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Abstract

In this paper we introduce and investigate the weighted generalized
Drazin inverse for elements in rings. We also introduce and investigate
the weighted EP elements
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1 Introduction

The Drazin inverse of an element in a semigroup was introduced in [2]. Let
S be a multiplicative semigroup and let a ∈ S. The element b ∈ S is a
Drazin inverse of a, if the following hold:

bab = b, ab = ba, an+1b = an

for some non-negative integer n, and the least such n (if it exists) is the
Drazin index of a. If the Drazin inverse of a exists, then it is unique and
denoted by aD. Such a is then called Drazin invertible, and the set of all
Drazin invertible elements in S is denoted by SD.

The most interesting semigroup is the set of complex square matrices,
or, more generally, the set of all linear bounded operators on a Banach
space. By now, many papers appeared dealing with the Drazin inverse and
its generalizations, including linear bounded operators on Banach or Hilbert
spaces, elements in Banach algebras or rings.

The generalization that we are particularly interested in, deals with the
weighted Drazin inverse, it is introduced in [7], and also investigated in [6].
Although both papers consider only linear bounded operators between two
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Banach spaces, with small changes it is not difficult to see that these results
are valid in Banach algebras also.

In this paper we introduce and investigate the weighted generalized
Drazin inverse and the weighted EP elements in rings. In the rest of this sec-
tion we recall some properties of the Drazin inverse and the Moore-Penrose
inverse. The paper is organized as follows. In Section 2 we prove several
results concerning the weighed generalized Drazin inverse. In Section 3 we
prove the main characterization of EP elements in rings.

2 Background

Let R be an arbitrary ring with the unit 1. The set of all invertible elements
of R is denoted by R−1, and the set of all idempotents in R is denoted by
R•. We use Rnil to denote the set of all nilpotent elements of R.

Let a ∈ R. Then aD = x ∈ R is the Drazin inverse of a, if the following
hold:

xax = x, ax = xa, and a(ax− 1) ∈ Rnil.

For any element b ∈ R the commutant and the double commutant of b,
respectively, are defined by

comm(b) = {x ∈ R : bx = xb},

comm2(b) = {x ∈ R : xy = yx for all y ∈ comm(b)}.
In [3] quasinilpotent elements of a ring R are introduced as follows:
q ∈ R is quasinilpotent, if 1 + xq ∈ R−1 for all x ∈ comm(q).
We use Rqnil to denote the set of all quasinilpotent elements of R.
Thus, the generalized Drazin inverse of a ∈ R is defined as (see [4]) the

element ad = x satisfying:

x ∈ comm2(a), xax = x, a(1− ax) ∈ Rqnil.

If ad exists, then it is unique [4]. In Banach algebras it is enough to assume
x ∈ comm(a) instead of x ∈ comm2(a). We use Rd to denote the set of all
generalized Drazin invertible elements of R.

Definition 2.1. [5] An element a ∈ R is quasipolar if there exists p ∈ R
such that

p2 = p, p ∈ comm2(a), ap ∈ Rqnil, a + p ∈ R−1.
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The following result holds.

Theorem 2.1. [5] An element a ∈ R is generalized Drazin invertible if
and only if the element a is quasipolar. In this case a ∈ R has a unique
generalized Drazin inverse ad given by the equation

ad = (a + aπ)−1(1− aπ).

From now on, aπ will be the unique spectral idempotent of a, and aπ =
1− aad.

Operator matrices seem to be the useful tool for investing Drazin invert-
ibility of linear bounded operators on Banach spaces. In rings we have to
use idempotents. Let a ∈ R, and let p, q ∈ R•. Then we write

a = paq + pa(1− q) + (1− p)aq + (1− p)a(1− q)

and use the notations

a11 = paq, a12 = pa(1− q), a21 = (1− p)aq, a22 = (1− p)a(1− q).

Hence, the elements p, q ∈ R• induce a representation of an arbitrary ele-
ment a ∈ R, which is given by the following matrix form:

a =
[

paq pa(1− q)
(1− p)aq (1− p)a(1− q)

]

p,q

=
[

a11 a12

a21 a22

]

p,q

.

It is well-known that a ∈ Rd can be represented in the following matrix
form

a =
[

a1 0
0 a2

]

p,p

,

relative to p = aad = 1 − aπ, a1 is invertible in the algebra pRp and a2 is
quasinilpotent in the algebra (1− p)R(1− p). Then the generalized Drazin
inverse of a is given by

ad =
[

a−1
1 0
0 0

]

p,p

.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

We say that b = a† is the Moore-Penrose inverse (or MP-inverse) of a, if the
following hold:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

There is at most one b such that above conditions hold (see [1]). The set of
all Moore-Penrose invertible elements of R will be denoted by R†.
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Definition 2.2. Let R be a ring with involution and e, f two invertible
elements in R. We say that the element a ∈ R has the weighted MP-inverse
with weights e, f if there exists b ∈ R such that

aba = a, bab = b, (eba)∗ = eba, (fab)∗ = fab.

The unique weighted MP-inverse with weights e, f , will be denoted by
a†e,f if it exists [1]. The set of all weighted MP-invertible elements of R with

weights e, f , will be denoted by R†e,f .

3 Weighted generalized Drazin inverse

Let R be a ring with the unit 1, and let w ∈ R. Let Rw be the ring R
equipped with the w-product: a ∗ b = awb for a, b ∈ R. If w is invertible,
then 1w = w−1 is the unit of the ring Rw. In the rest of the paper we
assume that w ∈ R−1. It is not difficult to see that, with this assumption,
the equality R−1 = R−1

w holds.
Now, we introduce the weighted and the weighted generalized Drazin

inverse in rings.

Definition 3.1. Let w ∈ R−1. An element a ∈ R is called:
(a) weighted Drazin invertible, or w–Drazin invertible, if a is Drazin

invertible in the ring Rw. The w–Drazin inverse aD,w of a is then defined
as the Drazin inverse of a in the ring Rw, i.e. aD,w = aD

Rw
.

(b) weighted generalized Drazin invertible, or wg–Drazin invertible, if a
is generalized Drazin invertible in the ring Rw. The wg–Drazin inverse ad,w

of a is then defined as the generalized Drazin inverse of a in the ring Rw,
i.e. ad,w = ad

Rw
.

The set of all wg–Drazin invertible elements in R is denoted by Rd,w,
and the set of all w–Drazin invertible elements in R is denoted by RD,w.
By Theorem 2.1, it follows that the wg–Drazin inverse is unique if it exists.

We prove the following result concerning quasinilpotent elements in R
and Rw.

Theorem 3.1. Let R be a ring with the unit 1, and let w ∈ R−1. For a ∈ R
the following statements are equivalent:

(a) a ∈ Rqnil
w ;

(b) aw ∈ Rqnil;
(c) wa ∈ Rqnil.

4



Proof. (a) =⇒ (b): Let a ∈ Rqnil
w . Suppose that y ∈ R such that awy =

yaw. We take x = yw−1. Then

a ∗ x = awx = awyw−1 = yaww−1 = ya,

and
x ∗ a = xwa = yw−1wa = ya.

Hence, x commutes with a in Rw. Then w−1 + a ∗ x ∈ R−1
w , so there exists

some b ∈ R−1
w such that b ∗ (w−1 + a ∗ x) = w−1, which is equivalent to

bw(w−1 + awx) = w−1, or bw(1 + awy) = 1. We know that b ∈ R−1 also,
so it follows that 1 + awy ∈ R−1. We have just proved that aw ∈ Rqnil, so
(b) is satisfied.

(b) =⇒ (a): Let aw ∈ Rqnil. Assume that x ∈ R such that a∗x = x∗a.
It follows that awx = xwa, and awxw = xwaw. Let y = xw. We get that
aw commutes with y. Consequently, 1 + yaw ∈ R−1, so there exists some
c ∈ R−1 satisfying c(1+yaw) = 1, which is equivalent to c(w−1+x∗a)w = 1.
Hence, w−1 + x ∗ a ∈ R−1 = R−1

w , so (a) is satisfied.
The equivalence (a) ⇐⇒ (c) can be proved similarly.

Now, we prove the main characterization of the wg–Drazin invertible
elements in rings.

Theorem 3.2. Let R be a ring with the unit 1, and let w ∈ R−1. For a ∈ R
the following statements are equivalent:

(a) a is wg-Drazin invertible with the wg-Drazin inverse ad,w = b ∈ R.

(b) aw is generalized Drazin invertible in R with (aw)d = bw.

(c) wa is generalized Drazin invertible in R with (wa)d = wb.

The wg–Drazin inverse ad,w of a then satisfies

(1) ad,w = ((aw)d)2a = a((wa)d)2.

Proof. (a) =⇒ (b): Suppose that a has the wg-Drazin inverse, which is
denoted by b. Then

b ∈ comm2
w(a), b ∗ a ∗ b = b, a ∗ b ∗ a− a ∈ Rqnil

w .

Suppose that y ∈ R such that awy = yaw holds. We take x = yw−1. Then

a ∗ x = awx = awyw−1 = yaww−1 = ya,
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and
x ∗ a = xwa = yw−1wa = ya.

Hence, a ∗ x = x ∗ a. Since b ∈ comm2
w(a), b ∗ x = x ∗ b, i.e.

bwyw−1 = yw−1wb.

So, bwy = ybw. Then c = bw ∈ comm2(aw).
Since b ∗ a ∗ b = b, we have (bw)2a = b and

c2(aw) = (bw)2aw = bw = c.

From a∗b∗a−a ∈ Rqnil
w , we obtain (aw)2b−a ∈ Rqnil

w . Then (aw)2bw−aw ∈
Rqnil by Theorem 3.1. Thus, (aw)2c− aw is quasinilpotent in R, and (b) is
proved, with

(aw)d = c = bw.

(b) =⇒ (a): Assume that aw ∈ R has the g-Drazin inverse c. Then

c ∈ comm2(aw), c2(aw) = c, c(aw)2 − aw ∈ Rqnil.

Let b = c2a. Suppose that x ∈ R such that a ∗ x = x ∗ a. Set y = xw. Now,

awy = awxw = xwaw = yaw.

Since c ∈ comm2(aw), we get cy = yc. From

bwy = c2awy = c2yaw = yc2aw = ybw,

i.e
bwxw = xwbw,

we get
b ∗ x = bwx = bwxww−1 = xwbww−1 = xwb = x ∗ b.

Therefore, b ∈ comm2
w(a). The equation c2(aw) = c imply

b ∗ a ∗ b = (c2aw)(awc2)a = c2a = b.

Since c(aw)2 − aw is quasinilpotent in R, we obtain that

a ∗ b ∗ a− a = (awc2)awa− a = cawa− a

is quasinilpotent in Rw, by Theorem 3.1. Hence, a is wg-Drazin invertible
with ad,w = c2a.

The equivalence (a) ⇐⇒ (c) can be proved similarly.
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Finally, we prove the following result concerning the matrix form of
a ∈ Rd,w.

Theorem 3.3. Let R be a ring with the unit 1, and let w ∈ R−1. Then
a ∈ R is wg-Drazin invertible if and only if there exist p, q ∈ R• such that
p ∈ comm2(aw), q ∈ comm2(wa), and

a =
[

a1 0
0 a2

]

p,q

, w =
[

w1 0
0 w2

]

q,p

,

where a1w1 ∈ (pRp)−1, w1a1 ∈ (qRq)−1, a2w2 ∈ ((1 − p)R(1 − p))qnil and
w2a2 ∈ ((1− q)R(1− q))qnil. The wg–Drazin inverse of a is given by

(2) ad,w =
[

a1((w1a1)−1)2 0
0 0

]

p,q

=
[

((a1w1)−1)2a1 0
0 0

]

p,q

.

Proof. If a ∈ R is wg-Drazin invertible, then aw and wa are generalized
Drazin invertible. We have the following matrix representations of aw and
wa relative to p = aw(aw)d and q = wa(wa)d:

aw =
[

(aw)1 0
0 (aw)2

]

p,p

, wa =
[

(wa)1 0
0 (wa)2

]

q,q

,

where (aw)1 = (aw)2(aw)d ∈ (pRp)−1, (aw)2 ∈ ((1 − p)R(1 − p))qnil,
(wa)1 = (wa)2(wa)d ∈ (qRq)−1, (wa)2 ∈ ((1− q)R(1− q))qnil.

The idempotents p = aw(aw)d, q = wa(wa)d induce a representation of
a given by

a =
[

paq pa(1− q)
(1− p)aq (1− p)a(1− q)

]

p,q

=
[

a1 a12

a21 a2

]

p,q

.

Thus, we obtain a12 = pa(1− q) = 0 and a21 = (1− p)aq = 0. Hence,

a =
[

a1 0
0 a2

]

p,q

.

Similarly, the idempotents q, p induce the following representation of w

w =
[

qwp qw(1− p)
(1− q)wp (1− q)w(1− p)

]

q,p

=
[

w1 w12

w21 w2

]

q,p

.

From w12 = qw(1− p) = 0 and w21 = (1− q)wp = 0, we get

w =
[

w1 0
0 w2

]

q,p

.
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Now,

aw =
[

a1w1 0
0 a2w2

]

p,p

, wa =
[

w1a1 0
0 w2a2

]

q,q

,

where a1w1 = (aw)1 = (aw)2(aw)d ∈ (pRp)−1, a2w2 = (aw)2 ∈ ((1 −
p)R(1 − p))qnil, w1a1 = (wa)1 = (wa)2(wa)d ∈ (qRq)−1, w2a2 = (wa)2 ∈
((1− q)R(1− q))qnil.

The wg–Drazin inverse of a is equal, by (1), to

ad,w = a((wa)d)2

=
[

a1 0
0 a2

]

p,q

[
(w1a1)−1 0

0 0

]2

q,q

=
[

a1 0
0 a2

]

p,q

[
((w1a1)−1)2 0

0 0

]

q,q

=
[

a1((w1a1)−1)2 0
0 0

]

p,q

.

The second equation in (2) can be obtained from ad,w = ((aw)d)2a.
Conversely, if the decompositions with the specified properties exist, then

aw =
[

a1w1 0
0 a2w2

]

p,p

.

Since a1w1 ∈ (pRp)−1 and a2w2 ∈ ((1 − p)R(1 − p))qnil, it follows that aw
is generalized Drazin invertible. Then a is wg–Drazin invertible.

We can also consider rings with involution. The following result is proved
in [5].

Theorem 3.4. Let R be a ring with involution. Then a is generalized
Drazin invertible if and only if a∗ is generalized Drazin invertible. In this
case (a∗)d = (ad)∗.

We prove the following result.

Theorem 3.5. Let R be a ring with involution. Then a ∈ R is wg-Drazin
invertible if and only if a∗ is w∗g-Drazin invertible. In this case (a∗)d,w∗ =
(ad,w)∗.

Proof. From the preceding theorem aw is generalized Drazin invertible if and
only if (aw)∗ = w∗a∗ is generalized Drazin invertible. Then a is wg–Drazin
invertible if and only if a∗ is w∗g–Drazin invertible, by Theorem 3.2.
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Finally, if R is a complex Banach algebra, then we can assume more
general conditions. Precisely, we do not need the unit inR, and consequently
w is not necessarily invertible. We use the norm ‖ · ‖w in Rw as follows:
if a ∈ R, then ‖a‖w = ‖a‖‖w‖. Thus, Rw becomes a complex Banach
algebra. We adjoin the unit 1 toRw. Hence, the concept of the spectrum and
the spectral radius is available. The most important technical statement,
concerning the weighted Drazin invertibility, is the following result [6].

Lemma 3.1. Let R be a complex Banach algebra, and let a,w ∈ R. Then
rw(a) = r(aw) = r(wa), where r(·) denotes the spectral radius in R, and
rw(·) denotes the spectral radius in Rw. Consequently, a ∈ Rqnil

w , if and
only if aw ∈ Rqnil, if and only if wa ∈ Rqnil.

For the sake of completeness, we state and give a short proof of the
following result in Banach algebras. See also [6].

Theorem 3.6. Let R be a complex Banach algebra, and let w ∈ R be a
nonzero element. Then for a ∈ R the following statements are equivalent:

(a) a ∈ Rd
w and ad,w = b ∈ R.

(b) aw ∈ Rd and (aw)d = bw.

(c) wa ∈ Rd and (wa)d = wb.

The wg-Drazin inverse ad,w of a then satisfies

(3) ad,w = ((aw)d)2a = a((wa)d)2.

Proof. (a) =⇒ (b): Suppose that ad,w = b. The conditions a ∗ b = b ∗ a,
b∗a∗b = b, and a∗b∗a−a ∈ Rqnil

w , translate to awb = bwa, (bw)2a = b, and
t = (aw)2b − a ∈ Rqnil

w . Let c = bw. Then (aw)c = c(aw) and c2(aw) = c.
By Lemma 3.1, we have r(tw) = rw(t) = 0. Hence, (aw)2c − aw = tw is
quasinilpotent in R and (b) is proved, with (aw)d = c = bw.

(b) =⇒ (a): Assume that (aw)d = c. Let b = c2a. The equations
(aw)c = c(aw) and c2(aw) = c imply a ∗ b = awc2a = c2awa = b ∗ a and
b ∗ a ∗ b = (c2aw)(awc2)a = c2a = b. Write a ∗ b ∗ a− a = (awc2)awa− a =
cawa − a = s. Since sw = c(aw)2 − aw is quasinilpotent in R, we get
rw(s) = r(sw) = 0 and s is quasinilpotent in Rw. Therefore, a is wg-Drazin
invertible with ad,w = c2a.

Finaly, we mention that Theorem 2.3 is also valid if we suppose that R
is a Banach algebra, without the assumption w ∈ R−1.
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4 Weighted EP elements in rings

We recall the following definition of EP element [5].

Definition 4.1. An element a of a ring R with involution is said to be EP
if a ∈ Rd ∩ R† and ad = a†. An element a is generalized EP (or gEP for
short) if there exists k ∈ N such that ak is EP.

Now, we introduce the weighted EP and the weighted generalized EP
elements in rings.

Definition 4.2. An element a of a ring R with involution is said to be
weighted EP if a ∈ Rd

w ∩ R†w and ad,w = a†Rw
. An element a is weighted

generalized EP (or wgEP for short) if there exists k ∈ N such that ak is
weighted EP.

In the following theorem we prove the main characterization of EP ele-
ments in rings.

Theorem 4.1. Let R be a ring with involution and with the unit 1, and let
w ∈ R−1. For a ∈ R the following statements are equivalent:

(a) a is weighted EP.

(b) aw ∈ Rd ∩R†w∗,w∗ and (aw)d = (aw)†w∗,w∗.

(c) wa ∈ Rd ∩R†
w−1,w−1 and (wa)d = (wa)†

w−1,w−1.

Proof. (a) =⇒ (b): Suppose that a is weighted EP, i.e. a ∈ Rd
w ∩ R†w and

ad,w = a†Rw
≡ b. From a ∈ Rd

w and Theorem 3.2, we get aw ∈ Rd with
(aw)d = bw. Since a ∈ R†w and a†Rw

= b, by definition, we have

a ∗ b ∗ a = a, b ∗ a ∗ b = b, (a ∗ b)∗ = a ∗ b, (b ∗ a)∗ = b ∗ a,

i.e.
awbwa = a, bwawb = b, (awb)∗ = awb, (bwa)∗ = bwa.

Then, we get
awbwaw = aw,

bwawbw = bw,

(w∗awbw)∗ = w∗(awb)∗w = w∗awbw,

(w∗bwaw)∗ = w∗(bwa)∗w = w∗bwaw.
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Hence, aw ∈ R†w∗,w∗ and (aw)†w∗,w∗ = bw = (aw)d.
(b) =⇒ (a): Let aw ∈ Rd∩R†w∗,w∗ and (aw)d = (aw)†w∗,w∗ . By Theorem

3.2 and aw ∈ Rd, we have a ∈ Rd
w and b = ad,w. Since bw = (aw)d =

(aw)†w∗,w∗ , by definition of the weighted MP-inverse, we obtain

awbwaw = aw, bwawbw = bw,

(w∗awbw)∗ = w∗awbw, (w∗bwaw)∗ = w∗bwaw.

Now, we get
a ∗ b ∗ a = awbwaww−1 = aww−1 = a,

b ∗ a ∗ b = bwawbww−1 = bww−1 = b,

(a ∗ b)∗ = ((w∗)−1w∗awbww−1)∗ = (w∗)−1w∗awbww−1 = a ∗ b,

(b ∗ a)∗ = ((w∗)−1w∗bwaww−1)∗ = (w∗)−1w∗bwaww−1 = b ∗ a.

Thus, a ∈ Rd
w and a†Rw

= b = ad,w. So, a is weighted EP element.
(a) =⇒ (c): Suppose that a is weighted EP, i.e. a ∈ Rd

w ∩ R†w and
ad,w = a†Rw

≡ b. From a ∈ Rd
w and Theorem 3.2, we get wa ∈ Rd with

(wa)d = wb. By a ∈ R†w, we have

a ∗ b ∗ a = a, b ∗ a ∗ b = b, (a ∗ b)∗ = a ∗ b, (b ∗ a)∗ = b ∗ a,

i.e.
awbwa = a, bwawb = b, (awb)∗ = awb, (bwa)∗ = bwa.

Now, we obtain
wawbwa = wa,

wbwawb = wb,

(w−1wawb)∗ = (awb)∗ = awb = w−1wawb,

(w−1wbwa)∗ = (bwa)∗ = bwa = w−1wbwa.

Therefore, wa ∈ R†
w−1,w−1 and (wa)†

w−1,w−1 = wb = (wa)d.

(c) =⇒ (a): Assume that wa ∈ Rd∩R†
w−1,w−1 and (wa)d = (wa)†

w−1,w−1 .
By Theorem 3.2 and wa ∈ Rd, we have a ∈ Rd

w and b = ad,w. Since
wb = (wa)d = (wa)†

w−1,w−1 , we obtain

wawbwa = wa, wbwawb = wb,

(w−1wawb)∗ = w−1wawb, (w−1wbwa)∗ = w−1wbwa.
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Then, we get
a ∗ b ∗ a = w−1wawbwa = w−1wa = a,

b ∗ a ∗ b = w−1wbwawb = w−1wb = b,

(a ∗ b)∗ = (w−1wawb)∗ = w−1wawb = a ∗ b,

(b ∗ a)∗ = (w−1wbwa)∗ = w−1wbwa = b ∗ a.

Thus, a ∈ R†w and a†Rw
= b = ad,w. So, a is weighted EP element.

References
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