semi-Browder spectrum.

For T ∈ C(X), set ρ(T ) for the resolvent set of T and ρΦ(T ) for the set of
all λ ∈ C such that T − λ ∈ Φ(X).

In general, let us consider a linear operator A such that its domain D(A)
is contained in a linear space X, and its range R(A) is contained in a linear
space Y , and D(A) need not be the whole space X. For the convenience,
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we express this by saying that A is a linear operator A : X → Y . If X0, Y0

are linear subspaces of X, Y respectively, we can define a linear operator
A0 : X0 → Y0 by setting A0x = Ax for every x ∈ X0 such that x ∈ D(A)
and Ax ∈ Y0. We shall say that A0 is induced by A in the pair X0, Y0.

A linear operator T , T : D(T ) → X, D(T ) ⊂ X, is semi regular if R(T )
is closed

N (T ) ⊂ R(Tm) for each m ∈ N. (1.1)

We remark that condition (1.1) is equivalent to each of the following condi-
tions:

N (Tn) ⊂ R(T ) for each n ∈ N; (1.2)
N (Tn) ⊂ R(Tm) for each n ∈ N and each m ∈ N. (1.3)

We shall use the Kato decomposition theorem (see [3, Proposition 2.3], [11,
Theorem 4]):

Theorem 1.1. Let X be a Banach space and T ∈ Φ±(X). Then there exists
d ∈ N such that T has a Kato decomposition of degree d, i.e. there exists a
pair (M, N) of two closed subspaces of X such that:

(i) X = M ⊕N ,
(ii) T = TM ⊕ TN ,
(iii) T (M ∩ D(T )) ⊂ M , TM : M ∩ D(T ) → M is a closed and semi

regular operator,
(iv) N ⊂ D(T ), dimN < ∞, T (N) ⊂ N and TN : N → N is a bounded

and nilpotent operator of degree d.

The necessary and sufficient conditions for a bounded operator to be
upper (lower) semi-Browder are well-known (see [2, Theorems 2.62, 2.63],
[17, Theorems 3, 4]), as well characterizations of upper (lower) semi-Browder
spectrum of a bounded operator [14], [13, Corollary 19.20, Theorem 19.21],
[1, Corollaries 3.45, 3.47], [2, Theorems 4.4, 4.5]. The purpose of this paper is
to extend that results to a larger class, that is, the class of closed operators.
Precisely we generalize Theorems 3 and 4 from [17] to the case of closed
operators. The present paper is also motivated by a paper of T. Alvarez, F.
Fakhfakh and M. Mnif, [3], in which the authors, continuing investigation
started in [4, 5], gave one characterization of closed upper (lower) semi-
Browder operators (Theorems 3.2, 3.3), as well a characterization of upper
(lower) semi-Browder spectrum (Theorems 4.1, 4.2). In our paper we extend
Theorems 3.2, 3.3, 4.1, 4.2, 4.3 and 4.4 from [3] to more general settings,
and also give another equivalent characterizations of closed upper and lower
semi-Browder operators, as well characterizations of corresponding spectra.
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In this paper we use the definition of commutativity of linear operators
in the same way as Goldman and Kračkovskii did in [8].

Definition 1.1. Let T : D(T ) → X, D(T ) ⊂ X, be a linear operator and
S ∈ L(X). We say that S commutes with T if

(i) Sx ∈ D(T ) for every x ∈ D(T ),

(ii) STx = TSx for every x ∈ D(T ).

Notice that there is a slightly more general definition of commutativity
by Kaashoek and Lay in [10]:

Definition 1.2. Let X be a Banach space, T : D(T ) → X, D(T ) ⊂ X and
K : D(K) → X, D(K) ⊂ X, two linear operators. We say that K commutes
with T if

(i) D(T ) ⊂ D(K),

(ii) Kx ∈ D(T ) whenever x ∈ D(T ),

(iii) KTx = TKx for x ∈ D(T 2).

T. Alvarez et al., using the Kato decomposition, proved [3, Theorem 3.2]
that if T is upper semi-Browder then there exists A ∈ C(X) and B ∈ F(X)
such that T = A + B, D(A) = D(T ), A is bounded below and B commutes
with T in the sense of Definition 1.2; and the converse assertion holds if

T (D(T )) ⊂ D(T ). (1.4)

We see that Definition 1.2 is more general then Definition 1.1. However,
notice that the condition (1.4) implies D(T ) = D(T 2) = D(T 3) = · · · , and
therefore,

Definition 1.2 + (1.4) is stronger then Definition 1.1. (1.5)

In this paper we use Definition 1.1 and also the Kato decomposition
to get the previously mentioned result in a different way. To be precise,
because of (1.5), our result (the equivalence (2.2.1)⇐⇒ (2.2.6) in Theorem
2.2): T ∈ B+(X) if and only if there exist A ∈ C(X) and B ∈ F(X) such that
T = A + B, A is a bounded below operator with D(A) = D(T ), B ∈ F(X)
and B commutes with T in the sense of Definition 1.1, is an extension of
Theorem 3.2 in [3].
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T. Alvarez et al. also proved [3, Theorem 3.3] that if T ∈ C(X), D(T ) =
X, T is lower semi-Browder and ρΦ(T ) 6= ∅, then there exist A ∈ C(X) and
B ∈ F(X) such that T = A + B, D(A) = D(T ), A is surjective and B
commutes with T in the sense of Definition 1.2; and the converse assertion
holds if ρ(T ) 6= ∅ and T ′(D(T ′)) ⊂ D(T ′).

Now it is important to mention the following result [5, Lemma 3.3]:

Lemma 1.3. Let T ∈ C(X), D(T ) = X, K ∈ BL(X) and K commutes
with T in the sense of Definition 1.2. If ρ(T ) 6= ∅ or ρ(T + K) 6= ∅, then
KTx = TKx for all x ∈ D(T ), that is, K commutes with T in the sense of
Definition 1.1.

We prove (the equivalence (3.1.1)⇐⇒ (3.1.6) in Theorem 3.1): If T ∈
C(X), D(T ) = X and ρΦ(T ) 6= ∅, then T ∈ B−(X) if and only if there exist
A ∈ C(X) and B ∈ F(X) such that T = A + B, A is a surjective operator
with D(A) = D(T ) and B commutes with T in the sense of Definition 1.1.
According to Lemma 1.3 we remark that this assertion improves Theorem
3.3 in [3].

In the following section we investigate properties of upper semi-Browder
operators. Lower semi-Browder operators are considered in the third section.

2 Upper semi-Browder operators and upper semi-
Browder spectrum

First we prove the following result useful for the proof of the main result of
this section, which is otherwise more elementary for bounded operators.

Theorem 2.1. Let T : D(T ) → X, D(T ) ⊂ X, be a linear operator and
S ∈ L(X) such that S is bijective, S (D(T )) = D(T ), and S commutes with
T . Then

N (T − S) ⊂ R∞(T ).

Proof. Let x ∈ D(T ). Then there exists u ∈ D(T ) such that Su = x and

TSu = STu =⇒ Tx = STS−1x =⇒ S−1Tx = TS−1x.

Therefore, S−1 commutes with T .
Let x ∈ N (T−S). Then Tx = Sx ∈ D(T ) and T 2x = T (Tx) = T (Sx) =

S(Tx) = S2x ∈ D(T ). By induction we conclude

Tnx = Snx ∈ D(T ) for every n ∈ N0. (2.6)
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Observe that from Tx = Sx it follows that

TS−1x = S−1Tx = x = SS−1x

and therefore, S−1x ∈ N (T − S). Consequently,

(S−1)mx ∈ N (T − S) for every m ∈ N0. (2.7)

As above, from (2.7) we conclude

Tn(S−1)mx = Sn(S−1)mx ∈ D(T ) for every n, m ∈ N0. (2.8)

Fix n0 ∈ N. From Tn0x = Sn0x = SSn0−1x it follows that S−1Tn0x =
Sn0−1x, and now from (2.6) and the fact that S−1 commutes with T we
get Tn0S−1x = Sn0−1x. Continuing this method and using (2.8) we obtain
Tn0(S−1)n0x = x. Hence x ∈ R(Tn0) and since n0 was arbitrary, we get
x ∈ R∞(T ).

The following result was proved for T ∈ L(X) ([9, Lemma 38.1]), but
using the same technic we can express it for a linear operator T : D(T ) → X,
D(T ) ⊂ X.

Lemma 2.1. Let T : D(T ) → X, D(T ) ⊂ X, be a linear operator with
α(T ) < ∞. Then T (D(T ) ∩R∞(T )) = R∞(T ).

Let T : D(T ) → X, D(T ) ⊂ X be a linear operator and ε > 0. We write

comm−1
ε (T ) = {S ∈ BL(X)−1 : S commutes with T, ‖S‖ < ε},

where BL(X)−1 is the group of invertible elements in BL(X).
For T ∈ C(X) we say that T is almost bounded below (surjective) if there

exists an ε > 0 such that T − λI is a bounded below (surjective) operator
for λ ∈ C, 0 < |λ| < ε.

Let P ∈ BL(X) be a projector which commutes with T ∈ C(X). Put
X0 = R(P ) and X1 = N (P ). It is easy to check that

T (Xj ∩ D(T )) ⊂ Xj for j = 0, 1.

Now we define operators Tj : Xj → Xj , j = 0, 1 as

Tjx = Tx, x ∈ Xj ∩ D(T ), j = 0, 1.

The following theorem is our first main result where we give several
necessary and sufficient conditions for a closed operator to be upper semi-
Browder.
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Theorem 2.2. If X is a Banach space and T ∈ C(X), then the following
conditions are equivalent:
(2.2.1) T is upper semi-Browder;
(2.2.2) T is upper semi-Fredholm, and there exists ε > 0 such that for every
S ∈ comm−1

ε (T ) with S (D(T )) = D(T ), it follows that T − S is bounded
below;
(2.2.3) T is upper semi-Fredholm and almost bounded below;
(2.2.4) There exists a projector P ∈ F(X) which commutes with T such that
R(P ) ⊂ D(T ), T0 is nilpotent bounded operator, and T1 is bounded below;
(2.2.5) There exists a projector P ∈ F(X) which commutes with T such that
R(P ) ⊂ D(T ), TP is nilpotent bounded operator, and T + P is bounded
below;
(2.2.6) There exists B ∈ F(X) which commutes with T such that T − B is
bounded below;
(2.2.7) There exists B ∈ K(X) which commutes with T such that T − B is
bounded below.

Proof. (2.2.1) =⇒ (2.2.2): Suppose that T ∈ C(X) is upper semi-Browder.
Then T ∈ Φ+(X), so by [11, Lemma 543], R(Tn) is closed for every n ∈ N.
According to [11, Theorem 1] there exists some ε1 > 0 such that if B ∈
BL(X) and ‖B‖ < ε1, then T − B ∈ Φ+(X) . Let X1 = R∞(T ). X1

is a Banach space and T (D(T ) ∩ X1) = X1 by Lemma 2.1. The operator
T1 : X1 → X1 induced by T is closed with α(T1) < ∞ and β(T1) = 0. From
T1 ∈ Φ(X1), again by [11, Theorem 1], it follows that there exists some
ε2 > 0, such that for B ∈ BL(X1), ‖B‖ < ε2 implies T1−B ∈ Φ(X1), α(T1−
B) ≤ α(T1), β(T1 − B) ≤ β(T1), i(T1 − B) = i(T1). Set ε = min{ε1, ε2},
and let S ∈ comm−1

ε (T ) such that S(D(T )) = D(T ). Since S commutes
with T , it follows that S(R(Tn)) ⊂ R(Tn) for every n ∈ N, and therefore,
S(X1) = S(

⋂∞
n=1R(Tn)) =

⋂∞
n=1 S(R(Tn)) ⊂ ⋂∞

n=1R(Tn) = X1. Let
S1 : X1 → X1 be the operator induced by operator S. Operator S1 is
bounded, ‖S1‖ < ε and β(T1) = 0, so β(T1 − S1) = 0. From Theorem 2.1
we have

α(T − S) = α(T1 − S1) = i(T1 − S1) = i(T1) = α(T1).

From [3, Lemma 2.1(iii)] it follows that N (T ) ∩ R∞(T ) = {0} and hence,
α(T1) = 0. Therefore, α(T − S) = 0. Since T − S has closed range, we get
that T − S is bounded below.

(2.2.2) =⇒ (2.2.3): Obvious.
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(2.2.3) =⇒ (2.2.4): Suppose that T is upper semi-Fredholm and there
exists ε > 0 such that T − λI is injective with closed range for 0 < |λ| < ε.
From Theorem 1.1 it follows that there exist two closed subspaces M and
N such that X = M ⊕ N , T (M ∩ D(T )) ⊂ M , TM : M ∩ D(T ) → N is a
closed and semi regular operator; N ⊂ D(T ), dim N < ∞, T (N) ⊂ N and
TN : N → N is a bounded and nilpotent operator. Let P be a projector such
that R(P ) = N and N (P ) = M . Clearly, P ∈ F(X), R(P ) ⊂ D(T ) and
P (D(T )) ⊂ D(T ). For x ∈ D(T ) there exist u ∈ N (P )∩D(T ) and v ∈ R(P )
such that x = u + v. Since TPx = Tv and PTx = P (Tu + Tv) = Tv, we
conclude that P commutes with T . For T0 = TN and T1 = TM , evidently
T0 is a nilpotent bounded operator and T1 − λI is injective for 0 < |λ| < ε.
Since T1 is semi regular, from [11, Theorem 3, p. 297], we conclude that T1

is injective. Thus, T1 is bounded below.
(2.2.4) =⇒ (2.2.5): Suppose that there exists a projector P ∈ F(X)

which commutes with T such that R(P ) ⊂ D(T ), T0 is a nilpotent bounded
operator of degree p, and T1 is bounded below. From TP = T0P it follows
that TP is bounded. For x ∈ X there exist u ∈ N (P ) and v ∈ R(P ) such
that x = u + v. Then

(TP )px = (TP )(TP ) . . . (TP )(TP )︸ ︷︷ ︸
p

x = (TP )(TP ) . . . (TP )︸ ︷︷ ︸
p−1

Tv

= (TP )(TP ) . . . (TP )︸ ︷︷ ︸
p−2

TTv = · · · = T pv = T p
0 v = 0,

and so TP is nilpotent. From T ∈ C(X) and P ∈ BL(X) it follows that
T + P ∈ C(X). Since T0 is a nilpotent bounded operator, we get that
T0 + I is invertible, and hence N (T + P ) = N (T1)⊕N (T0 + I) = {0} and
R(T + P ) = R(T1) ⊕ R(T0 + I) = R(T1) ⊕ R(P ). Since R(T1) is closed
and dimR(P ) < ∞ we get that R(T + P ) is closed. Therefore, T + P is
bounded below.

(2.2.5) =⇒ (2.2.6): Let there exists a projector P ∈ F(X) which com-
mutes with T such that R(P ) ⊂ D(T ), TP is a nilpotent bounded operator,
and T + P is bounded below. For B = −P we have that B commutes with
T , and T −B is bounded below.

(2.2.6) =⇒ (2.2.7) Obvious.
(2.2.7) =⇒ (2.2.1) Let there exists B ∈ K(X) which commutes with T

such that T − B is bounded below. Put A = T − B. Then ascA < ∞ and
A + λB ∈ Φ+(X) for λ ∈ [0, 1] according to [12, Chapter 4, Theorem 5.26].
Since B commutes with A, from [8, Theorem 3] it follows that the function
λ → N∞(A + λB) ∩ R∞(A + λB) is locally constant on the set [0, 1] and
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therefore this function is constant on [0, 1]. As asc(A) < ∞, from Lemma
1.2 (i) it follows that N∞(A)∩R∞(A) = N∞(A)∩R∞(A) = {0} and hence,
N∞(A + B)∩R∞(A+B) = {0}. It implies N∞(A+B)∩R∞(A+B) = {0},
and by Lemma 1.2 (ii), we get asc (A + B) < ∞. Therefore, T = A + B ∈
B+(X).

From the equivalence (2.2.1) ⇐⇒ (2.2.6) it follows that T ∈ B+(X) if
and only if there exist A ∈ C(X) and B ∈ F(X) such that T = A + B, A is
a bounded below operator with D(A) = D(T ), B ∈ F(X) and B commutes
with T . We remark that this result is an improvement of Theorem 3.2 in
[3].

Further, T. Alvarez et al. proved (Theorem 4.3 in [3]) that if T ∈ B+(X)
and T (D(T )) ⊂ D(T ), then there exists η > 0 such that T − λ ∈ B+(X) for
0 < |λ| < η. Notice that the equivalence (2.2.1) ⇐⇒ (2.2.3) is an extension
of this result.

For K ⊂ C, acc K denotes the set of all accumulation points of K.

Corollary 2.1. Let T ∈ C(X). Then

σB+(T ) = σΦ+(T ) ∪ accσa(T ). (2.9)

Proof. Follows from the equivalence (2.2.1)⇐⇒(2.2.3).

Corollary 2.2. Let T ∈ C(X). Then σB+(T ) is a closed set.

Proof. From [11, Theorem 1] it follows that σΦ+(T ) is closed. Now from
(2.9) we conclude that σB+(T ) is a closed set as the union of two closed
sets.

For T ∈ C(X) set

FT (X) = {F ∈ F(X) : F commutes with T}

and
KT (X) = {K ∈ K(X) : K commutes with T}.

The following corollary improves Theorem 4.1 in [3].

Corollary 2.3. Let T ∈ C(X). Then

σB+(T ) =
⋂

F∈FT (X)

σa(T + F ) =
⋂

K∈KT (X)

σa(T + K).
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Proof. Suppose that λ /∈ ⋂
K∈KT (X)

σa(T +K). Then there exists K ∈ KT (X)

such that λ /∈ σa(T + K), that is T + K − λ is bounded below. Since
−K commutes with T − λ, from Theorem 2.2 (precisely, from the equiva-
lence (2.2.1)⇐⇒(2.2.7)) it follows that T − λ ∈ B+(X), i.e. λ /∈ σB+(T ).
Therefore, σB+(T ) ⊂ ⋂

K∈KT (X)

σa(T + K) ⊂ ⋂
F∈FT (X)

σa(T + F ).

To prove the converse, suppose that λ /∈ σB+(T ). Then T − λ ∈ B+(X),
and from Theorem 2.2 (from the equivalence (2.2.1)⇐⇒(2.2.6)) it follows
that there exists F ∈ F(X) which commutes with T −λ such that T −λ−F
is bounded below. Then F1 = −F ∈ F(X) commutes with T and hence
F1 ∈ FT (X). Moreover, T +F1−λ is bounded below and so λ /∈ σa(T +F1).
Thus, we have just proved the inclusion

⋂
F∈FT (X)

σa(T + F ) ⊂ σB+(T ).

3 Lower semi-Browder operators and lower semi-
Browder spectrum

We first prove the following simply lemma.

Lemma 3.1. Let T ∈ C(X) be a densely defined operator, and let S ∈
BL(X). If S commutes with T , then S′ commutes with T ′.

Proof. For y′ ∈ D(T ′) it follows that

‖S′y′(Tx)‖ = ‖(y′S)(Tx)‖ = ‖(y′T )(Sx)‖ ≤ ‖y′T‖‖S‖‖x‖ for every x ∈ D(T ),

and hence S′y′ ∈ D(T ′). Therefore, S′(D(T ′)) ⊂ D(T ′). It remains to prove
the commutativity relation. For y ∈ D(T ′) we find

(T ′S′)y′ = (S′y′)T ,

(S′T ′)y′ = y′TS.

Since for x ∈ D(T ) it holds

(S′y′)Tx = (y′S)(Tx) = (y′T )(Sx),

it follows that (S′y′)T = y′TS, and so (T ′S′)y′ = (S′T ′)y′.

The following theorem is our second main result where we characterize
closed lower semi-Browder operators.
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Theorem 3.1. If T ∈ C(X), D(T ) = X and ρΦ(T ) 6= ∅, then the following
conditions are equivalent:
(3.1.1) T is lower semi-Browder;
(3.1.2) T is lower semi-Fredholm, and there exists ε > 0 such that for every
S ∈ comm−1

ε (T ) with S(D(T )) = D(T ), it follows that T − S is onto;
(3.1.3) T is lower semi-Fredholm and almost surjective;
(3.1.4) There exists a projector P ∈ F (X) which commutes with T such that
R(P ) ⊂ D(T ), T0 is a nilpotent bounded operator and T1 is surjective;
(3.1.5) There exists a projector P ∈ F (X) which commutes with T such that
R(P ) ⊂ D(T ), TP is a nilpotent bounded operator and T + P is surjective;
(3.1.6) There exists B ∈ F (X) which commutes with T such that T − B is
surjective;
(3.1.7) There exists B ∈ K(X) which commutes with T such that T − B is
surjective.

Proof. (3.1.1) =⇒ (3.1.2): Let T ∈ B−(X). Then T ′ is a closed operator
and from [3, Proposition 3.1 (iii)] it follows that asc (T ′) < ∞. Further,
since R(T ) is closed, then R(T ′) is also closed by [7, Theorem IV.1.2] and
from [7, Theorem IV.2.3, i.] it follows that α(T ′) = β(T ) < ∞. Therefore,
T ′ ∈ B+(X ′).

Let S ∈ BL(X) be an arbitrary bijection with S(D(T )) = D(T ) and let
S commutes with T . Then S′ ∈ BL(X ′), ‖S′‖ = ‖S‖, S′ is bijective, and
by Lemma 3.1, S′(D(T ′)) ⊂ D(T ′) and S′ commutes with T ′ .

We shall show that S′(D(T ′)) = D(T ′). Suppose that y′ ∈ D(T ′). Then
there exists the unique functional z′ ∈ X ′ such that y′ = S′z′ = z′S. It
follows that z′ = y′S−1 and since S−1 commutes with T by Theorem 2.1,
for x ∈ D(T ) the following holds

‖(z′T )x‖ = ‖y′ (S−1(Tx)
) ‖ = ‖y′ (T (S−1x)

) ‖ =
= ‖(y′T )(S−1x)‖ ≤ ‖y′T‖‖S−1‖‖x‖,

which proves that z′ ∈ D(T ′). Therefore, D(T ′) ⊂ S′(D(T ′)), and so
S′(D(T ′)) = D(T ′).

According to Theorem 2.2 there exists some ε > 0 such that T ′ − A is
bounded below for every operator A ∈ BL(X ′) such that A ∈ comm−1

ε (T ′)
and A(D(T ′)) = D(T ′). Using a previous analysis for S ∈ comm−1

ε (T ) with
S(D(T )) = D(T ), it follows that S′ ∈ comm−1

ε (T ′) and S′(D(T ′)) = D(T ′),
and therefore, T ′ − S′ is bounded below. According to Lemma 1.2 and [7,
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Theorem IV.1.2] we get that R(T − S) is closed, and also by [7, Theorem
IV. 2.3, i.] we conclude that

β(T − S) = α((T − S)′) = α(T ′ − S′) = 0.

Therefore, T − S is onto.
(3.1.2) =⇒ (3.1.3): Obvious.
(3.1.3) =⇒ (3.1.4): Suppose that T ∈ Φ−(X) and T is almost surjective.

From Theorem 1.1 it follows that there exist two closed subspaces M and
N such that X = M ⊕ N , T (M ∩ D(T )) ⊂ M, TM : M ∩ D(T ) → M is
a closed and semi regular operator; N ⊂ D(T ), dimN < ∞, T (N) ⊂ N
and TN : N → N is a bounded and nilpotent operator of degree p. Let
P be the projector on N parallel to M . Then P ∈ F(X), R(P ) ⊂ D(T ),
P (D(T )) ⊂ D(T ) and T0 = TN is a bounded and nilpotent operator. In the
same way as in the proof of the implication (2.2.3) =⇒ (2.2.4) we get that
P commutes with T . Since there exists ε > 0 such that T − λI is surjective
for 0 < |λ| < ε, it follows that TM − λI is surjective for 0 < |λ| < ε. In the
same way as TM is semi regular, from [11, Theorem 3, p. 297], we conclude
that T1 = TM is surjective.

(3.1.4) =⇒ (3.1.5): Suppose that there exists a projector P ∈ F(X)
which commutes with T such that R(P ) ⊂ D(T ), T0 is nilpotent bounded
operator of degree p and T1 is surjective. As in the proof of the implication
(2.2.4) =⇒ (2.2.5) we get that TP is a nilpotent bounded operator. From
R(T + P ) = R(T1)⊕R(T0 + I) = N (P )⊕R(P ) = X, we see that T + P is
a surjection.

(3.1.5) =⇒ (3.1.6) Put B = −P .
(3.1.6) =⇒ (3.1.7) Obvious.
(3.1.7) =⇒ (3.1.1) Let there exists B ∈ K(X) which commutes with

T such that T − B is surjective. Put A = T − B. The operator B′ is
compact and commutes with T ′. The operator T − B is surjective, so it
has closed range. From [7, Theorem IV.1.2] and Lemma 1.2 we see that
R(T ′ − B′) is also closed and by [7, Theorem IV.2.3], we find that α(T ′ −
B′) = β(T − B) = 0. It follows that the operator T ′ − B′ is bounded
below and from Theorem 2.2 it follows that T ′ ∈ B+(X ′). Using again [7,
Theorem IV.1.2] and [7, Theorem IV.2.3, i.] we get that R(T ) is closed and
β(T ) = α(T ′) < ∞, so T ∈ Φ−(X). From [3, Proposition 3.1] we conclude
that dsc (T ) = asc (T ′) < ∞ and thus, T ∈ B−(X).

If T ∈ C(X), such that D(T ) = X and ρΦ(T ) 6= ∅, from the equivalence
(3.1.1) ⇐⇒ (3.1.6) it follows that T ∈ B−(X) if and only if there exist
A ∈ C(X) and B ∈ F(X) such that T = A + B, A is a surjective operator
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with D(A) = D(T ), B ∈ F(X) and B commutes with T . Notice that this
result improves Theorem 3.3 in [3].

T. Alvarez et al. proved [3, Theorem 4.4] that if T ∈ B−(X), D(T ) = X,
T ′(D(T ′)) ⊂ D(T ′) and ρ(T ) 6= ∅, then there exists η > 0 such that
T − λ ∈ B−(X) for 0 < |λ| < η. Furthermore, F. Fakhfakh and M.
Mnif in [6, Proposition 2.1 (ii)] got the same result without the assump-
tion T ′(D(T ′)) ⊂ D(T ′). We remark that this result is extended by the
equivalence (3.1.1) ⇐⇒ (3.1.3). Also from this equivalence immediately
follows the next characterization of the lower semi-Browder spectrum.

Corollary 3.1. Let T ∈ C(X), D(T ) = X and ρΦ(T ) 6= ∅. Then

σB−(T ) = σΦ−(T ) ∪ acc σd(T ).

The following corollary extend Corollary 2.1 (ii) in [6].

Corollary 3.2. Let T ∈ C(X), D(T ) = X and ρΦ(T ) 6= ∅. Then σB−(T ) is
a closed set.

Proof. Follows from Corollary 3.1, since σΦ−(T ) and accσd(T ) are closed
sets.

As a consequence of the equivalences (3.1.1)⇐⇒(3.1.6)⇐⇒(3.1.7) we get
one more characterization of the lower semi-Browder spectrum.

Corollary 3.3. Let T ∈ C(X), D(T ) = X and ρΦ(T ) 6= ∅. Then

σB−(T ) =
⋂

F∈FT (X)

σd(T + F ) =
⋂

K∈KT (X)

σd(T + K).

Proof. Suppose that λ /∈ ⋂
K∈KT (X)

σd(T +K). Then there exists K ∈ KT (X)

such that λ /∈ σd(T +K), that is T +K−λ is surjective. Since −K commutes
with T − λ, D(T − λ) = D(T ) = X, ρΦ(T − λ) 6= ∅, from Theorem 3.1
(precisely, from the equivalence (3.1.1)⇐⇒(3.1.7)) it follows that T − λ ∈
B−(X), i.e. λ /∈ σB−(T ). Therefore, σB−(T ) ⊂ ⋂

K∈KT (X)

σd(T + K) ⊂
⋂

F∈FT (X)

σd(T + F ).

To prove the opposite inclusion, suppose that λ /∈ σB−(T ). Then T −λ ∈
B−(X), and since D(T − λ) = X and ρΦ(T−λ) 6= ∅, from Theorem 3.1 (from
the equivalence (3.1.1)⇐⇒(3.1.6)) it follows that there exists F ∈ F(X)
which commutes with T − λ such that T − λ− F is surjective. Then F1 =
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−F ∈ F(X) commutes with T and hence F1 ∈ FT (X). Moreover, T +F1−λ
is surjective and so, λ /∈ σd(T + F1). Consequently,

⋂
F∈FT (X)

σd(T + F ) ⊂
σB+(T ).

Using Lemma 1.3 we can conclude that Corollary 3.3 is an improvement
of Theorem 4.2 in [3].
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Miloš D. Cvetković
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