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0. Introduction
This is a reworking of our previous note [DZH], in which we deployed “Drazin permanence” and quasipo-

lar Banach algebra elements in the proof of a variant of the “spectral permanence” enjoyed by C* algebras.
Here we use instead “simple permanence” and simply polar elements of semigroups and rings: we believe
that the argument is now more transparent and more elementary.

1. Generalized permanence
If T : A → B is a “semigroup homomorphism” [DZH] then there is inclusion

1.1 T (A−1) ⊆ B−1 ⊆ B ,

where A−1 is the invertible group of A, and hence also

1.2 A−1 ⊆ T−1B−1 ⊆ A ;

equality here is what is known as the “Gelfand property”, or spectral permanence, for the homomorphism
T :

1.3 T−1B−1 ⊆ A−1 .

More generally the “relatively regular” elements

1.4 A∩ = {a ∈ A : a ∈ aAa}
satisfy

1.5 A−1 = A−1
left ∩A−1

right ⊆ A−1
left ∪A−1

right ⊆ A∩ ,

and if T : A → B is a semigroup homomorphism then

1.6 T (A∩) ⊆ B∩ ⊆ B ,

and hence

1.7 A∩ ⊆ T−1B∩ ⊆ A .

Equality in this case will be described as generalized permanence for T :

1.8 T−1B∩ ⊆ A∩ .

We recall [DZH] that spectral permanence does not in general imply generalized permanence:

Theorem 1 For ring homomorphisms T : A → B there is implication

spectral and generalized permanence together imply one-one .

Proof. Generally T : A → B has spectral permanence only if

1.9 T−1(0) ⊆ Rad(A) ,

has generalized permanence only if

1.10 T−1(0) ⊆ A∩ ,

and evidently

1.11 Rad(A)∩A
∩ = O ≡ {0} ,

where

1.12 Rad(A) = {a ∈ A : 1−Aa ⊆ A−1} •
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2. Simple polarity
If a ∈ A has a commuting generalized inverse we shall call it “group invertible” or simply polar:

2.1 SP(A) = {a ∈ A : a ∈ a comm(a)a} .

If T : A → B is a homomorphism then

2.2 TSP(A) ⊆ SP(B) ⊆ B ,

equivalently

2.3 SP(A) ⊆ T−1SP(B) ⊆ A .

When there is equality here we say that T has simple permanence. If we think of the counterimage T−1B−1

as in some sense “Fredholm” elements of the semigroup A, then the counterimage T−1SP(B) abstracts what
Caradus [C] and Schmoeger [S] have called generalized Fredholm operators.

Necessary and sufficient for a ∈ A to be simply polar is [X],[HLu] that

2.4 a ∈ Aa2∩a
2A :

recall
a2u = a = va2 =⇒ aua = a = ava

and take c = vau for a “group inverse”. Also necessary and sufficient for a ∈ SP(A), in rings, is ([S];[KDH]
Theorem 5) that there be a “semigroup inverse”, c ∈ A for which

2.5 a = aca ; 1− ac− ca ∈ A−1 .

Notice also

2.6 SP(A) ⊆ A∪ = {a ∈ A : a ∈ aA−1a} :

observe that a+ (1− ac) and cac+ (1− ac) are mutually inverse. It follows

2.7 SP(A)∩A
−1
left = A−1 = SP(A)∩A

−1
right .

Theorem 2 If the semigroup A is commutative and the range

2.8 T (A)∩B
−1
left \B

−1 ̸= ∅
then T : A → B does not have generalized permanence. It follows that spectral permanence and one one do
not together imply generalized permanence.

Proof. If A is commutative then, using (2.7),

2.9 T (a) ∈ B∩ \ SP(B) =⇒ a ̸∈ A∩ ,

violating generalized permanence. In particular if

2.10 T = J : A = comm2
B(a) ⊆ B

then T is one one and has spectral permanence, while

2.11 a ∈ B−1
left \B

−1 =⇒ a ∈ B∩ \ SP(B) •
For a specific example ([DZH] Theorem 3.2) take a ∈ B = B(ℓ2) to be the (forward) unilateral shift.
Alternatively, replace the natural embedding J by the left regular representation L. For another example

look at the embedding, for a compact Hausdorff space X,

2.12 C(X) ⊆ CX ,

or alternatively, for a Banach space X,

2.13 B(X) ⊆ L(X) ;

here of course spectral permanence follows from the open mapping theorem.

Theorem 3 When T : A → B is a ring homomorphism then

2.14 T one one with spectral permanence =⇒ T has simple permanence .

Proof. The last implication is the argument of Theorem 1; conversely observe

2.15 SP(A)∩T
−1B−1

left ⊆ A∪
∩T

−1B−1
left ⊆ A−1 + T−1(0) •

In general (2.12) spectral permanence and one one do not guarantee simple permanence.
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3. Simply polar operators
When a ∈ A = L(X) is in the ring of additive maps on an abelian group X then necessary and sufficient

that a ∈ SP(A) is that it is both “of ascent 1”, in the sense that

3.1 a−2(0) ⊆ a−1(0) ,

equivalently

3.2 a−1(0)∩a(X) = O ,

and also “of descent 1”, in the sense that

3.3 a(X) ⊆ a2(X) ,

equivalently

3.4 a−1(0) + a(X) = X .

The same conditions characterise simple polarity in the ring of linear mappings on a vector space, and also in
the ring A = B(X) of bounded linear mappings on a Banach space: here however two or three applications
of the open mapping theorem are necessary. For incomplete normed spaces however the conditions (3.1) and
(3.3), even together with relative regularity a ∈ A∩, are not in general sufficient:

Theorem 4 If a ∈ A is arbitrary in the ring A then, with

3.5 b =

(
a −1
0 0

)
∈ B =

(
A A
A A

)
, d =

(
0 −1
−1 0

)
∈ B ,

then automatically
b = bdb ∈ B∩ ,

while there is implication
b ∈ Bb2 =⇒ a ∈ A−1

left ,

and also implication
b ∈ b2B =⇒ a ∈ A−1

right .

Hence
b ∈ SP(B) =⇒ a ∈ A−1 .

Proof. Look at the top right hand corner element •
For example ([H] (7.3.6.8)) we may take A = B(X) with X = c00 ⊆ c0 the space of “terminating

sequences”, and a = w ∈ A the “standard weight”

w(x)n = (1/n)xn .

When A = B(X) for a normed space X and a ∈ A is of ascent and descent one then [X] each of the
following conditions is sufficient for simple polarity:

X complete ;

a ∈ A Fredholm ;

a ∈ A finite rank ;

b ∈ X a normed algebra and a ∈ {Lb, Rb} ⊆ B(X) .
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4. Koliha-Drazin permanence
More generally if there is n ∈ N for which an is simply polar we shall also say that a ∈ A is “polar”,

or Drazin invertible. If a ∈ A is polar then there is c ∈ A for which ac = ca and a− aca is nilpotent. More
generally still if we write, in a Banach algebra A,

4.1 QN(A) = {a ∈ A : 1−Ca ⊆ A−1}

for the quasinilpotents of A, then a ∈ QN(A) if and only if σA(a) ⊆ {0}, while with some complex analysis
we can prove that if a ∈ QN(A) then

4.2 ∥an∥1/n → 0 (n → ∞) .

Since (4.1) and (4.2) are equivalent it follows that also equivalent [H2],[K] is the condition

4.3 QN(A) = {a ∈ A : 1− comm(a)a ⊆ A−1} .

In the ultimate generalization of “group invertibility”, we shall write QP(A) for the quasipolar elements
a ∈ A, those which have a spectral projection, q ∈ A for which

4.4 q = q2 ; aq = qa ; a+ q ∈ A−1 ; aq ∈ QN(A) .

Now [K] the spectral projection and the Koliha-Drazin inverse

4.5 a• = q , a× = (a+ q)−1(1− q)

are uniquely determined and lie in the double commutant of a ∈ A. It is easy to see that if (4.4) is satisfied
then

4.6 0 ̸∈ acc σA(a) :

the origin cannot be an accumulation point of the spectrum; conversely if (4.6) holds then we can display
the spectral projection as a sort of “vector-valued winding number”

4.7 a• =
1

2πi

∮
0

(z − a)−1dz ,

where we integrate counter clockwise round a small circle γ centre the origin whose connected hull ηγ is a
disc whose intersection with the spectrum is at most the point {0}. By the same technique we can display
the Koliha-Drazin inverse in the form

4.8 a× =
1

2πi

∮
σ′(a)

z−1(z − a)−1dz ,

where σ′(a) = σ(a) \ {0}. Now generally for a homomorphism T : A → B there is inclusion

4.9 T QP(A) ⊆ QP(B) ,

while if T : A → B has spectral permanence in the sense (1.3) then it is clear from (4.6) that there is also
“Drazin permanence” in the sense that

4.10 QP(A) = T−1QP(B) ⊆ A :
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Theorem 5 For Banach algebra homomorphisms T : A → B there is implication

4.11 spectral permanence =⇒ Drazin permanence.

Proof. Equality in (1.3), expressed [DZH] in terms of the spectrum, together with (4.6) •
We recall ([DZH] Theorem 2) that in (2.11) the shift a ∈ B∩ \QP(B).
As a sort of converse to Theorem 5, and squaring the circle in Theorem 3,

Theorem 6 If T : A → B is a Banach algebra homomorphism then

4.12 QP(A)∩T
−1(B−1) ⊆ A−1 + T−1(0)

and if T : A → B is one one then

4.13 QP(A)∩T
−1SP(B) = SP(A) .

Hence if a ∈ B and T = J : A = comm2(a) ⊆ B then

4.14 A∩ = T−1SP(B) .

Hence if T−1(0) = {0} is one one then

4.15 Drazin =⇒ simple =⇒ spectral permanence .

Proof. Uniqueness guarantees that the spectral projection T (a)• of Ta ∈ SP(B) ⊆ QP(B) commutes with
T (a) ∈ B, and one-one-ness guarantees the same for a ∈ A •
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5. Moore-Penrose permanence
By a star semigroup we shall understand a semigroup A with an involution, ∗ : A → A satisfying, for

arbitrary a, c ∈ A,

5.1 (a∗)∗ = a ; (ca)∗ = a∗c∗ ; 1∗ = 1 .

In rings and algebras involutions are assumed to be additive, and “conjugate linear”. Obviously there is
implication

5.2 a ∈ H(A) =⇒ a∗ ∈ H(A)

for each H(A) ∈ {A−1, A∩,SP(A)}. Elements a ∈ A are said to be hermitian or “real” when they are the
same as their adjoints:

5.3 Re(A) = {a ∈ A : a∗ = a} .

A Moore-Penrose inverse for a ∈ A is c = a† ∈ A for which the induced idempotents are hermitian:

5.4 a = aca ; c = cac ; (ca)∗ = ca ; (ac)∗ = ac .

We write A† ⊆ A∩ for those a ∈ A for which a† exists. The argument ([HM] Theorem 5) for “C* algebras”
works in semigroups [X2], and says that

5.5 a† ∈ comm2(a, a∗)

is unique and double commutes with {a, a∗} in A. The “B* condition”, in a Banach algebra A, says that

5.6 ∥a∗a∥ = ∥a∥2 .

It follows
a, x ∈ A =⇒ ∥ax∥2 ≤ ∥x∗∥ ∥a∗ax∥

and hence that * is cancellable in the sense that

5.7 a ∈ A =⇒ L−1
a∗a(0) ⊆ L−1

a (0) ;

in words ([HLa] Definition 1) the pair (La∗ , La) is “left skew exact”. We need one more object: the “star
polars”

5.8 SP∗(A) = {a ∈ A : a∗a ∈ A∩} .

Our main objective is to prove again the Harte/Mbekhta observation ([HM[ Theorem 6) that in a C*
algebra A

5.9 A∩ ⊆ A† ,

relatively regular elements always have Moore-Penrose inverse, and that [HM2] isometric C* algebra homo-
morphisms have generalized permanence. We begin by collecting some elementary observations:

Theorem 7 If the involution ∗ : A → A is cancellable then there is inclusion

5.10 A† ⊆ SP∗(A) ⊆ A∩ ,

Proof. With cancellation there is implication

a ∈ SP∗(A) =⇒ a ∈ aAa∗a ⊆ Aa∗a∩aAa ,

and equality
Re(A)∩SP

∗(A) = Re(A)∩SP(A) .

If a = aca ∈ A† with a† = c then

a∗a = a∗(ac)(ac)∗a = a∗acc∗a∗a ∈ a∗aAa∗a ;

conversely (5.7)
a∗a = a∗ada∗a =⇒ a = ada∗a ;

hence also
a ∈ Aa∗a , ⇐⇒ a∗ ∈ a∗aA .

Hence if a∗ = a then (2.4) follows •
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Now it is clear that isometric C* homomorphisms have “Moore-Penrose permanence”:

Theorem 8 If T : A → B is a * homomorphism with simple permanence there is inclusion

5.11 T−1B† ⊆ A† .

Proof. We claim
A† = {a ∈ A : a∗a ∈ SP(A)} ,

with implication
a∗a ∈ SP(A) =⇒ a† = (a∗a)×a∗ .

If a ∈ A† with a = aca and (ca)∗ = ca and (ac)∗ = ac then, with d = cc∗, we have

a∗ad = a∗acc∗ = a∗c∗a∗c∗ = ca

and
da∗a = cc∗a∗a = ca .

Conversely if a∗a = a∗ada∗a with a∗ad = da∗a and (wlog: d 7→ 1
2 (d+ d∗)) d = d∗ then, with c = da∗,

aca = ada∗a = a and ca = da∗a = a∗ad = a∗c∗ .

Now if a ∈ A there is, using Theorem 3, implication

Ta ∈ B† =⇒ T (a∗a) ∈ SP(B) =⇒ a∗a ∈ SP(A) =⇒ a ∈ A† •

Thanks to (5.9), this is of course “generalized permanence”. The Harte/Mbekhta result is derived by
using the “poor man’s path” to convert the idempotents ca and ac into self adjoint idempotents. Alterna-
tively, thanks to the Gelfand/Naimark/Segal representation, we can look first in the very special algebra
D = B(X) of bounded Hilbert space operators:

Theorem 9 If d ∈ D = B(X) for a Hilbert space X then

5.12 (d∗d)−1(0) ⊆ d−1(0)

and

5.13 cl d(X) + d∗−1(0) = X ;

hence

5.14 cl d(X) = d(X) =⇒ d∗(X) = d∗d(X) ,=⇒ cl d∗d(X) = d∗d(X) .

There is inclusion

5.15 Re(D)∩D
∩ ⊆ SP(D) ;

hence

5.16 d ∈ D∩ =⇒ d ∈ SP∗(D) =⇒ d∗d ∈ SP(D) =⇒ d ∈ D† .

Proof. For arbitrary ξ ∈ X there is [DZH] inequality

∥dξ∥2 ≤ ∥ξ∥ ∥d∗dξ∥ ,

and also
cl d(X) = d∗−1(0)⊥ •

Both of the Harte/Mbekhta observations now follow:

Theorem 10 If T : A → B is isometric then

5.17 T−1(B∩) ⊆ A† .

Proof. With S : B → D = B(X) a GNS mapping we argue, using again Theorem 3,

Ta ∈ B∩ =⇒ ST (a∗a) ∈ SP(D) =⇒ a∗a ∈ SP(A) =⇒ a ∈ A† •

In Theorem 4.1 of [DZH] we established this using the more esoteric QP(A) rather than SP(A). It would
be entertaining to be able to replace the GNS representation in Theorem 9 with the much more elementary
left regular representation L : A → B(A).
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6. Polar decomposition
We conclude with a discussion of the “polar decomposition” of C* algebra elements. In the algebra

of operators A = B(X) it is familiar that an arbitrary element a ∈ A can be written as the product of a
“partial isometry” and a positive operator. It is not clear that this can be done in a general C* algebra: for
example if A = C[0, 1] there are only two idempotents in A and hence only two possible partial isometries.
We want here to observe that [H3] at least the Moore-Penrose invertibles have polar decomposition. By a
generalized polar decomposition for an element a ∈ A of a C* algebra we shall understand a pair (u, c) ∈ A2

for which a = uc with

6.1 u = uu∗u ;

6.2 c = c∗ ;

6.3 L−1
u (0) ⊆ L−1

c (0) .

If in addition

6.4 0 ≤ c and L−1
c (0) ⊆ L−1

u (0)

then we shall say that (u, c) a polar decomposition of a ∈ A. We claim ([H3] Theorem 4)

Theorem 11 If (u, c) ∈ A2 is a generalized polar decomposition of a ∈ A then

6.5 a∗a = c2 and u∗a = c .

If (u, c) is a polar decomposition of a then each of u and c are uniquely determined and lie in the double
commutant of (a, a∗). Also

6.6 aa∗u = ua∗a .

Proof. For the first part of (6.5) observe that

u∗uc− c ∈ L−1
u (0) ⊆ L−1

c (0) ;

now
(u∗a− c)∗(u∗a− c) = c(u∗u− 1)2c = 0 ,

and the second part of (6.5) follows by cancellation. When (u, c) is a polar decomposition then the positivity
gives the uniqueness of c:

6.7 c = |a| = (a∗a)1/2 .

The uniqueness of u∗u and uu∗ follows from their status as “support” and “cosupport” projections for a; for
the uniqueness of u suppose a = uc = vc satisfying (6.1)-(6.4): then

(1− v∗u)c = 0 =⇒ c(1− u∗v) = 0 , =⇒ u(1− u∗v) = 0 .

Now
u∗u = u∗uuv , =⇒ u∗(u− v) = 0 ,

similarly v∗(u− v) = 0, and hence v = u by cancellation.
It is clear from (6.7) that c is in the double commutant of (a, a∗), as are also the support and cosupport

u∗u and uu∗. Finally if d ∈ comm(a, a∗) then it also commutes with each of c, u∗u and uu∗ and hence

cu∗d = dcu∗ = cdu∗ =⇒ uu∗d = udu∗ =⇒ duu∗ = uu∗d = udu∗

and hence
du = duu∗uudu∗u = uu∗ud = ud .

Finally, for (6.6),
aa∗u = uc2u∗u = ua∗au∗u = ua∗a •
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We shall write

6.8 (u, c) = (sgn(a), |a|) .

Evidently, taking limits of polynomials in a∗a,

6.9 |a∗|u = u|a| ;

It follows

6.10 (sgn(a∗), |a∗|) = (sgn(a)∗, sgn(a)|a|sgn(a)∗) .

We can characterise ([H3] Theorem 5) relative regularity in terms of the polar decomposition:

Theorem 12 If a ∈ A† ⊆ A has a Moore-Penrose inverse then it has a polar decomposition, with

6.11 sgn(a) = (a†)∗|a| .

If a ∈ A has polar decomposition (u, c) then

6.12 d = c+ 1− u∗u =⇒ L−1
d (0) = {0} ,

and

6.13 a ∈ A† =⇒ d ∈ A−1 =⇒ a ∈ A∩ .

Proof. We argue, with c = a† and u = c∗|a|, that

uu∗u = c∗|a|2cc∗a = c∗a∗acc∗|a| = (ac)∗(ac)c∗|a| = c∗a∗c∗|a| = c∗|a|

and
u|a| = c∗|a|2 = c∗a∗a = (ac)a = a .

If x ∈ A is arbitrary there is implication

dx = 0 =⇒ ucx = 0 =⇒ cx = 0 = u∗ucx = 0 =⇒ u8ux = 0 = (1− u∗u)x = 0 .

Also
d ∈ A−1 =⇒ ad−1u∗a = udd−1a∗a = ua∗a = a .

Conversely if a ∈ A† then a†a = u∗u and aa† = uu∗ and hence

d′ = (a†a+ 1− u∗u) =⇒ dd′ = 1 = d′d •
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