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b†(a†abb†)†a† in rings with involution are presented. Also, we investi-
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1 Introduction

Let R be an associative ring with the unit 1. In the theory of generalized
inverses, one of fundamental procedures is to find generalized inverses of
products. If a, b ∈ R are invertible, then ab is also invertible, and the inverse
of the product ab satisfied (ab)−1 = b−1a−1. This equality is called the
reverse order law and it cannot trivially be extended to various generalized
inverse of the product ab. The reverse order laws for generalized inverses
have been investigated in the literature since the 1960s [1, 2, 3, 4, 6, 7].

Let a ∈ R. Then a is group invertible if there is a# ∈ R such that

(1) aa#a = a, (2) a#aa# = a#, (5) aa# = a#a;

a# is a group inverse of a and it is uniquely determined by these equations.
The group inverse a# double commutes with a, that is, ax = xa implies
a#x = xa# [1]. Denote by R# the set of all group invertible elements of R.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

∗The authors are supported by the Ministry of Education and Science, Republic of
Serbia, grant no. 174007.
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An element a ∈ R is self-adjoint (or Hermitian) if a∗ = a.
The Moore–Penrose inverse (or MP-inverse) of a ∈ R is the element

a† ∈ R, if the following equations hold [10]:

(1) aa†a = a, (2) a†aa† = a†, (3) (aa†)∗ = aa†, (4) (a†a)∗ = a†a.

There is at most one a† such that above conditions hold. The set of all
Moore–Penrose invertible elements of R will be denoted by R†.

If δ ⊂ {1, 2, 3, 4, 5} and b satisfies the equations (i) for all i ∈ δ, then b
is an δ–inverse of a. The set of all δ–inverse of a is denoted by a{δ}. Notice
that a{1, 2, 5} = {a#} and a{1, 2, 3, 4} = {a†}. If a is invertible, then a#

and a† coincide with the ordinary inverse of a. The set of all invertible
elements of R will be denoted by R−1.

An element a ∈ R is: left *-cancellable if a∗ax = a∗ay implies ax =
ay; it is right *-cancellable if xaa∗ = yaa∗ implies xa = ya; and it is *-
cancellable if it is both left and right *-cancellable. We observe that a is
left *-cancellable if and only if a∗ is right *-cancellable. In C∗-algebras all
elements are *-cancellable. A ring R is called *-reducing if every element of
R is *-cancellable. This is equivalent to the implication a∗a = 0 ⇒ a = 0
for all a ∈ R.

One of the basic topics in the theory of generalized inverses is to inves-
tigate various reverse order laws related to generalized inverses products.
The reverse order law for the generalized inverse is an useful computational
tool in applications (solving linear equations in linear algebra or numerical
analysis), and it is also interesting from the theoretical point of view.

The reverse-order law (ab)† = b†(a†abb†)†a† was first studied by Galperin
and Waksman [5]. A Hilbert space version of their result was given by Isum-
ino [7]. The results concerning the reverse order law (ab)† = b†(a†abb†)†a†

for complex matrices appeared in Tian’s paper [11].
In this paper we present some necessary and sufficient conditions for the

reverse order law (ab)# = b†(a†abb†)†a† in rings with involution. We also
study the equivalent conditions involving a†abb† ∈ R† to ensure that (ab)# =
b†a† is satisfied. Some equivalent conditions to (a†ab)# = b†(a†abb†)† and
(abb†)# = (a†abb†)†a† are given too. Similar results related to the reverse or-
der laws (ab)# = b∗(a∗abb∗)†a∗,(a∗ab)# = b∗(a∗abb∗)†,(abb∗)# = (a∗abb∗)†a∗

are investigated.
In the end of this section, we state the following well-known results on

the Moore-Penrose inverse, which be used later.

Lemma 1.1. [9] If a ∈ R†, then

(i) aa(1,3) = aa†, for any a(1,3) ∈ a{1, 3};
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(ii) a(1,4)a = a†a, for any a(1,4) ∈ a{1, 4}.

Lemma 1.2. [9] Let a, b ∈ R.

(i) If a, a†ab ∈ R†, then (a†ab)† = (a†ab)†a†a.

(ii) If b, abb† ∈ R†, then (abb†)† = bb†(abb†)†.

Lemma 1.3. Let a, b, a†abb† ∈ R†. Then

(i) (a†abb†)† = (a†abb†)†a†a,

(ii) (a†abb†)† = bb†(a†abb†)†.

Proof. From

(a†abb†)†a†a = (a†abb†)†a†abb†(a†abb†)†a†a

= (a†abb†)†(a†aa†abb†(a†abb†)†)∗

= (a†abb†)†(a†abb†(a†abb†)†)∗ = (a†abb†)†,

we conclude that (i) holds. The statement (ii) can be proved in the similar
way.

By Remark after Theorem 2.4 in [8], [8, Theorem 2.1] can be formulated
as follows.

Theorem 1.1. Let R be a ring with involution, let a, b ∈ R† and let (1 −
a†a)b be left *-cancellable. Then the following conditions are equivalent:

(a) abb†a†ab = ab;

(b) b†a†abb†a† = b†a†;

(c) a†abb† = bb†a†a;

(d) a†abb† is an idempotent;

(e) bb†a†a is an idempotent;

(f) a†abb† ∈ R† and b†(a†abb†)†a† = b†a†;

(g) a†abb† ∈ R† and (a†abb†)† = bb†a†a.
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2 Reverse order laws

In the following theorem, the reverse order law (ab)# = b†(a†abb†)†a† in
rings with involution is characterized.

Theorem 2.1. If a, b, a†abb† ∈ R† and ab ∈ R#, then the following state-
ments are equivalent:

(i) (ab)# = b†(a†abb†)†a†,

(ii) b†(a†abb†)†a† ∈ (ab){5},

(iii) abaa† = ab and b†(a†abb†)†ba = a(a†abb†)†,

(iv) b†bab = ab and ba(a†abb†)†a† = (a†abb†)†b,

(v) b{1, 3, 4} · (a†abb†){1, 3, 4} · a{1, 3, 4} ⊆ (ab){5},

(vi) (a†abb†)† = b(ab)#a and abaa† = ab = b†bab.

Proof. (i) ⇒ (ii): It is trivial.
(ii) ⇒ (iii): Notice that b†(a†abb†)†a† ∈ (ab){1}, by

abb†(a†abb†)†a†ab = a(a†abb†(a†abb†)†a†abb†)b = aa†abb†b = ab. (1)

Since b†(a†abb†)†a† ∈ (ab){5}, we obtain

abaa† = ababb†(a†abb†)†a†aa† = ababb†(a†abb†)†a† = ab

and
b†(a†abb†)†a†(abaa†) = b†(a†abb†)†a†ab = abb†(a†abb†)†a†. (2)

Multiplying (2) by a from the right side and applying Lemma 1.3, we get
b†(a†abb†)†ba = a(a†abb†)†. So, the item (iii) holds.

(iii) ⇒ (v): Suppose that abaa† = ab and b†(a†abb†)†ba = a(a†abb†)†. If
b(1,3,4) ∈ b{1, 3, 4}, (a†abb†)(1,3,4) ∈ (a†abb†){1, 3, 4} and a(1,3,4) ∈ a{1, 3, 4},
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by Lemma 1.1 and Lemma 1.3, we have

a(bb(1,3,4))(a†abb†)(1,3,4)a(1,3,4) = a(a†abb†(a†abb†)(1,3,4))a(1,3,4)

= aa†a(bb†(a†abb†)†)a(1,3,4)

= (a(a†abb†)†)a†(aa(1,3,4))

= b†(a†abb†)†baa†aa† = b†(a†abb†)†baa†

= b†(a†abb†)†a†(abaa†) = b†(a†abb†)†a†ab

= (b†b)b†(a†abb†)†a†ab

= b(1,3,4)(bb†(a†abb†)†)a†ab

= b(1,3,4)((a†abb†)†a†abb†)b

= b(1,3,4)(a†abb†)(1,3,4)(a†a)bb†b

= b(1,3,4)(a†abb†)(1,3,4)a(1,3,4)ab.

Therefore, for any b(1,3,4) ∈ b{1, 3, 4}, (a†abb†)(1,3,4) ∈ (a†abb†){1, 3, 4} and
a(1,3,4) ∈ a{1, 3, 4}, b(1,3,4)(a†abb†)(1,3,4)a(1,3,4) ∈ (ab){5} and (v) holds.

(v) ⇒ (i): Because b† ∈ b{1, 3, 4}, (a†abb†)† ∈ (a†abb†){1, 3, 4} and a† ∈
a{1, 3, 4}, the hypothesis b{1, 3, 4} · (a†abb†){1, 3, 4} · a{1, 3, 4} ⊆ (ab){5}
implies b†(a†abb†)†a† ∈ (ab){5}. Since the equalities (1) hold and

b†((a†abb†)†a†abb†(a†abb†)†)a† = b†(a†abb†)†a†,

we conclude that b†(a†abb†)†a† ∈ (ab){1, 2}. Thus, the statement (i) is
satisfied.

(ii) ⇒ (iv) ⇒ (v): In the similar way as (ii) ⇒ (iii) ⇒ (v), we can prove
these implications.

(i) ⇒ (vi): Since (i) ⇔ (ii) ⇔ (iii), then abaa† = ab = b†bab and, by
Lemma 1.3,

b(ab)#a = bb†(a†abb†)†a†a = (a†abb†)†.

(vi) ⇒ (i): Let (a†abb†)† = b(ab)#a and abaa† = ab = b†bab. Now, we
have

b†(a†abb†)†a† = b†b(ab)#aa† = (b†bab)[(ab)#]3(abaa†)

= ab[(ab)#]3ab = (ab)#.

Analogously to Theorem 2.1, we obtain the following theorem.

Theorem 2.2. If a, b, a∗abb∗ ∈ R† and ab ∈ R#, then the following state-
ments are equivalent:
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(i) (ab)# = b∗(a∗abb∗)†a∗,

(ii) b∗(a∗abb∗)†a∗ ∈ (ab){5},

(iii) abaa† = ab and b∗(a∗abb∗)†a∗aba = abb∗(a∗abb∗)†a∗a,

(iv) b†bab = ab and babb∗(a∗abb∗)†a∗ = bb∗(a∗abb∗)†a∗ab,

(v) b∗ · (a∗abb∗){1, 3, 4} · a∗ ⊆ (ab){5}.

Proof. This theorem can be proved similarly as Theorem 2.1, applying the
equalities a = (a†)∗a∗a and a∗ = a∗aa†.

In the following result, we show that (ab){5} ⊆ b{1, 3, 4}·(a†abb†){1, 3, 4}·
a{1, 3, 4} is equivalent to (ab){5} = b{1, 3, 4} · (a†abb†){1, 3, 4} · a{1, 3, 4}.

Theorem 2.3. If a, b, a†abb† ∈ R† and ab ∈ R#, then the following state-
ments are equivalent:

(i) (ab){5} ⊆ b{1, 3, 4} · (a†abb†){1, 3, 4} · a{1, 3, 4},

(ii) (ab){5} = b{1, 3, 4} · (a†abb†){1, 3, 4} · a{1, 3, 4}.

Proof. (i)⇒ (ii): Assume that (ab){5} ⊆ b{1, 3, 4}·(a†abb†){1, 3, 4}·a{1, 3, 4}.
Then there exist b(1,3,4) ∈ b{1, 3, 4}, (a†abb†)(1,3,4) ∈ (a†abb†){1, 3, 4} and
a(1,3,4) ∈ a{1, 3, 4} such that (ab)# = b(1,3,4)(a†abb†)(1,3,4)a(1,3,4). Notice
that, by Lemma 1.1 and Lemma 1.3, we get

b†(a†abb†)†a† = b(1,3,4)(bb†(a†abb†)†a†a)a(1,3,4) = b(1,3,4)(a†abb†)†a(1,3,4)

= b(1,3,4)(a†abb†)†a†abb†(a†abb†)†a(1,3,4)

= b(1,3,4)(a†abb†)(1,3,4)(a†a)(bb†)(a†abb†)(1,3,4)a(1,3,4)

= (b(1,3,4)(a†abb†)(1,3,4)a(1,3,4))ab(b(1,3,4)(a†abb†)(1,3,4)a(1,3,4))

= (ab)#ab(ab)# = (ab)#.

Using Theorem 2.1, we deduce that b†(a†abb†)†a† = (ab)# implies b{1, 3, 4} ·
(a†abb†){1, 3, 4} · a{1, 3, 4} ⊆ (ab){5}. So, the equality (ii) holds.

(ii) ⇒ (i): Obviously.

In the similar way as in the proof of Theorem 2.3, we obtain the next
theorem.

Theorem 2.4. If a, b, a∗abb∗ ∈ R† and ab ∈ R#, then the following state-
ments are equivalent:
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(i) (ab){5} ⊆ b∗ · (a∗abb∗){1, 3, 4} · a∗,

(ii) (ab){5} = b∗ · (a∗abb∗){1, 3, 4} · a∗.

In the following theorem, we prove a group of equivalent conditions for
(ab)# = b†a† to be satisfied.

Theorem 2.5. Let a, b, a†abb† ∈ R†, let ab ∈ R# and let (1− a†a)b be left
*-cancellable. Then (ab)# = b†a† if and only if (ab)# = b†(a†abb†)†a† and
any one of the following equivalent conditions holds:

(a) abb†a†ab = ab;

(b) b†a†abb†a† = b†a†;

(c) a†abb† = bb†a†a;

(d) a†abb† is an idempotent;

(e) bb†a†a is an idempotent;

(f) b†(a†abb†)†a† = b†a†;

(g) (a†abb†)† = bb†a†a.

Proof. =⇒ : Since (ab)# = b†a†, then abb†a†ab = ab which implies that,
by Theorem 1.1, the conditions (a)-(g) are satisfied and (ab)# = b†a† =
b†(a†abb†)†a†.

⇐= : Conversely, the conditions (a)-(g) imply b†a† = b†(a†abb†)†a†.
From the assumption (ab)# = b†(a†abb†)†a†, we deduce that (ab)# = b†a†.

The condition (ab)# = b†(a†abb†)†a† in Theorem 2.5 can be replaced by
some equivalent conditions from Theorem 2.1.

Remark. Theorem 2.5 holds in C∗-algebras and *-reducing rings with-
out the hypothesis (1 − a†a)b is left *-cancellable, since this condition is
automatically satisfied.

The relation between the reverse order laws (ab)# = (a†ab)†a† and
(a†ab)† = (ab)#a is studied in the next theorem.

Theorem 2.6. If b ∈ R, a, a†ab ∈ R† and if ab ∈ R#, then the following
statements are equivalent:

(i) (ab)# = (a†ab)†a†,
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(ii) (a†ab)† = (ab)#a and abaa† = ab.

Proof. (i) ⇒ (ii): The condition (ab)# = (a†ab)†a† implies

abaa† = (ab)2(ab)#aa† = (ab)2(a†ab)†a†aa† = (ab)2(a†ab)†a† = ab.

Therefore, by Lemma 1.2, (ab)#a = (a†ab)†a†a = (a†ab)†.
(ii) ⇒ (i): Using the equalities (a†ab)† = (ab)#a and abaa† = ab, we

obtain that (i) holds:

(a†ab)†a† = (ab)#aa† = [(ab)#]2(abaa†) = [(ab)#]2ab = (ab)#.

Similarly as Theorem 2.6, we can show the following theorem.

Theorem 2.7. If a ∈ R, b, abb† ∈ R† and if ab ∈ R#, then the following
statements are equivalent:

(i) (ab)# = b†(abb†)†,

(ii) (abb†)† = b(ab)# and ab = b†bab.

The reverse order law (a†ab)# = b†(a†abb†)† is characterized in the fol-
lowing result.

Theorem 2.8. If a, b, a†abb† ∈ R† and a†ab ∈ R#, then the following
statements are equivalent:

(i) (a†ab)# = b†(a†abb†)†,

(ii) b†(a†abb†)† ∈ (a†ab){5},

(iii) b†ba†ab = a†ab and ba†a(a†abb†)† = (a†abb†)†b,

(iv) b{1, 3, 4} · (a†abb†){1, 3, 4} ⊆ (a†ab){5},

(v) b†ba†ab = a†ab and (a†abb†)† = b(a†ab)#.

Proof. (i) ⇒ (ii): This implication is trivial.
(ii) ⇒ (iii): Observe that b†(a†abb†)† ∈ (a†ab){1}, by

a†abb†(a†abb†)†a†ab = (a†abb†(a†abb†)†a†abb†)b = a†abb†b = a†ab. (3)

Further, from b†(a†abb†)† ∈ (a†ab){5} and Lemma 1.3, we have

b†b(a†ab) = b†bb†(a†abb†)†(a†ab)2 = b†(a†abb†)†(a†ab)2 = a†ab (4)
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and

ba†a(a†abb†)† = b(a†abb†(a†abb†)†) = (bb†(a†abb†)†)a†a)b = (a†abb†)†b.

(iii) ⇒ (i): Applying b†ba†ab = a†ab and ba†a(a†abb†)† = (a†abb†)†b, we
obtain

b†((a†abb†)†a†a)b = b†((a†abb†)†b) = b†ba†a(a†abb†)†

= (b†ba†ab)b†(a†abb†)† = a†abb†(a†abb†)†.

Hence, b†(a†abb†)† ∈ (a†ab){5}. Since the equalities (3) hold and

b†((a†abb†)†a†abb†(a†abb†)†) = b†(a†abb†)†,

we deduce that b†(a†abb†)† ∈ (a†ab){1, 2}. Thus, the condition (i) is satis-
fied.

(ii) ⇒ (iv): Suppose that b†(a†abb†)† ∈ (a†ab){5}. For b(1,3,4) ∈ b{1, 3, 4}
and (a†abb†)(1,3,4) ∈ (a†abb†){1, 3, 4}, by Lemma 1.1 and Lemma 1.3, we
obtain

b(1,3,4)(a†abb†)(1,3,4)a†ab = b(1,3,4)((a†abb†)(1,3,4)a†abb†)b

= b(1,3,4)(a†abb†)†a†abb†b

= (b(1,3,4)b)b†(a†abb†)†a†ab = b†bb†(a†abb†)†a†ab

= a†abb†(a†abb†)† = a†abb†(a†abb†)(1,3,4)

= a†abb(1,3,4)(a†abb#)(1,3,4).

So, for any b(1,3,4) ∈ b{1, 3, 4} and (a†abb†)(1,3,4) ∈ (a†abb†){1, 3, 4}, we get
b(1,3,4)(a†abb†)(1,3,4) ∈ (a†ab){5} and (iv) is satisfied.

(iv) ⇒ (ii): By b† ∈ b{1, 3, 4} and (a†abb†)† ∈ (a†abb†){1, 3, 4}.
(i) ⇒ (v): Let (a†ab)# = b†(a†abb†)†. Since (i) ⇒ (iii), then b†ba†ab =

a†ab and, by Lemma 1.3, (a†abb†)† = b(b†(a†abb†)†) = b(a†ab)#.
(v) ⇒ (i): Assume that b†ba†ab = a†ab and (a†abb†)† = b(a†ab)#. Now,

(a†ab)# = (a†ab)[(a†ab)#]2 = b†b(a†ab[(a†ab)#]2)

= b†(b(a†ab)#) = b†(a†abb†)†.

In the same way as in Theorem 2.8, we obtain the following theorems.

Theorem 2.9. If a ∈ R, b, a∗abb∗ ∈ R† and a∗ab ∈ R#, then the following
statements are equivalent:
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(i) (a∗ab)# = b∗(a∗abb∗)†,

(ii) b∗(a∗abb∗)† ∈ (a∗ab){5},

(iii) b†ba∗ab = a∗ab and ba∗abb∗(a∗abb∗)† = bb∗(a∗abb∗)†a∗ab,

(iv) b∗ · (a∗abb∗){1, 3, 4} ⊆ (a∗ab){5},

(v) b†ba∗ab = a∗ab and (a∗abb∗)† = (b†)∗(a∗ab)#.

Theorem 2.10. If a, b, a†abb† ∈ R† and abb† ∈ R#, then the following
statements are equivalent:

(i) (abb†)# = (a†abb†)†a†,

(ii) (a†abb†)†a† ∈ (abb†){5},

(iii) abb†aa† = abb† and (a†abb†)†bb†a = a(a†abb†)†,

(iv) (a†abb†){1, 3, 4} · a{1, 3, 4} ⊆ (abb†){5},

(v) abb†aa† = abb† and (a†abb†)† = (abb†)#a.

Theorem 2.11. If b ∈ R, a, a∗abb∗ ∈ R† and abb∗ ∈ R#, then the following
statements are equivalent:

(i) (abb∗)# = (a∗abb∗)†a∗,

(ii) (a∗abb∗)†a† ∈ (abb∗){5},

(iii) abb∗aa† = abb∗ and (a∗abb∗)†a∗abb∗a = abb∗(a∗abb∗)†a∗a,

(iv) (a∗abb∗){1, 3, 4} · a∗ ⊆ (abb∗){5},

(v) abb∗aa† = abb∗ and (a∗abb∗)† = (abb∗)#(a†)∗.

Now, we prove that (a†ab){5} ⊆ b{1, 3, 4} · (a†abb†){1, 3, 4} is equivalent
to (a†ab){5} = b{1, 3, 4} · (a†abb†){1, 3, 4}.

Theorem 2.12. If a, b, a†abb† ∈ R† and a†ab ∈ R#, then the following
statements are equivalent:

(i) (a†ab){5} ⊆ b{1, 3, 4} · (a†abb†){1, 3, 4},

(ii) (a†ab){5} = b{1, 3, 4} · (a†abb†){1, 3, 4}.
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Proof. (i) ⇒ (ii): Suppose that (a†ab){5} ⊆ b{1, 3, 4} · (a†abb†){1, 3, 4}.
Then there exist b(1,3,4) ∈ b{1, 3, 4} and (a†abb†)(1,3,4) ∈ (a†abb†){1, 3, 4}
such that (a†ab)# = b(1,3,4)(a†abb†)(1,3,4). Using Lemma 1.1 and Lemma 1.3,
we get

b†(a†abb†)† = b(1,3,4)(bb†(a†abb†)†) = b(1,3,4)(a†abb†)†a†abb†(a†abb†)†

= (b(1,3,4)(a†abb†)(1,3,4))a†ab(b(1,3,4)(a†abb†)(1,3,4))

= (a†ab)#a†ab(a†ab)# = (a†ab)#.

Therefore, by Theorem 2.8, b{1, 3, 4} · (a†abb†){1, 3, 4} ⊆ (a†ab){5} and (ii)
is satisfied.

(ii) ⇒ (i): Obviously.

The next results can be checked similarly as Theorem 2.12

Theorem 2.13. If a ∈ R, b, a∗abb∗ ∈ R† and a∗ab ∈ R#, then the following
statements are equivalent:

(i) (a∗ab){5} ⊆ b∗ · (a∗abb∗){1, 3, 4},

(ii) (a∗ab){5} = b∗ · (a∗abb∗){1, 3, 4}.

Theorem 2.14. If a, b, a†abb† ∈ R† and abb† ∈ R#, then the following
statements are equivalent:

(i) (abb†){5} ⊆ (a†abb†){1, 3, 4} · a{1, 3, 4},

(ii) (abb†){5} = (a†abb†){1, 3, 4} · a{1, 3, 4}.

Theorem 2.15. If b ∈ R, a, a∗abb∗ ∈ R† and abb∗ ∈ R#, then the following
statements are equivalent:

(i) (abb∗){5} ⊆ (a∗abb∗){1, 3, 4} · a∗,

(ii) (abb∗){5} = (a∗abb∗){1, 3, 4} · a∗.

Sufficient conditions for the reverse order law (ab)# = b†(a†abb†)†a† are
investigated in the following theorem.

Theorem 2.16. Suppose that a, b, a†abb† ∈ R† and ab, a†ab, abb† ∈ R#.
Then each of the following conditions is sufficient for (ab)# = b†(a†abb†)†a†

to hold:

(i) (ab)# = (a†ab)#a† and (a†ab)# = b†(a†abb†)†,
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(ii) (ab)# = b†(abb†)# and (abb†)# = (a†abb†)†a†.

Proof. (i) From (ab)# = (a†ab)#a† and (a†ab)# = b†(a†abb†)†, we get

(ab)# = (a†ab)#a† = b†(a†abb†)†a†.

(iii) It follows as item (ii).

If we replace the conditions (a†ab)# = b†(a†abb†)† and (abb†)# = (a†abb†)†a†

in Theorem 2.16 by some equivalent conditions from Theorem 2.8 and The-
orem 2.10, we obtain list of sufficient conditions for (ab)# = b†(a†abb†)†a†

to be satisfied.
Similarly to Theorem 2.16, we get the next theorem.

Theorem 2.17. Suppose that a, b ∈ R, a∗abb∗ ∈ R† and ab, a∗ab, abb∗ ∈
R#. Then each of the following conditions is sufficient for (ab)# = b∗(a∗abb∗)†a∗

to hold:

(i) (ab)# = (a∗ab)#a∗ and (a∗ab)# = b∗(a∗abb∗)†,

(ii) (ab)# = b∗(abb∗)# and (abb∗)# = (a∗abb∗)†a∗.

Finally, we give an example to illustrate our results.

Example 2.1. Consider a 2 × 2 block matrices A =

[
1 a
a 0

]
and

B =

[
b 0
0 1

]
, where a, b ∈ R \ {0}. Notice that A† =

[
0 1

a
1
a − 1

a2

]
, B† =[

1
b 0
0 1

]
and AB =

[
b a
ab 0

]
. Since statements of Theorem 2.5 (or The-

orem 2.6 or Theorem 2.7) are satisfied, we obtain (AB)# =

[
0 1

ab
1
a − 1

a2

]
=

B†A†.
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[4] D. S. Djordjević, Unified approach to the reverse order rule for gener-
alized inverses, Acta Sci. Math. (Szeged) 67 (2001), 761-776.

[5] A.M. Galperin, Z. Waksman, On pseudo-inverses of operator products,
Linear Algebra Appl. 33 (1980), 123–131.

[6] T.N.E. Greville, Note on the generalized inverse of a matrix product,
SIAM Rev. 8 (1966), 518–521.

[7] S. Izumino, The product of operators with closed range and an exten-
sion of the reverse order law, Tohoku Math. J. 34 (1982), 43–52.
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