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Abstract

We investigate some equivalent conditions for the reverse order laws
(ab)# = b†a# and (ab)# = b#a† in rings with involution. Similar
results for (ab)# = b#a∗ and (ab)# = b∗a# are presented too.
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1 Introduction

Let R be an associative ring with the unit 1, and let a ∈ R. Then a is group
invertible if there is a# ∈ R such that

(1) aa#a = a, (2) a#aa# = a#, (5) aa# = a#a;

a# is a group inverse of a and it is uniquely determined by these equations.
The group inverse a# double commutes with a, that is, ax = xa implies
a#x = xa# [1]. Denote by R# the set of all group invertible elements of R.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R is self-adjoint (or Hermitian) if a∗ = a.
The Moore–Penrose inverse (or MP-inverse) of a ∈ R is the element

a† ∈ R, if the following equations hold [9]:

(1) aa†a = a, (2) a†aa† = a†, (3) (aa†)∗ = aa†, (4) (a†a)∗ = a†a.

∗The authors are supported by the Ministry of the Ministry of Education and Science,
Republic of Serbia, grant no. 174007.
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There is at most one a† such that above conditions hold. The set of all
Moore–Penrose invertible elements of R will be denoted by R†.

If δ ⊂ {1, 2, 3, 4, 5} and b satisfies the equations (i) for all i ∈ δ, then b
is an δ–inverse of a. The set of all δ–inverse of a is denoted by a{δ}. Notice
that a{1, 2, 5} = {a#} and a{1, 2, 3, 4} = {a†}. If a is invertible, then a#

and a† coincide with the ordinary inverse a−1 of a. The set of all invertible
elements of R will be denoted by R−1.

For a ∈ R consider two annihilators

a◦ = {x ∈ R : ax = 0}, ◦a = {x ∈ R : xa = 0}.

For invertible elements a, b ∈ R, the inverse of the product ab satisfied
the reverse order law (ab)−1 = b−1a−1. A natural consideration is to see
what will be obtained if we replace the inverse by other type of generalized
inverses. The reverse order laws for various generalized inverses yield a class
of interesting problems which are fundamental in the theory of generalized
inverses. They have attracted considerable attention since the middle 1960s,
and many interesting results have been obtained [1, 2, 3, 4, 5, 6].

C.Y. Deng [3] presented some necessary and sufficient conditions con-
cerning the reverse order law (ab)# = b#a# for the group invertible linear
bounded operators a and b on a Hilbert space. He used the matrix form of
operators induced by some natural decomposition of Hilbert spaces.

Inspired by [3], in this paper we present equivalent conditions which are
related to the reverse order laws for the group inverses in rings with in-
volution. In particular, we obtain equivalent conditions for (ab)# = b#a†

and (ab)# = b†a# to hold. We also characterize the rules (ab)# = b#a∗

and (ab)# = b∗a#. Assuming that a is Moore-Penrose invertible, and that
b is group invertible, we study the reverse order laws (ab)# = (a†ab)#a†,
(ab)# = (a∗ab)#a∗, (a†ab)# = b#a†a, (a∗ab)# = b#a†a, (a†ab)#a† = b#a†

and (a∗ab)#a∗ = b#a∗. When we suppose that a is group invertible and b
is Moore-Penrose invertible, we get similar results for the reverse order laws
(ab)# = b†(abb†)#, (ab)# = b∗(abb∗)#, (abb†)# = bb†a#, (abb∗)# = bb†a#,
b†(abb†)# = b†a# and b∗(abb∗)# = b∗a#. Also, we show that (ab){5} ⊆
(a†ab){1, 5} · a† is equivalent to (ab){5} = (a†ab){1, 5} · a† and similar
statements for (ab){5} ⊆ (a∗ab){1, 5} · a∗, (ab){5} ⊆ b† · (abb†){1, 5} and
(ab){5} ⊆ b∗ · (abb∗){1, 5}.
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2 Reverse order laws involving triple products

Several equivalent conditions for (ab)# = (a†ab)#a† and (ab)# = (a∗ab)#a∗

to hold are presented in the following theorems.

Theorem 2.1. Let b ∈ R and a ∈ R†. If a†ab ∈ R#, then the following
statements are equivalent:

(i) ab ∈ R# and (ab)# = (a†ab)#a†,

(ii) (a†ab)#a† ∈ (ab){5},

(iii) abaa† = ab and (a†ab)#a†aba = ab(a†ab)#a†a,

(iv) (a†ab){1, 5} · a† ⊆ (ab){5}.

Proof. (i) ⇒ (ii): Obviously.
(ii)⇒ (iii): From the condition (a†ab)#a† ∈ (ab){5}, we have ab(a†ab)#a† =

(a†ab)#a†ab. So, ab(a†ab)#a†a = (a†ab)#a†aba. Observe that (a†ab)#a† ∈
(ab){1}, by

ab(a†ab)#a†ab = a(a†ab(a†ab)#a†ab) = aa†ab = ab. (1)

Now, we get

abaa† = abab(a†ab)#a†aa† = abab(a†ab)#a† = ab.

(iii) ⇒ (iv): Assume that abaa† = ab and (a†ab)#a†aba = ab(a†ab)#a†a.
If (a†ab)(1,5) ∈ (a†ab){1, 5}, then

a†ab(a†ab)(1,5) = (a†ab)#a†ab(a†ab(a†ab)(1,5)) = (a†ab)#(a†ab(a†ab)(1,5)a†ab)

= (a†ab)#a†ab. (2)

Using the equalities (2) and (iii), we obtain that (a†ab)(1,5)a† ∈ (ab){5}:

ab(a†ab)(1,5)a† = a(a†ab(a†ab)(1,5))a† = aa†ab(a†ab)#a†

= (ab(a†ab)#a†a)a† = (a†ab)#a†(abaa†)

= (a†ab)#a†ab = (a†ab)(1,5)a†ab.

Hence, for any (a†ab)(1,5) ∈ (a†ab){1, 5}, (a†ab)(1,5)a† ∈ (ab){5} and the
statement (iv) holds.

(iv) ⇒ (i): Since (a†ab)# ∈ (a†ab){1, 5}, by (iv), (a†ab)#a† ∈ (ab){5}.
The equalities (1) and

((a†ab)#a†ab(a†ab)#)a† = (a†ab)#a†

imply (a†ab)#a† ∈ (ab){1, 2} and the condition (i) is satisfied.
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Theorem 2.2. Let b ∈ R and a ∈ R†. If a∗ab ∈ R#, then the following
statements are equivalent:

(i) ab ∈ R# and (ab)# = (a∗ab)#a∗,

(ii) (a∗ab)#a∗ ∈ (ab){5},

(iii) abaa† = ab and (a∗ab)#a∗aba = ab(a∗ab)#a∗a,

(iv) (a∗ab){1, 5} · a∗ ⊆ (ab){5}.

Proof. Using a = (a†)∗a∗a and a∗ = a∗aa†, we verify this result similarly as
in Theorem 2.1.

The following results concerning (ab)# = b†(abb†)# and (ab)# = b∗(abb∗)#

are actually dual to Theorems 2.1 and 2.2, where dual means ”working in
the opposite ring (R, ◦) with reverse multiplication a ◦ b = ba”.

Corollary 2.1. Let a ∈ R and b ∈ R†. If abb† ∈ R#, then the following
statements are equivalent:

(i) ab ∈ R# and (ab)# = b†(abb†)#,

(ii) b†(abb†)# ∈ (ab){5},

(iii) b†bab = ab and babb†(abb†)# = bb†(abb†)#ab,

(iv) b† · (abb†){1, 5} ⊆ (ab){5}.

Corollary 2.2. Let a ∈ R and b ∈ R†. If abb∗ ∈ R#, then the following
statements are equivalent:

(i) ab ∈ R# and (ab)# = b∗(abb∗)#,

(ii) b∗(abb∗)# ∈ (ab){5},

(iii) b†bab = ab and babb∗(abb∗)# = bb∗(abb∗)#ab,

(iv) b∗ · (abb∗){1, 5} ⊆ (ab){5}.

In the following theorem, we prove that (ab){5} ⊆ (a†ab){1, 5} · a† is
equivalent to (ab){5} = (a†ab){1, 5} · a†.

Theorem 2.3. Let b ∈ R and a ∈ R†. If ab, a†ab ∈ R#, then the following
statements are equivalent:

(i) (ab){5} ⊆ (a†ab){1, 5} · a†,
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(ii) (ab){5} = (a†ab){1, 5} · a†.

Proof. (i) ⇒ (ii): Assume that (ab){5} ⊆ (a†ab){1, 5} · a†. Because (ab)# ∈
(ab){5}, then there exists (a†ab)(1,5) ∈ (a†ab){1, 5} such that (ab)# =
(a†ab)(1,5)a†. Since the equalities (2) hold again, we obtain

(a†ab)# = (a†ab)#a†ab(a†ab)# = (a†ab)(1,5)a†ab(a†ab)(1,5)

which implies

(a†ab)†a† = ((a†ab)(1,5)a†)ab((a†ab)(1,5)a†) = (ab)#ab(ab)# = (ab)#.

By Theorem 2.1, we deduce that (a†ab){1, 5} · a† ⊆ (ab){5}. Hence, the
condition (ii) holds.

(ii) ⇒ (i): This is obvious.

Analogously to Theorem 2.3, we obtain the following theorem.

Theorem 2.4. Let b ∈ R and a ∈ R†. If ab, a∗ab ∈ R#, then the following
statements are equivalent:

(i) (ab){5} ⊆ (a∗ab){1, 5} · a∗,

(ii) (ab){5} = (a∗ab){1, 5} · a∗.

Applying Theorems 2.3 and 2.4 to the opposite ring (R, ◦), we get the
dual statements.

Corollary 2.3. Let a ∈ R and b ∈ R†. If ab, abb† ∈ R#, then the following
statements are equivalent:

(i) (ab){5} ⊆ b† · (abb†){1, 5},

(ii) (ab){5} = b† · (abb†){1, 5}.

Corollary 2.4. Let a ∈ R and b ∈ R†. If ab, abb∗ ∈ R#, then the following
statements are equivalent:

(i) (ab){5} ⊆ b∗ · (abb∗){1, 5},

(ii) (ab){5} = b∗ · (abb∗){1, 5}.

Now, we consider the conditions which ensure that the reverse order laws
(a†ab)# = b#a†a and (abb†)# = bb†a# hold.
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Theorem 2.5. If a ∈ R† and b ∈ R#, then the following statements are
equivalent:

(i) a†ab ∈ R# and (a†ab)# = b#a†a,

(ii) a†ab = ba†a.

Proof. (i) ⇒ (ii): From the assumption (a†ab)# = b#a†a, we obtain

a†abb#a†a = b#a†aa†ab = b#a†ab (3)

and
b#a†a = b#a†a(a†ab)b#a†a = b#(a†abb#a†a) = b#b#a†ab. (4)

The equalities (3) and (4) imply

ba†a = b2(b#a†a) = b2b#b#a†ab = bb#a†ab. (5)

and
(a†abb#a†a)b = b#a†abb = b(b#b#a†ab)b = bb#a†ab. (6)

Since

a†ab = a†ab(a†ab)#a†ab = a†abb#a†aa†ab = a†abb#a†ab,

by (6) and (5), we get

a†ab = bb#a†ab = ba†a.

Hence, the condition (ii) holds.
(ii) ⇒ (i): Assume that a†ab = ba†a. Because the group inverse b#

double commutes with b, we deduce that a†ab# = b#a†a and a†abb# =
bb#a†a. We can easily verify that b#a†a ∈ (a†ab){1, 2, 5}.

Remark 2.1 Applying Theorem 2.5 with a projection p = a†a (hence
p = p#), for b ∈ R#, we recover the equivalence pb ∈ R# and (pb)# = b#p
⇔ pb = bp.

Dually to Theorem 2.5, we can check the following result.

Corollary 2.5. If a ∈ R# and b ∈ R†, then the following statements are
equivalent:

(i) abb† ∈ R# and (abb†)# = bb†a#,

(ii) abb† = bb†a.
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Notice that the condition (ii) of Theorem 2.5 can be written as aπl b = baπl ,
where aπl = 1−a†a. The condition abb† = bb†a of Corollary 2.5 is equivalent
to abπr = bπr a, where bπr = 1− bb†. If a is EP element (a ∈ R† and a†a = aa†

or equivalently a ∈ R†∩R# and a† = a#), then aπ = aπl = aπr is the spectral
idempotent of the element a.

The following results give the equivalent conditions to (a∗ab)# = b#a†a
and (abb∗)# = bb†a#.

Theorem 2.6. If a ∈ R† and b, a∗ab ∈ R#, then the following statements
are equivalent:

(i) (a∗ab)# = b#a†a,

(ii) a∗ab = ba†a.

Proof. (i) ⇒ (ii): Suppose that (a∗ab)# = b#a†a. Then

b#a†a = b#a†a(a∗ab)b#a†a = b#(a∗abb#a†a) = b#b#a†aa∗ab = b#b#a∗ab

gives

a∗ab = (a∗ab)#a∗aba∗ab = b#a†aa∗aba∗ab = b(b#b#a∗ab)a∗ab

= bb#a†aa∗ab = bb#a∗ab = bb(b#b#a∗ab) = bbb#a†a = ba†a.

(ii) ⇒ (i): If a∗ab = ba†a, we get

a∗ab = ba†a = bb#(ba†a) = bb#a∗ab.

Now, from

(a∗ab)# = (a∗ab)[(a∗ab)#]2 = bb#a∗ab[(a∗ab)#]2

= bb#a†a(a∗ab[(a∗ab)#]2) = bb#a†a(a∗ab)#

and

b#a†a = b#b#(ba†a) = b#b#(a∗ab) = b#b#(a∗ab)a∗ab(a∗ab)#

= b#b#ba†aa∗ab(a∗ab)# = b#(a∗ab)(a∗ab)# = b#ba†a(a∗ab)#,

we obtain that (a∗ab)# = b#a†a.

The dual statement to Theorem 2.6 also holds.

Corollary 2.6. If b ∈ R† and a, abb∗ ∈ R#, then the following statements
are equivalent:
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(i) (abb∗)# = bb†a#,

(ii) abb∗ = bb†a.

In the following theorem, we give necessary and sufficient conditions for
(a†ab)#a† = b#a† to be satisfied.

Theorem 2.7. If a ∈ R† and b, a†ab ∈ R#, then the following statements
are equivalent:

(i) (a†ab)#a† = b#a†,

(ii) ba†a = a†aba†a,

(iii) ba†aR ⊆ a∗R (or ◦(a∗) ⊆ ◦(ba†a) ).

Proof. (i) ⇒ (ii): Let (a†ab)#a† = b#a†. Now the equality

a†ab = a†ab(a†ab)#a†ab = ((a†ab)#a†)aba†ab = b#a†aba†ab

implies

(a†ab)a†a = b#a†aba†aba†a = b#b(b#a†aba†ab)a†a

= b#ba†aba†a = b(b#a†)aba†a = b((a†ab)#a†ab)a†a

= ba†ab((a†ab)#a†)a = ba†abb#a†a.

Using this equality and

b#a† = (a†ab)#a† = (a†ab)#a†ab(a†ab)#a† = b#a†abb#a†,

we obtain

a†aba†a = ba†abb#a†a = b2(b#a†abb#a†)a = b2b#a†a = ba†a.

So, the statement (ii) is satisfied.
(ii) ⇒ (i): Applying the hypothesis ba†a = a†aba†a, we get

b#a† = b#b#(ba†a)a† = b#b#(a†ab)a†aa† = b#b#a†ab((a†ab)#a†ab)a†

= b#b#(a†aba†a)b(a†ab)#a† = b#b#ba†ab(a†ab)#a†

= b#a†ab(a†ab)#a†. (7)

Since

(a†ab)# = a†ab[(a†ab)#]2 = a†a(a†ab[(a†ab)#]2) = a†a(a†ab)#,
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then

(a†ab)#a† = (a†aba†a)b[(a†ab)#]3a† = ba†ab[(a†ab)#]3a†

= bb#(ba†a)b[(a†ab)#]3a† = bb#a†aba†ab[(a†ab)#]3a†

= bb#a†a(a†aba†ab[(a†ab)#]3)a† = b#(ba†a)(a†ab)#a†

= b#a†ab(a†a(a†ab)#)a† = b#a†ab(a†ab)#a†,

which yields, by (7), (a†ab)#a† = b#a†.
(ii) ⇔ (iii): The condition ba†a = a†aba†a gives ba†aR ⊆ a†R = a∗R.

Conversely, from ba†aR ⊆ a∗R, we conclude that ba†a = a∗x for some
x ∈ R. Now, ba†a = a∗x = a†a(a∗x) = a†aba†a.

Obviously, for condition (ii) of Theorem 2.7, we have ba†a = a†aba†a ⇔
aπl b(1− aπl ) = 0 ⇔ aπl b(1− aπl ) = (1− aπl )a

π
l b.

The following theorem can be proved in the similar manner as Theorem
2.7.

Theorem 2.8. If a ∈ R† and b, a∗ab ∈ R#, then the following statements
are equivalent:

(i) (a∗ab)#a∗ = b#a∗,

(ii) ba∗a = a∗aba∗a (or ba†a = a∗aba†a ).

Using Theorems 2.7 and 2.8 to the opposite ring, we obtain the dual
results.

Corollary 2.7. If b ∈ R† and a, abb† ∈ R#, then the following statements
are equivalent:

(i) b†(abb†)# = b†a#,

(ii) bb†a = bb†abb†,

(iii) Rbb†a ⊆ Rb∗ (or (b∗)◦ ⊆ (bb†a)◦).

Note that bb†a = bb†abb† ⇔ (1−bπr )ab
π
r = 0 ⇔ (1−bπr )ab

π
r = abπr (1−bπr ).

Corollary 2.8. If b ∈ R† and a, abb∗ ∈ R#, then the following statements
are equivalent:

(i) b∗(abb∗)# = b∗a#,

(ii) bb∗a = bb∗abb∗ (or bb†a = bb†abb∗ ).

Notice that the conditions of Theorem 2.5 (Theorem 2.6, Corollary 2.5,
Corollary 2.6, respectively) imply the conditions of Theorem 2.7 (Theorem
2.8, Corollary 2.7, Corollary 2.8, respectively)

9



3 Reverse order laws (ab)# = b#a† and (ab)# = b#a∗

Assuming that a is Moore-Penrose invertible, and that b is group invertible
in a ring with involution, equivalent conditions to the reverse order law
(ab)# = b#a† are presented in the following theorem.

Theorem 3.1. If a ∈ R† and b, ab ∈ R#, then the following statements are
equivalent:

(i) (ab)# = b#a†,

(ii) (ab)#a = b#a†a and a∗ab = a∗abaa†,

(iii) (ab)#a = b#a†a and a†ab = a†abaa†,

(iv) b(ab)# = bb#a† and abb# = bb#abb#.

Proof. (i) ⇒ (ii): The hypothesis (ab)# = b#a† gives (ab)#a = b#a†a and

a∗ab = a∗ab((ab)#ab) = a∗abab(ab)# = a∗ababb#a†

= a∗(ababb#a†)aa† = a∗abaa†.

Hence, the condition (ii) holds.
(ii) ⇒ (iii): Because (ab)#a = b#a†a and a∗ab = a∗abaa†, then

a†ab = a†(a†)∗(a∗ab) = a†(a†)∗a∗abaa† = a†abaa†.

So, (iii) is satisfied.
(iii) ⇒ (i): Suppose that (ab)#a = b#a†a and a†ab = a†abaa†. First, we

show that b#a† ∈ (ab){5}:

(b#a†a)b = (ab)#ab = (ab)#a(a†ab) = (ab)#aa†abaa†

= ((ab)#ab)aa† = ab((ab)#a)a† = abb#a†aa†

= abb#a†.

Further, from
ab = ab((ab)#a)b = abb#a†ab

and

b#a† = (b#a†a)a† = (ab)#aa† = ((ab)#a)b((ab)#a)a†

= b#a†abb#a†aa† = b#a†abb#a†,

we deduce that b#a† ∈ (ab){1, 2}, i.e. (ab)# = b#a†.
(i) ⇔ (iv): This equivalence can be proved similarly as previous parts.
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The condition a†ab = a†abaa† in Theorem 3.1 can be replaced with
equivalent conditions Ra†ab ⊆ Ra∗ or (a∗)◦ ⊆ (a†ab)◦. Also, the condition
abb# = bb#abb# in Theorem 3.1 can be replaced with equivalent conditions
abb#R ⊆ bR or ◦b ⊆ ◦(abb#).

Similarly as in the proof of Theorem 3.1, we get necessary and sufficient
conditions which ensure that (ab)# = b#a∗ is satisfied.

Theorem 3.2. If a ∈ R† and b, ab ∈ R#, then the following statements are
equivalent:

(i) (ab)# = b#a∗,

(ii) (ab)#a = b#a∗a and a∗ab = a∗abaa†,

(iii) (ab)#a = b#a∗a and a†ab = a†abaa†,

(iv) b(ab)# = bb#a∗ and abb# = bb#abb#.

If we suppose that a is EP element in Theorem 3.1 or that a ∈ R† ∩R#

and a∗ = a# in Theorem 3.2, we obtain new characterizations of the classical
reverse order law (ab)# = b#a#.

Dually to Theorems 3.1 and 3.2, equivalent conditions for (ab)# = b†a#

and (ab)# = b∗a# are presented.

Corollary 3.1. If b ∈ R† and a, ab ∈ R#, then the following statements
are equivalent:

(i) (ab)# = b†a#,

(ii) (ab)#a = b†a#a and a#ab = a#abaa#,

(iii) b(ab)# = bb†a# and abb† = b†babb†,

(iv) b(ab)# = bb†a# and abb∗ = b†babb∗.

In Corollary 3.1, the condition a#ab = a#abaa# can be replaced with
Ra#ab ⊆ Ra or a◦ ⊆ (a#ab)◦, and the condition abb† = b†babb† can be
replaced with abb†R ⊆ b∗R or ◦(b∗) ⊆◦ (abb†).

Corollary 3.2. If b ∈ R† and a, ab ∈ R#, then the following statements
are equivalent:

(i) (ab)# = b∗a#,

(ii) (ab)#a = b∗a#a and a#ab = a#abaa#,
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(iii) b(ab)# = bb∗a# and abb† = b†babb†,

(iv) b(ab)# = bb∗a# and abb∗ = b†babb∗.

Several sufficient conditions for the reverse order law (ab)# = b#a† are
presented in the next results.

Theorem 3.3. Suppose that a ∈ R† and b, ab, a†ab, abb#, a∗ab ∈ R#. Then
each of the following conditions is sufficient for (ab)# = b#a† to hold:

(i) (ab)#a = b#a†a and a†ab = baa†,

(ii) (ab)# = (a†ab)#a† and (a†ab)# = b#a†a,

(iii) (ab)# = b#(abb#)# and (abb#)# = bb#a†,

(iv) b(ab)# = bb#a† = (abb#)#,

(v) (ab)# = (a∗ab)#a∗ and (a∗ab)# = b#(a∗a)#.

Proof. (i) Assume that (ab)#a = b#a†a and a†ab = baa†. As a†a is idempo-
tent, then a†ab = a†abaa† and (ab)# = b#a† by (iii) of Theorem 3.1.

(ii) From the hypothesis (ab)# = (a†ab)#a† and (a†ab)# = b#a†a, we
get

(ab)# = (a†ab)#a† = b#a†aa† = b#a†.

(iii) It follows as part (ii).
(iv) Suppose that b(ab)# = bb#a† = (abb#)#. Then

abb# = (abb#)#(abb#)2 = bb#a†(abb#)2 = (bb#)2a†(abb#)2 = bb#abb#.

By part (iv) of Theorem 3.1, (ab)# = b#a†.
(v) The condition a ∈ R† implies a∗a ∈ R# and a† = (a∗a)#a∗ (see [8]).

The rest of this part follows as (ii).

The following theorem can be proved in the similar way as Theorem 3.3.

Theorem 3.4. Suppose that a ∈ R† and b, ab, a†ab, abb#, a∗ab ∈ R#. Then
each of the following conditions is sufficient for (ab)# = b#a∗ to hold:

(i) (ab)#a = b#a∗a and a†ab = baa†,

(ii) (ab)# = (a∗ab)#a∗ and (a∗ab)# = b#a†a,

(iii) (ab)# = b#(abb#)# and (abb#)# = bb#a∗,
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(iv) b(ab)# = bb#a∗ = (abb#)#,

(v) (ab)# = (a†ab)#a† and (a†ab)# = b#a∗a.

Notice that the dual results to Theorems 3.3 and 3.4 are satisfied too.

Corollary 3.3. Suppose that b ∈ R† and a, ab, a#ab, abb†, abb∗ ∈ R#. Then
each of the following conditions is sufficient for (ab)# = b†a# to hold:

(i) b(ab)# = bb†a# and b†ba = abb†,

(ii) (ab)# = (a#ab)#a# and (a#ab)# = b†a#a,

(iii) (ab)# = b†(abb†)# and (abb†)# = bb†a#,

(iv) (ab)#a = b†a#a = (a#ab)#,

(v) (ab)# = b∗(abb∗)# and (abb∗)# = (bb∗)#a#.

Corollary 3.4. Suppose that b ∈ R† and a, ab, a#ab, abb†, abb∗ ∈ R#. Then
each of the following conditions is sufficient for (ab)# = b∗a# to hold:

(i) b(ab)# = bb∗a# and b†ba = abb†,

(ii) (ab)# = (a#ab)#a# and (a#ab)# = b∗a#a,

(iii) (ab)# = b∗(abb∗)# and (abb∗)# = bb†a#,

(iv) (ab)#a = b∗a#a = (a#ab)#,

(v) (ab)# = b†(abb†)# and (abb∗)# = bb∗a#.

Remark 3.1. Combining the conditions of Theorem 2.1 and Theorem
2.7, we get the sufficient conditions for the reverse order law (ab)# = b#a†

to hold. If we combine the conditions of Corollary 2.1 and Corollary 2.7, we
obtain the sufficient conditions for (ab)# = b†a# to be satisfied.

Sufficient conditions for the reverse order law (ab)# = b#a∗ ((ab)# =
b∗a#) to hold can be obtained combining the conditions of Theorem 2.2 and
Theorem 2.8 (Corollary 2.2 and Corollary 2.8).
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4 Other results

More specific results are proved in this section.

Theorem 4.1. If a ∈ R† and b, ab ∈ R#, then the following statements are
equivalent:

(i) b# = (ab)#a,

(ii) b = aa†b = ba†a and abb# = bb#a,

(iii) bR ⊆ aR, aa†b = ba†a and abb# = bb#a,

(iv) a◦ ⊆ b◦, aa†b = ba†a and abb# = bb#a.

Proof. (i) ⇒ (ii): Using the equality b# = (ab)#a, we observe that

ba†a = b2b#a†a = b2(ab)#aa†a = b2(ab)#a = b2b# = b

and b = b#b2 = ((ab)#ab)b = ab(ab)#b which yields

b = ab(ab)#b = aa†(ab(ab)#b) = aa†b.

Also, by (i), we get

abb# = (ab(ab)#)a = ((ab)#a)ba = b#ba.

So, the condition (ii) holds.
(ii) ⇒ (i): Suppose that b = aa†b = ba†a and abb# = bb#a. Then, from

b(ab)#ab = b#bb(ab)#ab = b#ba†(ab(ab)#ab) = b#(ba†a)b = b#bb = b

and
(ab)#ab(ab)#a = (ab)#a,

we conclude that (ab)#a ∈ b{1, 2}. Since

b(ab)#a = b[(ab)#]2aba = b([(ab)#]2ab)(bb#a) = (b(ab)#ab)b# = bb#

and

ab(ab)# = (abb#)b(ab)# = bb#ab(ab)# = b#(b(ab)#ab) = b#b,

we have b(ab)#a = ab(ab)# = (ab)#ab, that is, (ab)#a ∈ b{5}. Hence, the
condition (i) is satisfied.

(ii) ⇔ (iii): We will show that b = aa†b is equivalent to bR ⊆ aR. First,
b = aa†b implies bR ⊆ aR. Conversely, if bR ⊆ aR, then, for some x ∈ R,
b = ax which gives b = aa†(ax) = aa†b.

(ii) ⇔ (iv): It follows from b = ba†a iff b(1−a†a) = 0 iff (1−a†a)R ⊆ b◦

iff a◦ ⊆ b◦.
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The next result follows dually to Theorem 4.1.

Theorem 4.2. If b ∈ R† and a, ab ∈ R#, then the following statements are
equivalent:

(i) a# = b(ab)#,

(ii) aa#b = baa# and a = ab†b = bb†a,

(iii) aR ⊆ bR, aa#b = baa# and ab†b = bb†a,

(iv) b◦ ⊆ a◦, aa#b = baa# and ab†b = bb†a.

Some conditions of Theorem 4.1 and Theorem 4.2 can be written as
aa†b = ba†a and abb# = bb#a ⇔ aπr b = baπl and abπ = bπa;
aa#b = baa# and ab†b = bb†a ⇔ aπb = baπ and abπl = bπr a.

Theorem 4.3. If a ∈ R†, b ∈ R and ab ∈ R#, then the following statements
are equivalent:

(i) a†ab = b(ab)#ab,

(ii) baba = a†ababa,

(iii) babaR ⊆ a∗R (or ◦(a∗) ⊆ ◦(baba) ).

Proof. (i) ⇒ (ii): Using a†ab = b(ab)#ab, we have

(a†ab)aba = b((ab)#abab)a = baba.

Thus, the equality (ii) is satisfied.
(ii) ⇒ (i): Since baba = a†ababa, then

a†ab = a†abab(ab)# = (a†ababa)b[(ab)#]2 = babab[(ab)#]2 = b(ab)#ab.

(ii) ⇒ (iii): It follows by a∗R = a†R.
(iii) ⇒ (ii): By the condition babaR ⊆ a∗R, we see that baba = a∗x, for

x ∈ R. Hence, baba = a∗x = a†a(a∗x) = a†ababa.

In the same way as in Theorem 4.3, we prove the following theorem.

Theorem 4.4. If a, b ∈ R and ab ∈ R#, then the following statements are
equivalent:

(i) a∗ab = b(ab)#ab,
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(ii) baba = a∗ababa.

Applying Theorems 4.3 and 4.4, we have that the next dual statements
hold.

Theorem 4.5. If a ∈ R, b ∈ R† and ab ∈ R#, then the following statements
are equivalent:

(i) abb† = ab(ab)#a,

(ii) baba = bababb†,

(iii) Rbaba ⊆ Rb∗ (or (b∗)◦ ⊆ (baba)◦ ).

Theorem 4.6. If a, b ∈ R and ab ∈ R#, then the following statements are
equivalent:

(i) abb∗ = ab(ab)#a,

(ii) baba = bababb∗.

Some equivalent conditions for aa# = bb† to hold are given in the fol-
lowing theorem in a ring with involution.

Theorem 4.7. If a ∈ R# and b ∈ R†, then the following statements are
equivalent:

(i) aa# = bb†,

(ii) aR = bR and a◦ = (b∗)◦,

(iii) a+ 1− bb† ∈ R−1 and aa# = aa#bb† = bb†aa#,

(iv) a+ 1− bb†, 1− aa# + bb† ∈ R−1 and abb† = bb†a,

(v) a+ 1− bb†, 1− aa# + bb† ∈ R−1 and aa#bb† = bb†aa#.

Proof. (i) ⇒ (ii)-(v): This is trivial, when we notice that (a+1−aa#)(a#+
1− aa#) = 1 gives a+ 1− aa# ∈ R−1.

(ii) ⇒ (i): Assume that aR = bR and a◦ = (b∗)◦. Now, we have b = ax
for x ∈ R and, by (b∗)◦ = (1 − bb†)R, a◦ = (1 − bb†)R. Further, b =
aa#(ax) = aa#b and a(1− bb†) = 0. Thus, bb† = aa#bb† = a#(abb†) = a#a.

(iii) ⇒ (i): Let a + 1 − bb† ∈ R−1 and aa# = aa#bb† = bb†aa#. The
equalities

(a+ 1− bb†)bb† = abb† + bb† − bb† = abb†

16



and
(a+ 1− bb†)bb†aa# = a(bb†aa#) = aaa#bb† = abb†,

imply bb† = bb†aa#. Hence, we get bb† = aa#.
(iv) ⇒ (iii): Since abb† = bb†a, and the group inverse a# double com-

mutes with a, then a#bb† = bb†a# and aa#bb† = bb†aa#. From

(1− aa# + bb†)aa# = aa# − aa# + bb†aa# = bb†aa#,

(1− aa# + bb†)aa#bb† = bb†(aa#bb†) = bb†aa#,

and the condition 1 − aa# + bb† ∈ R−1, we obtain aa# = aa#bb†. So, the
statements (iii) holds.

(v) ⇒ (i): This part can be check in the same way as (iv) ⇒ (iii) ⇒ (i).

Changing b in previous theorem by b†, by (b†)† = b, we obtain equivalent
conditions for aa# = b†b.

Theorem 4.8. If a ∈ R# and b ∈ R†, then the following statements are
equivalent:

(i) aa# = b†b,

(ii) aR = b∗R and a◦ = b◦,

(iii) a+ 1− b†b ∈ R−1 and aa# = aa#b†b = b†baa#,

(iv) a+ 1− b†b, 1− aa# + b†b ∈ R−1 and abb† = b†ba,

(v) a+ 1− b†b, 1− aa# + b†b ∈ R−1 and aa#b†b = b†baa#.

5 Characterization of operators on Hilbert space

Let H be a Hilbert space and L(H) the set of all linear bounded operators
on H. In addition, if T ∈ L(H), then T ∗, N(T ) and R(T ) stand for the
adjoint, the null space and the range of T , respectively.

In the spirit of previous results, we prove the following one.

Theorem 5.1. Let A ∈ L(H) have a closed range and let B ∈ L(H).
(i) If AB is group invertible, then

I +A†(B −A) is invertible ⇔ AB(AB)#A = A.

(ii) If BA is group invertible, then

I +A†(B −A) is invertible ⇔ A(BA)#BA = A
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Proof. (i) Since A ∈ L(H) have a closed range, there exists the unique
Moore–Penrose inverse A† ∈ L(H) of A. The operators A, B and AB have
the matrix representations on H = R(A∗)⊕N(A) of the forms

A =

[
A1 0
0 0

]
, B =

[
B1 B3

B4 B2

]
and AB =

[
A1B1 A1B3

0 0

]
,

where A1 is invertible. The Moore–Penrose inverse of A is given by

A† =

[
A−1

1 0
0 0

]
.

Analogously as in Theorem [7, Theorem 1] for the matrix case, we can
verify that AB is group invertible if and only if A1B1 is group invertible and
A1B1(A1B1)

#A1B3 = A1B3. In this case,

(AB)# =

[
(A1B1)

# [(A1B1)
#]2A1B3

0 0

]
.

Observe that, AB(AB)#A = A iffA1B1(A1B1)
#A1 = A1 iffA1B1(A1B1)

# =
I iff A1B1 is invertible iff B1 is invertible. Then, by

I +A†(B −A) =

[
A−1

1 B1 A−1
1 B3

0 I

]
,

we deduce that I +A†(B −A) is invertible iff B1 is invertible.
(ii) Applying (i) to the opposite ring, we get I + (B −A)A† is invertible

⇔ A(BA)#BA = A. But by Jacobson lemma, I + (B − A)A† is invertible
⇔ I +A†(B −A) is invertible.

6 Conclusions

In this paper we consider necessary and sufficient conditions related to the
reverse order laws (ab)# = b#a† and (ab)# = b†a# in rings with involu-
tion, applying a purely algebraic technique. In the case of linear bounded
operators on Hilbert spaces, where the method of operator matrices is very
useful, similar results for the reverse order law (ab)# = b#a# are given. In
a ∗-regular ring R, observe that the assumption a ∈ R† is automatically
satisfied. It could be interesting to extend this work to the reverse order
laws of a triple product.
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