On closed upper and lower semi-Browder operators

Snežana Č. Živković-Zlatanović, Miloš D. Cvetković and Dragan S. Djordjević¹

Abstract

We give several necessary and sufficient conditions for a closed operator to be upper (lower) semi-Browder. We also apply these results to give some characterizations of upper (lower) semi-Browder spectrum.

2010 Mathematics subject classification: 47A53, 47A10, 47A55.

Key words and phrases: Closed upper semi-Browder operators; upper semi-Browder spectrum; closed lower semi-Browder operators; lower semi-Browder spectrum.

1 Introduction and preliminaries

Let X be an infinite dimensional Banach space. We denote by $\mathcal{L}(X)$ the set of all linear operators on X. The class $\mathcal{C}(X)$ ($\mathcal{BL}(X)$) consists of all closed (linear bounded) operators on X. As usual, $\mathcal{K}(X)$ ($\mathcal{F}(X)$) is the set of all compact (finite rank) operators on X. Let $T \in \mathcal{C}(X)$. We use $\mathcal{D}(T)$ to denote the domain of the operator T and, in general, $\mathcal{D}(T) \neq X$. The null space of T, denoted by $\mathcal{N}(T)$, is the set $\mathcal{N}(T) = \{x \in \mathcal{D}(T) :$ $Tx = 0\}$. The set $\mathcal{R}(T) = \{Tx : x \in \mathcal{D}(T)\}$ is the range of T. Let $\alpha(T) = \dim \mathcal{N}(T)$ if $\mathcal{N}(T)$ is finite dimensional, and let $\alpha(T) = \infty$ if $\mathcal{N}(T)$ is infinite dimensional. Similarly, let $\beta(T) = \dim X/\mathcal{R}(T) = \operatorname{codim} \mathcal{R}(T)$ if $X/\mathcal{R}(T)$ is finite dimensional, and let $\beta(T) = \infty$ if $X/\mathcal{R}(T)$ is infinite dimensional.

Let $\mathbb{N}(\mathbb{N}_0)$ denote the set of all positive (non-negative) integers, and let \mathbb{C} denote the set of all complex numbers. For $T \in \mathcal{C}(X)$ we consider iterates

¹The authors are supported by the Ministry of Science, Republic of Serbia, grant no. 174007.

 T^2, T^3, \dots of T. If n > 1, then

$$\mathcal{D}(T^n) = \{ x \in X : x, Tx, \dots, T^{n-1}x \in \mathcal{D}(T) \},\$$

and $T^n x = T(T^{n-1}x)$. It is well known that $\mathcal{N}(T^n) \subset \mathcal{N}(T^{n+1})$ and $\mathcal{R}(T^{n+1}) \subset \mathcal{R}(T^n)$ if $n \in \mathbb{N}_0$. Let $T^0 = I$ (the identity operator on X, with $\mathcal{D}(I) = X$). Thus $\mathcal{N}(T^0) = \{0\}$ and $\mathcal{R}(T^0) = X$. It is also well known that if $\mathcal{N}(T^n) = \mathcal{N}(T^{n+1})$, then $\mathcal{N}(T^k) = \mathcal{N}(T^n)$ for $k \geq n$. In this case the ascent of T, denoted by $\operatorname{asc}(T)$, is the smallest $n \in \mathbb{N}_0$ such that $\mathcal{N}(T^n) = \mathcal{N}(T^{n+1})$. If such an n does not exist, then $\operatorname{asc}(T) = \infty$. Similarly, if $\mathcal{R}(T^{n+1}) = \mathcal{R}(T^n)$, then $\mathcal{R}(T^k) = \mathcal{R}(T^n)$ for $k \geq n$. In this case the descent of T, denoted by $\operatorname{dsc}(T)$, is the smallest $n \in \mathbb{N}_0$ such that $\mathcal{R}(T^n) = \mathcal{R}(T^{n+1})$. If such an n does not exist, then $\operatorname{dsc}(T) = \infty$.

For $T \in \mathcal{C}(X)$ we can also define the generalized kernel of T by $\mathcal{N}^{\infty}(T) = \bigcup_{n=1}^{\infty} \mathcal{N}(T^n)$ and the generalized range of T by $\mathcal{R}^{\infty}(T) = \bigcap_{n=1}^{\infty} \mathcal{R}(T^n)$.

We need the following auxiliary result (see [16, Lemma 3.4] and [3, Lemma 2.1])

Lemma 1.1. Let $T : \mathcal{D}(T) \to X$, $\mathcal{D}(T) \subset X$, be a linear operator. (i) If $\operatorname{asc}(T) < \infty$, then $\mathcal{N}^{\infty}(T) \cap \mathcal{R}^{\infty}(T) = \{0\}$. (ii) If $\alpha(T) < \infty$ and $\mathcal{N}^{\infty}(T) \cap \mathcal{R}^{\infty}(T) = \{0\}$, then $\operatorname{asc}(T) < \infty$.

Let X' be the space of bounded linear functionals on X. The adjoint operator T' of the densely defined closed operator T is defined by

 $\mathcal{D}(T') = \{ y' \in X' : y'T \text{ is bounded on } \mathcal{D}(T) \},\$

and for $y' \in \mathcal{D}(T')$, $T'y' = \overline{y'T}$, where $\overline{y'T}$ is the unique continuous linear extension of y'T to all of X.

We prove the following result.

Lemma 1.2. Let $T \in \mathcal{C}(X)$ be a densely defined operator and $S \in \mathcal{BL}(X)$. Then (T - S)' = T' - S'.

Proof. The operator T - S is densely defined because $\mathcal{D}(T - S) = \mathcal{D}(T)$ and thus (T - S)' exists. For $y' \in X'$, y'(T - S) is bounded on $\mathcal{D}(T)$ if and only if y'T is bounded on $\mathcal{D}(T)$, and hence, $\mathcal{D}((T - S)') = \mathcal{D}(T') = \mathcal{D}(T' - S')$. For $y' \in \mathcal{D}((T - S)') = \mathcal{D}(T' - S')$ it follows that

$$(T-S)'y' = \overline{y'(T-S)} = \overline{y'T-y'S}, (T'-S')y' = T'y'-S'y' = \overline{y'T}-y'S.$$

Since the functionals $\overline{y'T - y'S}$ and $\overline{y'T} - y'S$ coincide on $\mathcal{D}(T)$, they coincide on X. Therefore, (T - S)' = T' - S'.

An operator $T \in \mathcal{C}(X)$ is bounded below if there exists c > 0 such that

$$c||x|| \le ||Tx||$$
 for every $x \in \mathcal{D}(T)$.

Recall that $T \in \mathcal{C}(X)$ is bounded below if and only if T is injective with closed range [15, Theorem 5.1, p. 70].

Let consider following subsets of $\mathcal{C}(X)$:

$$\begin{split} \Phi_{+}(X) &= \{T \in \mathcal{C}(X) : \alpha(T) < \infty \text{ and } \mathcal{R}(T) \text{ is closed} \}, \\ \Phi_{-}(X) &= \{T \in \mathcal{C}(X) : \beta(T) < \infty \}, \\ \Phi_{\pm}(X) &= \Phi_{+}(X) \cup \Phi_{-}(X), \\ \Phi(X) &= \Phi_{+}(X) \cap \Phi_{-}(X), \\ \mathcal{B}_{+}(X) &= \{T \in \mathcal{C}(X) : T \in \Phi_{+}(X) \text{ and } \operatorname{asc}(T) < \infty \}, \\ \mathcal{B}_{-}(X) &= \{T \in \mathcal{C}(X) : T \in \Phi_{-}(X) \text{ and } \operatorname{dsc}(T) < \infty \}, \\ \mathcal{B}(X) &= \mathcal{B}_{+}(X) \cap \mathcal{B}_{-}(X). \end{split}$$

The classes $\Phi_+(X)$, $\Phi_-(X)$, $\Phi_{\pm}(X)$, $\Phi(X)$, $\mathcal{B}_+(X)$, $\mathcal{B}_-(X)$ and $\mathcal{B}(X)$, respectively, consist of all upper semi-Fredholm, lower semi-Fredholm, semi-Fredholm, semi-Fredholm, predholm, upper semi-Browder, lower semi-Browder and Browder operators. For upper and lower semi-Fredholm operators the index is defined by $i(A) = \alpha(A) - \beta(A)$. If $A \in \Phi_+(X) \setminus \Phi_-(X)$, then $i(A) = -\infty$, and if $A \in \Phi_-(X) \setminus \Phi_+(X)$, then $i(A) = +\infty$. Corresponding spectra of $T \in \mathcal{C}(X)$ are defined as:

- $\sigma_a(T) = \{\lambda \in \mathbb{C} : T \lambda \text{ is not bounded below}\}\$ -the approximate point spectrum,
- $\sigma_d(T) = \{\lambda \in \mathbb{C} : T \lambda \text{ is not surjective}\}\$ -the defect spectrum,

 $\sigma_{\Phi_+}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin \Phi_+(X)\}$ -the upper semi-Fredholm spectrum,

 $\sigma_{\Phi_{-}}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin \Phi_{-}(X)\}\text{-the lower semi-Fredholm spectrum,}$

 $\sigma_{\mathcal{B}_+}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin \mathcal{B}_+(X)\}\text{-the upper semi-Browder spectrum},\$

 $\sigma_{\mathcal{B}_{-}}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin \mathcal{B}_{-}(X)\}$ -the lower semi-Browder spectrum.

For $T \in \mathcal{C}(X)$, set $\rho(T)$ for the resolvent set of T and $\rho_{\Phi}(T)$ for the set of all $\lambda \in \mathbb{C}$ such that $T - \lambda \in \Phi(X)$.

In general, let us consider a linear operator A such that its domain $\mathcal{D}(A)$ is contained in a linear space X, and its range $\mathcal{R}(A)$ is contained in a linear space Y, and $\mathcal{D}(A)$ need not be the whole space X. For the convenience,

we express this by saying that A is a linear operator $A: X \to Y$. If X_0, Y_0 are linear subspaces of X, Y respectively, we can define a linear operator $A_0: X_0 \to Y_0$ by setting $A_0 x = A x$ for every $x \in X_0$ such that $x \in \mathcal{D}(A)$ and $A x \in Y_0$. We shall say that A_0 is induced by A in the pair X_0, Y_0 .

A linear operator $T, T : \mathcal{D}(T) \to X, \mathcal{D}(T) \subset X$, is semi regular if $\mathcal{R}(T)$ is closed

$$\mathcal{N}(T) \subset \mathcal{R}(T^m)$$
 for each $m \in \mathbb{N}$. (1.1)

We remark that condition (1.1) is equivalent to each of the following conditions:

$$\mathcal{N}(T^n) \subset \mathcal{R}(T) \text{ for each } n \in \mathbb{N};$$
 (1.2)

$$\mathcal{N}(T^n) \subset \mathcal{R}(T^m)$$
 for each $n \in \mathbb{N}$ and each $m \in \mathbb{N}$. (1.3)

We shall use the Kato decomposition theorem (see [3, Proposition 2.3], [11, Theorem 4]):

Theorem 1.1. Let X be a Banach space and $T \in \Phi_{\pm}(X)$. Then there exists $d \in \mathbb{N}$ such that T has a Kato decomposition of degree d, i.e. there exists a pair (M, N) of two closed subspaces of X such that:

(i)
$$X = M \oplus N$$
,

(ii) $T = T_M \oplus T_N$,

(iii) $T(M \cap \mathcal{D}(T)) \subset M$, $T_M : M \cap \mathcal{D}(T) \to M$ is a closed and semi regular operator,

(iv) $N \subset \mathcal{D}(T)$, dim $N < \infty$, $T(N) \subset N$ and $T_N : N \to N$ is a bounded and nilpotent operator of degree d.

The necessary and sufficient conditions for a bounded operator to be upper (lower) semi-Browder are well-known (see [2, Theorems 2.62, 2.63], [17, Theorems 3, 4]), as well characterizations of upper (lower) semi-Browder spectrum of a bounded operator [14], [13, Corollary 19.20, Theorem 19.21], [1, Corollaries 3.45, 3.47], [2, Theorems 4.4, 4.5]. The purpose of this paper is to extend that results to a larger class, that is, the class of closed operators. Precisely we generalize Theorems 3 and 4 from [17] to the case of closed operators. The present paper is also motivated by a paper of T. Alvarez, F. Fakhfakh and M. Mnif, [3], in which the authors, continuing investigation started in [4, 5], gave one characterization of closed upper (lower) semi-Browder operators (Theorems 3.2, 3.3), as well a characterization of upper (lower) semi-Browder spectrum (Theorems 4.1, 4.2). In our paper we extend Theorems 3.2, 3.3, 4.1, 4.2, 4.3 and 4.4 from [3] to more general settings, and also give another equivalent characterizations of closed upper and lower semi-Browder operators, as well characterizations of corresponding spectra. In this paper we use the definition of commutativity of linear operators in the same way as Goldman and Kračkovskii did in [8].

Definition 1.1. Let $T : \mathcal{D}(T) \to X$, $\mathcal{D}(T) \subset X$, be a linear operator and $S \in \mathcal{L}(X)$. We say that S commutes with T if

- (i) $Sx \in \mathcal{D}(T)$ for every $x \in \mathcal{D}(T)$,
- (ii) STx = TSx for every $x \in \mathcal{D}(T)$.

Notice that there is a slightly more general definition of commutativity by Kaashoek and Lay in [10]:

Definition 1.2. Let X be a Banach space, $T : \mathcal{D}(T) \to X$, $\mathcal{D}(T) \subset X$ and $K : \mathcal{D}(K) \to X$, $\mathcal{D}(K) \subset X$, two linear operators. We say that K commutes with T if

- (i) $\mathcal{D}(T) \subset \mathcal{D}(K)$,
- (ii) $Kx \in \mathcal{D}(T)$ whenever $x \in \mathcal{D}(T)$,
- (iii) KTx = TKx for $x \in \mathcal{D}(T^2)$.

T. Alvarez et al., using the Kato decomposition, proved [3, Theorem 3.2] that if T is upper semi-Browder then there exists $A \in \mathcal{C}(X)$ and $B \in \mathcal{F}(X)$ such that T = A + B, $\mathcal{D}(A) = \mathcal{D}(T)$, A is bounded below and B commutes with T in the sense of Definition 1.2; and the converse assertion holds if

$$T(\mathcal{D}(T)) \subset \mathcal{D}(T).$$
 (1.4)

We see that Definition 1.2 is more general then Definition 1.1. However, notice that the condition (1.4) implies $\mathcal{D}(T) = \mathcal{D}(T^2) = \mathcal{D}(T^3) = \cdots$, and therefore,

Definition
$$1.2 + (1.4)$$
 is stronger then Definition 1.1. (1.5)

In this paper we use Definition 1.1 and also the Kato decomposition to get the previously mentioned result in a different way. To be precise, because of (1.5), our result (the equivalence $(2.2.1) \iff (2.2.6)$ in Theorem 2.2): $T \in \mathcal{B}_+(X)$ if and only if there exist $A \in \mathcal{C}(X)$ and $B \in \mathcal{F}(X)$ such that T = A + B, A is a bounded below operator with $\mathcal{D}(A) = \mathcal{D}(T)$, $B \in \mathcal{F}(X)$ and B commutes with T in the sense of Definition 1.1, is an extension of Theorem 3.2 in [3]. T. Alvarez et al. also proved [3, Theorem 3.3] that if $T \in \mathcal{C}(X)$, $\overline{\mathcal{D}(T)} = X, T$ is lower semi-Browder and $\rho_{\Phi}(T) \neq \emptyset$, then there exist $A \in \mathcal{C}(X)$ and $B \in \mathcal{F}(X)$ such that $T = A + B, \mathcal{D}(A) = \mathcal{D}(T), A$ is surjective and B commutes with T in the sense of Definition 1.2; and the converse assertion holds if $\rho(T) \neq \emptyset$ and $T'(\mathcal{D}(T')) \subset \mathcal{D}(T')$.

Now it is important to mention the following result [5, Lemma 3.3]:

Lemma 1.3. Let $T \in C(X)$, $\overline{D(T)} = X$, $K \in \mathcal{BL}(X)$ and K commutes with T in the sense of Definition 1.2. If $\rho(T) \neq \emptyset$ or $\rho(T + K) \neq \emptyset$, then KTx = TKx for all $x \in D(T)$, that is, K commutes with T in the sense of Definition 1.1.

We prove (the equivalence $(3.1.1) \iff (3.1.6)$ in Theorem 3.1): If $T \in \mathcal{C}(X)$, $\overline{\mathcal{D}(T)} = X$ and $\rho_{\Phi}(T) \neq \emptyset$, then $T \in \mathcal{B}_{-}(X)$ if and only if there exist $A \in \mathcal{C}(X)$ and $B \in \mathcal{F}(X)$ such that T = A + B, A is a surjective operator with $\mathcal{D}(A) = \mathcal{D}(T)$ and B commutes with T in the sense of Definition 1.1. According to Lemma 1.3 we remark that this assertion improves Theorem 3.3 in [3].

In the following section we investigate properties of upper semi-Browder operators. Lower semi-Browder operators are considered in the third section.

2 Upper semi-Browder operators and upper semi-Browder spectrum

First we prove the following result useful for the proof of the main result of this section, which is otherwise more elementary for bounded operators.

Theorem 2.1. Let $T : \mathcal{D}(T) \to X$, $\mathcal{D}(T) \subset X$, be a linear operator and $S \in \mathcal{L}(X)$ such that S is bijective, $S(\mathcal{D}(T)) = \mathcal{D}(T)$, and S commutes with T. Then

$$\mathcal{N}(T-S) \subset \mathcal{R}^{\infty}(T).$$

Proof. Let $x \in \mathcal{D}(T)$. Then there exists $u \in \mathcal{D}(T)$ such that Su = x and

$$TSu = STu \Longrightarrow Tx = STS^{-1}x \Longrightarrow S^{-1}Tx = TS^{-1}x.$$

Therefore, S^{-1} commutes with T.

Let $x \in \mathcal{N}(T-S)$. Then $Tx = Sx \in \mathcal{D}(T)$ and $T^2x = T(Tx) = T(Sx) = S(Tx) = S^2x \in \mathcal{D}(T)$. By induction we conclude

$$T^n x = S^n x \in \mathcal{D}(T)$$
 for every $n \in \mathbb{N}_0$. (2.6)

Observe that from Tx = Sx it follows that

$$TS^{-1}x = S^{-1}Tx = x = SS^{-1}x$$

and therefore, $S^{-1}x \in \mathcal{N}(T-S)$. Consequently,

$$(S^{-1})^m x \in \mathcal{N}(T-S) \text{ for every } m \in \mathbb{N}_0.$$
(2.7)

As above, from (2.7) we conclude

$$T^{n}(S^{-1})^{m}x = S^{n}(S^{-1})^{m}x \in \mathcal{D}(T) \text{ for every } n, \ m \in \mathbb{N}_{0}.$$

$$(2.8)$$

Fix $n_0 \in \mathbb{N}$. From $T^{n_0}x = S^{n_0}x = SS^{n_0-1}x$ it follows that $S^{-1}T^{n_0}x = S^{n_0-1}x$, and now from (2.6) and the fact that S^{-1} commutes with T we get $T^{n_0}S^{-1}x = S^{n_0-1}x$. Continuing this method and using (2.8) we obtain $T^{n_0}(S^{-1})^{n_0}x = x$. Hence $x \in \mathcal{R}(T^{n_0})$ and since n_0 was arbitrary, we get $x \in \mathcal{R}^{\infty}(T)$.

The following result was proved for $T \in \mathcal{L}(X)$ ([9, Lemma 38.1]), but using the same technic we can express it for a linear operator $T : \mathcal{D}(T) \to X$, $\mathcal{D}(T) \subset X$.

Lemma 2.1. Let $T : \mathcal{D}(T) \to X$, $\mathcal{D}(T) \subset X$, be a linear operator with $\alpha(T) < \infty$. Then $T(\mathcal{D}(T) \cap \mathcal{R}^{\infty}(T)) = \mathcal{R}^{\infty}(T)$.

Let $T: \mathcal{D}(T) \to X, \ \mathcal{D}(T) \subset X$ be a linear operator and $\epsilon > 0$. We write

 $\operatorname{comm}_{\epsilon}^{-1}(T) = \{ S \in \mathcal{BL}(X)^{-1} : S \text{ commutes with } T, \|S\| < \epsilon \},\$

where $\mathcal{BL}(X)^{-1}$ is the group of invertible elements in $\mathcal{BL}(X)$.

For $T \in \mathcal{C}(X)$ we say that T is almost bounded below (surjective) if there exists an $\epsilon > 0$ such that $T - \lambda I$ is a bounded below (surjective) operator for $\lambda \in \mathbb{C}, 0 < |\lambda| < \epsilon$.

Let $P \in \mathcal{BL}(X)$ be a projector which commutes with $T \in \mathcal{C}(X)$. Put $X_0 = \mathcal{R}(P)$ and $X_1 = \mathcal{N}(P)$. It is easy to check that

$$T(X_j \cap \mathcal{D}(T)) \subset X_j \text{ for } j = 0, 1.$$

Now we define operators $T_j: X_j \to X_j, \ j = 0, 1$ as

$$T_j x = T x, \quad x \in X_j \cap \mathcal{D}(T), \quad j = 0, 1.$$

The following theorem is our first main result where we give several necessary and sufficient conditions for a closed operator to be upper semi-Browder.

Theorem 2.2. If X is a Banach space and $T \in C(X)$, then the following conditions are equivalent:

(2.2.1) T is upper semi-Browder;

(2.2.2) T is upper semi-Fredholm, and there exists $\epsilon > 0$ such that for every $S \in \operatorname{comm}_{\epsilon}^{-1}(T)$ with $S(\mathcal{D}(T)) = \mathcal{D}(T)$, it follows that T - S is bounded below;

(2.2.3) T is upper semi-Fredholm and almost bounded below;

(2.2.4) There exists a projector $P \in \mathcal{F}(X)$ which commutes with T such that $R(P) \subset \mathcal{D}(T)$, T_0 is nilpotent bounded operator, and T_1 is bounded below;

(2.2.5) There exists a projector $P \in \mathcal{F}(X)$ which commutes with T such that $R(P) \subset \mathcal{D}(T)$, TP is nilpotent bounded operator, and T + P is bounded below;

(2.2.6) There exists $B \in \mathcal{F}(X)$ which commutes with T such that T - B is bounded below;

(2.2.7) There exists $B \in \mathcal{K}(X)$ which commutes with T such that T - B is bounded below.

Proof. (2.2.1) \Longrightarrow (2.2.2): Suppose that $T \in \mathcal{C}(X)$ is upper semi-Browder. Then $T \in \Phi_+(X)$, so by [11, Lemma 543], $\mathcal{R}(T^n)$ is closed for every $n \in \mathbb{N}$. According to [11, Theorem 1] there exists some $\epsilon_1 > 0$ such that if $B \in \mathcal{BL}(X)$ and $||B|| < \epsilon_1$, then $T - B \in \Phi_+(X)$. Let $X_1 = \mathcal{R}^\infty(T)$. X_1 is a Banach space and $T(\mathcal{D}(T) \cap X_1) = X_1$ by Lemma 2.1. The operator $T_1: X_1 \to X_1$ induced by T is closed with $\alpha(T_1) < \infty$ and $\beta(T_1) = 0$. From $T_1 \in \Phi(X_1)$, again by [11, Theorem 1], it follows that there exists some $\epsilon_2 > 0$, such that for $B \in \mathcal{BL}(X_1)$, $||B|| < \epsilon_2$ implies $T_1 - B \in \Phi(X_1)$, $\alpha(T_1 - B) \le \alpha(T_1)$, $\beta(T_1 - B) \le \beta(T_1)$, $i(T_1 - B) = i(T_1)$. Set $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, and let $S \in \operatorname{comm}_{\epsilon}^{-1}(T)$ such that $S(\mathcal{D}(T)) = \mathcal{D}(T)$. Since S commutes with T, it follows that $S(\mathcal{R}(T^n)) \subset \mathcal{R}(T^n)$ for every $n \in \mathbb{N}$, and therefore, $S(X_1) = S(\bigcap_{n=1}^{\infty} \mathcal{R}(T^n)) = \bigcap_{n=1}^{\infty} S(\mathcal{R}(T^n)) \subset \bigcap_{n=1}^{\infty} \mathcal{R}(T^n) = X_1$. Let $S_1: X_1 \to X_1$ be the operator induced by operator S. Operator S_1 is bounded, $||S_1|| < \epsilon$ and $\beta(T_1) = 0$, so $\beta(T_1 - S_1) = 0$. From Theorem 2.1 we have

$$\alpha(T-S) = \alpha(T_1 - S_1) = i(T_1 - S_1) = i(T_1) = \alpha(T_1).$$

From [3, Lemma 2.1(iii)] it follows that $\mathcal{N}(T) \cap \mathcal{R}^{\infty}(T) = \{0\}$ and hence, $\alpha(T_1) = 0$. Therefore, $\alpha(T - S) = 0$. Since T - S has closed range, we get that T - S is bounded below.

 $(2.2.2) \Longrightarrow (2.2.3)$: Obvious.

 $(2.2.3) \Longrightarrow (2.2.4)$: Suppose that T is upper semi-Fredholm and there exists $\epsilon > 0$ such that $T - \lambda I$ is injective with closed range for $0 < |\lambda| < \epsilon$. From Theorem 1.1 it follows that there exist two closed subspaces M and N such that $X = M \oplus N$, $T(M \cap \mathcal{D}(T)) \subset M$, $T_M : M \cap \mathcal{D}(T) \to N$ is a closed and semi regular operator; $N \subset \mathcal{D}(T)$, dim $N < \infty$, $T(N) \subset N$ and $T_N : N \to N$ is a bounded and nilpotent operator. Let P be a projector such that $\mathcal{R}(P) = N$ and $\mathcal{N}(P) = M$. Clearly, $P \in \mathcal{F}(X)$, $\mathcal{R}(P) \subset \mathcal{D}(T)$ and $P(\mathcal{D}(T)) \subset \mathcal{D}(T)$. For $x \in \mathcal{D}(T)$ there exist $u \in \mathcal{N}(P) \cap \mathcal{D}(T)$ and $v \in \mathcal{R}(P)$ such that x = u + v. Since TPx = Tv and PTx = P(Tu + Tv) = Tv, we conclude that P commutes with T. For $T_0 = T_N$ and $T_1 = T_M$, evidently T_0 is a nilpotent bounded operator and $T_1 - \lambda I$ is injective for $0 < |\lambda| < \epsilon$. Since T_1 is semi regular, from [11, Theorem 3, p. 297], we conclude that T_1 is injective. Thus, T_1 is bounded below.

 $(2.2.4) \implies (2.2.5)$: Suppose that there exists a projector $P \in \mathcal{F}(X)$ which commutes with T such that $R(P) \subset \mathcal{D}(T)$, T_0 is a nilpotent bounded operator of degree p, and T_1 is bounded below. From $TP = T_0P$ it follows that TP is bounded. For $x \in X$ there exist $u \in \mathcal{N}(P)$ and $v \in \mathcal{R}(P)$ such that x = u + v. Then

$$(TP)^{p}x = \underbrace{(TP)(TP)\dots(TP)(TP)}_{p}x = \underbrace{(TP)(TP)\dots(TP)}_{p-1}Tv$$
$$= \underbrace{(TP)(TP)\dots(TP)}_{p-2}TTv = \dots = T^{p}v = T^{p}_{0}v = 0,$$

and so TP is nilpotent. From $T \in \mathcal{C}(X)$ and $P \in \mathcal{BL}(X)$ it follows that $T + P \in \mathcal{C}(X)$. Since T_0 is a nilpotent bounded operator, we get that $T_0 + I$ is invertible, and hence $\mathcal{N}(T + P) = \mathcal{N}(T_1) \oplus \mathcal{N}(T_0 + I) = \{0\}$ and $\mathcal{R}(T + P) = \mathcal{R}(T_1) \oplus \mathcal{R}(T_0 + I) = \mathcal{R}(T_1) \oplus \mathcal{R}(P)$. Since $\mathcal{R}(T_1)$ is closed and dim $\mathcal{R}(P) < \infty$ we get that $\mathcal{R}(T + P)$ is closed. Therefore, T + P is bounded below.

 $(2.2.5) \Longrightarrow (2.2.6)$: Let there exists a projector $P \in \mathcal{F}(X)$ which commutes with T such that $R(P) \subset \mathcal{D}(T)$, TP is a nilpotent bounded operator, and T + P is bounded below. For B = -P we have that B commutes with T, and T - B is bounded below.

 $(2.2.6) \Longrightarrow (2.2.7)$ Obvious.

 $(2.2.7) \Longrightarrow (2.2.1)$ Let there exists $B \in \mathcal{K}(X)$ which commutes with T such that T - B is bounded below. Put A = T - B. Then asc $A < \infty$ and $A + \lambda B \in \Phi_+(X)$ for $\lambda \in [0, 1]$ according to [12, Chapter 4, Theorem 5.26]. Since B commutes with A, from [8, Theorem 3] it follows that the function $\lambda \to \overline{\mathcal{N}^{\infty}(A + \lambda B)} \cap \mathcal{R}^{\infty}(A + \lambda B)$ is locally constant on the set [0, 1] and

therefore this function is constant on [0,1]. As $\operatorname{asc}(A) < \infty$, from Lemma 1.2 (i) it follows that $\overline{\mathcal{N}^{\infty}(A)} \cap \mathcal{R}^{\infty}(A) = \mathcal{N}^{\infty}(A) \cap \mathcal{R}^{\infty}(A) = \{0\}$ and hence, $\overline{\mathcal{N}^{\infty}(A+B)} \cap \mathcal{R}^{\infty}(A+B) = \{0\}$. It implies $\mathcal{N}^{\infty}(A+B) \cap \mathcal{R}^{\infty}(A+B) = \{0\}$, and by Lemma 1.2 (ii), we get $\operatorname{asc}(A+B) < \infty$. Therefore, $T = A + B \in \mathcal{B}_+(X)$.

From the equivalence $(2.2.1) \iff (2.2.6)$ it follows that $T \in \mathcal{B}_+(X)$ if and only if there exist $A \in \mathcal{C}(X)$ and $B \in \mathcal{F}(X)$ such that T = A + B, A is a bounded below operator with $\mathcal{D}(A) = \mathcal{D}(T)$, $B \in \mathcal{F}(X)$ and B commutes with T. We remark that this result is an improvement of Theorem 3.2 in [3].

Further, T. Alvarez et al. proved (Theorem 4.3 in [3]) that if $T \in \mathcal{B}_+(X)$ and $T(\mathcal{D}(T)) \subset \mathcal{D}(T)$, then there exists $\eta > 0$ such that $T - \lambda \in \mathcal{B}_+(X)$ for $0 < |\lambda| < \eta$. Notice that the equivalence (2.2.1) \iff (2.2.3) is an extension of this result.

For $K \subset \mathbb{C}$, acc K denotes the set of all accumulation points of K.

Corollary 2.1. Let $T \in \mathcal{C}(X)$. Then

$$\sigma_{\mathcal{B}_+}(T) = \sigma_{\Phi_+}(T) \cup \operatorname{acc} \sigma_a(T).$$
(2.9)

Proof. Follows from the equivalence $(2.2.1) \iff (2.2.3)$.

Corollary 2.2. Let $T \in \mathcal{C}(X)$. Then $\sigma_{\mathcal{B}_+}(T)$ is a closed set.

Proof. From [11, Theorem 1] it follows that $\sigma_{\Phi_+}(T)$ is closed. Now from (2.9) we conclude that $\sigma_{\mathcal{B}_+}(T)$ is a closed set as the union of two closed sets.

For $T \in \mathcal{C}(X)$ set

$$\mathcal{F}_T(X) = \{F \in \mathcal{F}(X) : F \text{ commutes with } T\}$$

and

$$\mathcal{K}_T(X) = \{ K \in \mathcal{K}(X) : K \text{ commutes with } T \}.$$

The following corollary improves Theorem 4.1 in [3].

Corollary 2.3. Let $T \in \mathcal{C}(X)$. Then

$$\sigma_{\mathcal{B}_+}(T) = \bigcap_{F \in \mathcal{F}_T(X)} \sigma_a(T+F) = \bigcap_{K \in \mathcal{K}_T(X)} \sigma_a(T+K).$$

Proof. Suppose that $\lambda \notin \bigcap_{K \in \mathcal{K}_T(X)} \sigma_a(T+K)$. Then there exists $K \in \mathcal{K}_T(X)$ such that $\lambda \notin \sigma_a(T+K)$, that is $T+K-\lambda$ is bounded below. Since -K commutes with $T-\lambda$, from Theorem 2.2 (precisely, from the equivalence (2.2.1) \iff (2.2.7)) it follows that $T-\lambda \in \mathcal{B}_+(X)$, i.e. $\lambda \notin \sigma_{\mathcal{B}_+}(T)$. Therefore, $\sigma_{\mathcal{B}_+}(T) \subset \bigcap_{K \in \mathcal{K}_T(X)} \sigma_a(T+K) \subset \bigcap_{F \in \mathcal{F}_T(X)} \sigma_a(T+F)$.

To prove the converse, suppose that $\lambda \notin \sigma_{\mathcal{B}_+}(T)$. Then $T - \lambda \in \mathcal{B}_+(X)$, and from Theorem 2.2 (from the equivalence $(2.2.1) \iff (2.2.6)$) it follows that there exists $F \in \mathcal{F}(X)$ which commutes with $T - \lambda$ such that $T - \lambda - F$ is bounded below. Then $F_1 = -F \in \mathcal{F}(X)$ commutes with T and hence $F_1 \in \mathcal{F}_T(X)$. Moreover, $T + F_1 - \lambda$ is bounded below and so $\lambda \notin \sigma_a(T + F_1)$. Thus, we have just proved the inclusion $\bigcap_{F \in \mathcal{F}_T(X)} \sigma_a(T + F) \subset \sigma_{\mathcal{B}_+}(T)$. \Box

3 Lower semi-Browder operators and lower semi-Browder spectrum

We first prove the following simply lemma.

Lemma 3.1. Let $T \in C(X)$ be a densely defined operator, and let $S \in \mathcal{BL}(X)$. If S commutes with T, then S' commutes with T'.

Proof. For $y' \in \mathcal{D}(T')$ it follows that

 $||S'y'(Tx)|| = ||(y'S)(Tx)|| = ||(y'T)(Sx)|| \le ||y'T|| ||S|| ||x|| \quad \text{for every} \quad x \in \mathcal{D}(T),$

and hence $S'y' \in \mathcal{D}(T')$. Therefore, $S'(\mathcal{D}(T')) \subset \mathcal{D}(T')$. It remains to prove the commutativity relation. For $y \in \mathcal{D}(T')$ we find

$$(T'S')y' = \overline{(S'y')T},$$
$$(S'T')y' = \overline{y'T}S.$$

Since for $x \in \mathcal{D}(T)$ it holds

$$(S'y')Tx = (y'S)(Tx) = (y'T)(Sx),$$

it follows that $\overline{(S'y')T} = \overline{y'TS}$, and so (T'S')y' = (S'T')y'.

The following theorem is our second main result where we characterize closed lower semi-Browder operators.

Theorem 3.1. If $T \in C(X)$, $\overline{D(T)} = X$ and $\rho_{\Phi}(T) \neq \emptyset$, then the following conditions are equivalent:

(3.1.1) T is lower semi-Browder;

(3.1.2) *T* is lower semi-Fredholm, and there exists $\epsilon > 0$ such that for every $S \in \operatorname{comm}_{\epsilon}^{-1}(T)$ with $S(\mathcal{D}(T)) = \mathcal{D}(T)$, it follows that T - S is onto;

(3.1.3) T is lower semi-Fredholm and almost surjective;

(3.1.4) There exists a projector $P \in F(X)$ which commutes with T such that $R(P) \subset \mathcal{D}(T), T_0$ is a nilpotent bounded operator and T_1 is surjective;

(3.1.5) There exists a projector $P \in F(X)$ which commutes with T such that $R(P) \subset \mathcal{D}(T)$, TP is a nilpotent bounded operator and T + P is surjective; (3.1.6) There exists $B \in F(X)$ which commutes with T such that T - B is surjective;

(3.1.7) There exists $B \in K(X)$ which commutes with T such that T - B is surjective.

Proof. (3.1.1) \implies (3.1.2): Let $T \in \mathcal{B}_{-}(X)$. Then T' is a closed operator and from [3, Proposition 3.1 (iii)] it follows that $\operatorname{asc}(T') < \infty$. Further, since $\mathcal{R}(T)$ is closed, then $\mathcal{R}(T')$ is also closed by [7, Theorem IV.1.2] and from [7, Theorem IV.2.3, i.] it follows that $\alpha(T') = \beta(T) < \infty$. Therefore, $T' \in \mathcal{B}_{+}(X')$.

Let $S \in \mathcal{BL}(X)$ be an arbitrary bijection with $S(\mathcal{D}(T)) = \mathcal{D}(T)$ and let S commutes with T. Then $S' \in \mathcal{BL}(X')$, ||S'|| = ||S||, S' is bijective, and by Lemma 3.1, $S'(\mathcal{D}(T')) \subset \mathcal{D}(T')$ and S' commutes with T'.

We shall show that $S'(\mathcal{D}(T')) = \mathcal{D}(T')$. Suppose that $y' \in \mathcal{D}(T')$. Then there exists the unique functional $z' \in X'$ such that y' = S'z' = z'S. It follows that $z' = y'S^{-1}$ and since S^{-1} commutes with T by Theorem 2.1, for $x \in \mathcal{D}(T)$ the following holds

$$\begin{aligned} \|(z'T)x\| &= \|y'\left(S^{-1}(Tx)\right)\| = \|y'\left(T(S^{-1}x)\right)\| = \\ &= \|(y'T)(S^{-1}x)\| \le \|y'T\|\|S^{-1}\|\|x\|, \end{aligned}$$

which proves that $z' \in \mathcal{D}(T')$. Therefore, $\mathcal{D}(T') \subset S'(\mathcal{D}(T'))$, and so $S'(\mathcal{D}(T')) = \mathcal{D}(T')$.

According to Theorem 2.2 there exists some $\epsilon > 0$ such that T' - A is bounded below for every operator $A \in \mathcal{BL}(X')$ such that $A \in \operatorname{comm}_{\epsilon}^{-1}(T')$ and $A(\mathcal{D}(T')) = \mathcal{D}(T')$. Using a previous analysis for $S \in \operatorname{comm}_{\epsilon}^{-1}(T)$ with $S(\mathcal{D}(T)) = \mathcal{D}(T)$, it follows that $S' \in \operatorname{comm}_{\epsilon}^{-1}(T')$ and $S'(\mathcal{D}(T')) = \mathcal{D}(T')$, and therefore, T' - S' is bounded below. According to Lemma 1.2 and [7, Theorem IV.1.2] we get that $\mathcal{R}(T-S)$ is closed, and also by [7, Theorem IV. 2.3, i.] we conclude that

$$\beta(T - S) = \alpha((T - S)') = \alpha(T' - S') = 0.$$

Therefore, T - S is onto.

 $(3.1.2) \Longrightarrow (3.1.3)$: Obvious.

 $(3.1.3) \Longrightarrow (3.1.4)$: Suppose that $T \in \Phi_{-}(X)$ and T is almost surjective. From Theorem 1.1 it follows that there exist two closed subspaces M and N such that $X = M \oplus N$, $T(M \cap \mathcal{D}(T)) \subset M$, $T_M : M \cap \mathcal{D}(T) \to M$ is a closed and semi regular operator; $N \subset \mathcal{D}(T)$, dim $N < \infty$, $T(N) \subset N$ and $T_N : N \to N$ is a bounded and nilpotent operator of degree p. Let P be the projector on N parallel to M. Then $P \in \mathcal{F}(X)$, $\mathcal{R}(P) \subset \mathcal{D}(T)$, $P(\mathcal{D}(T)) \subset \mathcal{D}(T)$ and $T_0 = T_N$ is a bounded and nilpotent operator. In the same way as in the proof of the implication (2.2.3) \Longrightarrow (2.2.4) we get that P commutes with T. Since there exists $\epsilon > 0$ such that $T - \lambda I$ is surjective for $0 < |\lambda| < \epsilon$, it follows that $T_M - \lambda I$ is surjective for $0 < |\lambda| < \epsilon$. In the same way as T_M is semi regular, from [11, Theorem 3, p. 297], we conclude that $T_1 = T_M$ is surjective.

 $(3.1.4) \implies (3.1.5)$: Suppose that there exists a projector $P \in \mathcal{F}(X)$ which commutes with T such that $R(P) \subset \mathcal{D}(T)$, T_0 is nilpotent bounded operator of degree p and T_1 is surjective. As in the proof of the implication $(2.2.4) \implies (2.2.5)$ we get that TP is a nilpotent bounded operator. From $\mathcal{R}(T+P) = \mathcal{R}(T_1) \oplus \mathcal{R}(T_0+I) = \mathcal{N}(P) \oplus \mathcal{R}(P) = X$, we see that T+P is a surjection.

 $(3.1.5) \Longrightarrow (3.1.6)$ Put B = -P.

 $(3.1.6) \Longrightarrow (3.1.7)$ Obvious.

 $(3.1.7) \implies (3.1.1)$ Let there exists $B \in \mathcal{K}(X)$ which commutes with T such that T - B is surjective. Put A = T - B. The operator B' is compact and commutes with T'. The operator T - B is surjective, so it has closed range. From [7, Theorem IV.1.2] and Lemma 1.2 we see that $\mathcal{R}(T' - B')$ is also closed and by [7, Theorem IV.2.3], we find that $\alpha(T' - B') = \beta(T - B) = 0$. It follows that the operator T' - B' is bounded below and from Theorem 2.2 it follows that $T' \in \mathcal{B}_+(X')$. Using again [7, Theorem IV.1.2] and [7, Theorem IV.2.3, i.] we get that $\mathcal{R}(T)$ is closed and $\beta(T) = \alpha(T') < \infty$, so $T \in \Phi_-(X)$. From [3, Proposition 3.1] we conclude that dsc $(T) = \operatorname{asc}(T') < \infty$ and thus, $T \in \mathcal{B}_-(X)$.

If $T \in \mathcal{C}(X)$, such that $\mathcal{D}(T) = X$ and $\rho_{\Phi}(T) \neq \emptyset$, from the equivalence $(3.1.1) \iff (3.1.6)$ it follows that $T \in \mathcal{B}_{-}(X)$ if and only if there exist $A \in \mathcal{C}(X)$ and $B \in \mathcal{F}(X)$ such that T = A + B, A is a surjective operator

with $\mathcal{D}(A) = \mathcal{D}(T), B \in \mathcal{F}(X)$ and B commutes with T. Notice that this result improves Theorem 3.3 in [3].

T. Alvarez et al. proved [3, Theorem 4.4] that if $T \in \mathcal{B}_{-}(X)$, $\mathcal{D}(T) = X$, $T'(\mathcal{D}(T')) \subset \mathcal{D}(T')$ and $\rho(T) \neq \emptyset$, then there exists $\eta > 0$ such that $T - \lambda \in \mathcal{B}_{-}(X)$ for $0 < |\lambda| < \eta$. Furthermore, F. Fakhfakh and M. Mnif in [6, Proposition 2.1 (ii)] got the same result without the assumption $T'(\mathcal{D}(T')) \subset \mathcal{D}(T')$. We remark that this result is extended by the equivalence (3.1.1) \iff (3.1.3). Also from this equivalence immediately follows the next characterization of the lower semi-Browder spectrum.

Corollary 3.1. Let $T \in \mathcal{C}(X)$, $\overline{\mathcal{D}(T)} = X$ and $\rho_{\Phi}(T) \neq \emptyset$. Then

 $\sigma_{\mathcal{B}_{-}}(T) = \sigma_{\Phi_{-}}(T) \cup \operatorname{acc} \sigma_{d}(T).$

The following corollary extend Corollary 2.1 (ii) in [6].

Corollary 3.2. Let $T \in \mathcal{C}(X)$, $\overline{\mathcal{D}(T)} = X$ and $\rho_{\Phi}(T) \neq \emptyset$. Then $\sigma_{\mathcal{B}_{-}}(T)$ is a closed set.

Proof. Follows from Corollary 3.1, since $\sigma_{\Phi_-}(T)$ and $\operatorname{acc} \sigma_d(T)$ are closed sets.

As a consequence of the equivalences $(3.1.1) \iff (3.1.6) \iff (3.1.7)$ we get one more characterization of the lower semi-Browder spectrum.

Corollary 3.3. Let $T \in \mathcal{C}(X)$, $\overline{\mathcal{D}(T)} = X$ and $\rho_{\Phi}(T) \neq \emptyset$. Then

$$\sigma_{\mathcal{B}_{-}}(T) = \bigcap_{F \in \mathcal{F}_{T}(X)} \sigma_{d}(T+F) = \bigcap_{K \in \mathcal{K}_{T}(X)} \sigma_{d}(T+K).$$

Proof. Suppose that $\lambda \notin \bigcap_{K \in \mathcal{K}_T(X)} \sigma_d(T+K)$. Then there exists $K \in \mathcal{K}_T(X)$ such that $\lambda \notin \underline{\sigma_d(T+K)}$, that is $T+K-\lambda$ is surjective. Since -K commutes with $T-\lambda$, $\overline{\mathcal{D}(T-\lambda)} = \overline{\mathcal{D}(T)} = X$, $\rho_{\Phi}(T-\lambda) \neq \emptyset$, from Theorem 3.1 (precisely, from the equivalence (3.1.1) \iff (3.1.7)) it follows that $T-\lambda \in \mathcal{B}_-(X)$, i.e. $\lambda \notin \sigma_{\mathcal{B}_-}(T)$. Therefore, $\sigma_{\mathcal{B}_-}(T) \subset \bigcap_{K \in \mathcal{K}_T(X)} \sigma_d(T+K) \subset \bigcap_{K \in \mathcal{K}_T(X)} \sigma_d(T+F)$.

 $\bigcap_{F \in \mathcal{F}_T(X)} \sigma_d(T+F).$

To prove the opposite inclusion, suppose that $\lambda \notin \sigma_{\mathcal{B}_{-}}(T)$. Then $T - \lambda \in \mathcal{B}_{-}(X)$, and since $\overline{\mathcal{D}(T-\lambda)} = X$ and $\rho_{\Phi}(T-\lambda) \neq \emptyset$, from Theorem 3.1 (from the equivalence (3.1.1) \iff (3.1.6)) it follows that there exists $F \in \mathcal{F}(X)$ which commutes with $T - \lambda$ such that $T - \lambda - F$ is surjective. Then $F_1 =$

 $-F \in \mathcal{F}(X) \text{ commutes with } T \text{ and hence } F_1 \in \mathcal{F}_T(X). \text{ Moreover, } T+F_1-\lambda$ is surjective and so, $\lambda \notin \sigma_d(T+F_1)$. Consequently, $\bigcap_{F \in \mathcal{F}_T(X)} \sigma_d(T+F) \subset \sigma_{\mathcal{B}_+}(T).$

Using Lemma 1.3 we can conclude that Corollary 3.3 is an improvement of Theorem 4.2 in [3].

References

- P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer (2004).
- [2] P. Aiena, Semi-Fredholm operators, perturbation theory and localized SVEP, Mérida, Venezuela (2007).
- [3] T. Alvarez, F. Fakhfakh and M. Mnif, Characterization of closed densely defined semi-Browder linear operators, Complex Anal. Oper. Theory, DOI 10.1007/s11785-012-0238-6
- [4] F. Fakhfakh and M. Mnif, Perturbation of semi-Browder operators and stability of Browder's essential defect and approximate point spectrum, J. Math. Anal. Appl. 347(2008), 235-242.
- [5] F. Fakhfakh and M. Mnif, Browder and semi-Browder operators and perturbation function, J. Extracta Mathematicae 24(3)(2009), 219-241.
- [6] F. Fakhfakh and M. Mnif, Browder and semi-Browder operators, Acta Mathematica Scientia **32B**(3)(2012), 942-954.
- [7] S. Goldberg, Unbounded linear operators, McGraw-Hill, New York, 1966.
- [8] M. A. Goldman and S. N. Kračkovskii, Behaviour of the space of zero elements with finite-dimensional salient on the Riesz kernel under perturbations of the operator, Dokl. Akad. Nauk SSSR 221(1975), 532-534 (in Russian); English transl.: Soviet Math. Dokl. 16(1975), 370-373.
- [9] H. Heuser, Functional Analysis, Wiley Interscience, Chichester, 1982.
- [10] M. A. Kaashoek and D. C. Lay, Ascent, descent and commuting perturbations, Trans. Amer. Math. Soc. 169, 35-47 (1972).
- [11] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math., 6(1958), 261-322.
- [12] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1980.
- [13] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhäuser 2007.
- [14] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J., 28(1986), 193-198.

- [15] M. Schechter, *Principles of functional analysis*, Academic Press, New York, 1973.
- [16] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann., 163(1966), 18-49.
- [17] S. Č. Živković-Zlatanović, D. S. Djordjević, R. E. Harte, On left and right Browder operators, J. Korean Math. Soc 48 (5) (2011), 1053-1063.

Snežana Č. Živković-Zlatanović University of Niš Faculty of Sciences and Mathematics P.O. Box 224, 18000 Nis, Serbia *E-mail*: mladvlad@open.telekom.rs

Miloš D. Cvetković University of Niš Faculty of Sciences and Mathematics P.O. Box 224, 18000 Nis, Serbia *E-mail*: milosCvetkovic83@gmail.com

Dragan S. Djordjević University of Niš Faculty of Sciences and Mathematics P.O. Box 224, 18000 Nis, Serbia *E-mail*: dragan@pmf.ni.ac.rs