Mixed-type reverse order laws for the group inverses in rings with involution

Dijana Mosić and Dragan S. Djordjević*

Abstract
We investigate some equivalent conditions for the reverse order laws \((ab)^\# = b^a^\#\) and \((ab)^\# = b^\#_a^\#\) in rings with involution. Similar results for \((ab)^\# = b^\#a^\#\) and \((ab)^\# = b^*a^\#\) are presented too.

Key words and phrases: Group inverse; Moore–Penrose inverse; Reverse order law.

1 Introduction
Let \(R\) be an associative ring with the unit 1, and let \(a \in R\). Then \(a\) is group invertible if there is \(a^\# \in R\) such that

1. \(aa^\#a = a\),
2. \(a^\#aa^\# = a^\#\),
5. \(aa^\# = a^\#a\);

\(a^\#\) is a group inverse of \(a\) and it is uniquely determined by these equations. The group inverse \(a^\#\) double commutes with \(a\), that is, \(ax = xa\) implies \(a^\#x = xa^\#\ [1]\). Denote by \(R^\#\) the set of all group invertible elements of \(R\).

An involution \(a \mapsto a^*\) in a ring \(R\) is an anti-isomorphism of degree 2, that is,

\((a^*)^* = a, \quad (a + b)^* = a^* + b^*, \quad (ab)^* = b^*a^*\).

An element \(a \in R\) is self-adjoint (or Hermitian) if \(a^* = a\).

The Moore–Penrose inverse (or MP-inverse) of \(a \in R\) is the element \(a^\dagger \in R\), if the following equations hold [9]:

1. \(aa^\dagger a = a\),
2. \(a^\dagger aa^\dagger = a^\dagger\),
3. \((aa^\dagger)^* = aa^\dagger\),
4. \((a^\dagger a)^* = a^\dagger a\).

*The authors are supported by the Ministry of the Ministry of Education and Science, Republic of Serbia, grant no. 174007.
There is at most one a^\dagger such that above conditions hold. The set of all Moore–Penrose invertible elements of \mathcal{R} will be denoted by \mathcal{R}^1.

If $\delta \subset \{1, 2, 3, 4, 5\}$ and b satisfies the equations (i) for all $i \in \delta$, then b is an δ–inverse of a. The set of all δ–inverse of a is denoted by $a\{\delta\}$. Notice that $a\{1, 2, 5\} = \{a^\#\}$ and $a\{1, 2, 3, 4\} = \{a^\dagger\}$. If a is invertible, then $a^\#$ and a^\dagger coincide with the ordinary inverse a^{-1} of a. The set of all invertible elements of \mathcal{R} will be denoted by \mathcal{R}^{-1}.

For $a \in \mathcal{R}$ consider two annihilators

$$a^\circ = \{x \in \mathcal{R} : ax = 0\}, \quad a^\circ = \{x \in \mathcal{R} : xa = 0\}.$$

For invertible elements $a, b \in \mathcal{R}$, the inverse of the product ab satisfies the reverse order law $(ab)^{-1} = b^{-1}a^{-1}$. A natural consideration is to see what will be obtained if we replace the inverse by other type of generalized inverses. The reverse order laws for various generalized inverses yield a class of interesting problems which are fundamental in the theory of generalized inverses. They have attracted considerable attention since the middle 1960s, and many interesting results have been obtained [1, 2, 3, 4, 5, 6].

C.Y. Deng [3] presented some necessary and sufficient conditions concerning the reverse order law $(ab)^\# = b^\#a^\#$ for the group invertible linear bounded operators a and b on a Hilbert space. He used the matrix form of operators induced by some natural decomposition of Hilbert spaces.

Inspired by [3], in this paper we present equivalent conditions which are related to the reverse order laws for the group inverses in rings with involution. In particular, we obtain equivalent conditions for $(ab)^\# = b^\#a^\dagger$ and $(ab)^\# = b^\dagger a^\#$ to hold. We also characterize the rules $(ab)^\# = b^\#a^\ast$ and $(ab)^\# = b^\ast a^\#$. Assuming that a is Moore-Penrose invertible, and that b is group invertible, we study the reverse order laws $(ab)^\# = (a^\dagger ab)^\#a^\dagger$, $(ab)^\# = (a^*ab)^\#a^\ast$, $(a^\dagger ab)^\# = b^\#a^\dagger a$, $(a^*ab)^\# = b^\#a^\dagger a$, $(a^\dagger ab)^\#a^\dagger = b^\#a^\dagger$ and $(a^*ab)^\#a^\ast = b^\#a^\ast$. When we suppose that a is group invertible and b is Moore-Penrose invertible, we get similar results for the reverse order laws $(ab)^\# = b^\dagger(ab^\ast)^\#$, $(ab)^\# = b^\ast(ab^\dagger)^\#$, $(ab^\dagger)^\# = bb^\dagger a^\#$, $(ab^\ast)^\# = bb^\ast a^\#$, $b^\dagger(ab^\dagger)^\# = b^\dagger a^\#$ and $b^\ast(ab^\ast)^\# = b^\ast a^\#$. Also, we show that $(ab)^\{5\} \subseteq (a^\dagger ab)^\{1, 5\} \cdot a^\dagger$ is equivalent to $(ab)^\{5\} = (a^\dagger ab)^\{1, 5\} \cdot a^\dagger$ and similar statements for $(ab)^\{5\} \subseteq (a^*ab)^\{1, 5\} \cdot a^\ast$, $(ab)^\{5\} \subseteq b^\dagger \cdot (bb^\dagger)^\{1, 5\}$ and $(ab)^\{5\} \subseteq b^\ast \cdot (bb^\ast)^\{1, 5\}$.

2
2 Reverse order laws involving triple products

Several equivalent conditions for \((ab)^\# = (a^\dagger ab)^\# a^\dagger\) and \((ab)^\# = (a^* ab)^\# a^*\) to hold are presented in the following theorems.

Theorem 2.1. Let \(b \in \mathcal{R}\) and \(a \in \mathcal{R}^\dagger\). If \(a^\dagger ab \in \mathcal{R}^\#,\) then the following statements are equivalent:

(i) \(ab \in \mathcal{R}^\#\) and \((ab)^\# = (a^\dagger ab)^\# a^\dagger\),

(ii) \((a^\dagger ab)^\# a^\dagger \in (ab)\{5\},\)

(iii) \(abaa^\dagger = ab\) and \((a^\dagger ab)^\# aba = ab(a^\dagger ab)^\# a^\dagger a,\)

(iv) \((a^\dagger ab)\{1, 5\} \cdot a^\dagger \subseteq (ab)\{5\}.

Proof.

(i) \(\Rightarrow\) (ii): Obviously.

(ii) \(\Rightarrow\) (iii): From the condition \((a^\dagger ab)^\# a^\dagger \in (ab)\{5\},\) we have \(ab(a^\dagger ab)^\# a^\dagger = (a^\dagger ab)^\# a^\dagger ab.\) So, \(ab(a^\dagger ab)^\# a^\dagger a = (a^\dagger ab)^\# a^\dagger aba.\) Observe that \((a^\dagger ab)^\# a^\dagger \in (ab)\{1\},\) by

\[
ab(a^\dagger ab)^\# a^\dagger = a(a^\dagger ab(a^\dagger ab)^\# a^\dagger ab) = aa^\dagger ab = ab. \tag{1}
\]

Now, we get

\[
abaa^\dagger = abab(a^\dagger ab)^\# a^\dagger aa^\dagger = abab(a^\dagger ab)^\# a^\dagger = ab.
\]

(iii) \(\Rightarrow\) (iv): Assume that \(abaa^\dagger = ab\) and \((a^\dagger ab)^\# aba = ab(a^\dagger ab)^\# a^\dagger a.\) If \((a^\dagger ab)^{(1, 5)} \in (a^\dagger ab)\{1, 5\},\) then

\[
a^\dagger ab(a^\dagger ab)^{(1, 5)} = (a^\dagger ab)^\# a^\dagger ab(a^\dagger ab(a^\dagger ab)^{(1, 5)} a^\dagger ab) = (a^\dagger ab)^\# a^\dagger ab. \tag{2}
\]

Using the equalities (2) and (iii), we obtain that \((a^\dagger ab)^{(1, 5)} a^\dagger \in (ab)\{5\}:

\[
ab(a^\dagger ab)^{(1, 5)} a^\dagger = a(a^\dagger ab(a^\dagger ab)^{(1, 5)}) a^\dagger = aa^\dagger ab(a^\dagger ab)^\# a^\dagger
\]

\[
= (ab(a^\dagger ab)^\# a^\dagger a)a^\dagger = (a^\dagger ab)^\# a^\dagger (abaa^\dagger)
\]

\[
= (a^\dagger ab)^\# a^\dagger ab = (a^\dagger ab)^{(1, 5)} a^\dagger ab.
\]

Hence, for any \((a^\dagger ab)^{(1, 5)} \in (a^\dagger ab)\{1, 5\},\) \((a^\dagger ab)^{(1, 5)} a^\dagger \in (ab)\{5\}\) and the statement (iv) holds.

(iv) \(\Rightarrow\) (i): Since \((a^\dagger ab)^\# \in (a^\dagger ab)\{1, 5\},\) by (iv), \((a^\dagger ab)^\# a^\dagger \in (ab)\{5\}.\)

The equalities (1) and

\[
((a^\dagger ab)^\# a^\dagger ab(a^\dagger ab)^\#) a^\dagger = (a^\dagger ab)^\# a^\dagger
\]

imply \((a^\dagger ab)^\# a^\dagger \in (ab)\{1, 2\}\) and the condition (i) is satisfied. \(\square\)
Theorem 2.2. Let $b \in \mathcal{R}$ and $a \in \mathcal{R}^\dagger$. If $a^*ab \in \mathcal{R}^#$, then the following statements are equivalent:

(i) $ab \in \mathcal{R}^#$ and $(ab)^# = (a^*ab)^#a^*$,
(ii) $(a^*ab)^#a^* \in (ab)\{5\}$,
(iii) $abaa^\dagger = ab$ and $(a^*ab)^#a^*aba = ab(a^*ab)^#a^*a,$
(iv) $(a^*ab)\{1,5\} \cdot a^* \subseteq (ab)\{5\}.$

Proof. Using $a = (a^\dagger)^*a$ and $a^* = a^*aa^\dagger$, we verify this result similarly as in Theorem 2.1. □

The following results concerning $(ab)^# = b^\dagger(ab^\dagger)^#$ and $(ab)^* = b^*(abb^*)^#$ are actually dual to Theorems 2.1 and 2.2, where dual means working in the opposite ring (\mathcal{R}, \circ) with reverse multiplication $a \circ b = ba$.

Corollary 2.1. Let $a \in \mathcal{R}$ and $b \in \mathcal{R}^\dagger$. If $abb^\dagger \in \mathcal{R}^#$, then the following statements are equivalent:

(i) $ab \in \mathcal{R}^#$ and $(ab)^# = b^\dagger(ab^\dagger)^#$,
(ii) $b^\dagger(ab^\dagger)^# \in (ab)\{5\}$,
(iii) $b^\dagger bab = ab$ and $bab^\dagger(ab^\dagger)^# = bb^\dagger(ab^\dagger)^#ab,$
(iv) $b^\dagger \cdot (ab^\dagger)\{1,5\} \subseteq (ab)\{5\}.$

Corollary 2.2. Let $a \in \mathcal{R}$ and $b \in \mathcal{R}^\dagger$. If $abb^* \in \mathcal{R}^#$, then the following statements are equivalent:

(i) $ab \in \mathcal{R}^#$ and $(ab)^* = b^*(abb^*)^#,$
(ii) $b^*(abb^*)^# \in (ab)\{5\}$,
(iii) $b^*bab = ab$ and $bab^*(abb^*)^# = bb^*(abb^*)^#ab,$
(iv) $b^* \cdot (abb^*)\{1,5\} \subseteq (ab)\{5\}.$

In the following theorem, we prove that $(ab)\{5\} \subseteq (a^\dagger ab)\{1,5\} \cdot a^\dagger$ is equivalent to $(ab)\{5\} = (a^\dagger ab)\{1,5\} \cdot a^\dagger.$

Theorem 2.3. Let $b \in \mathcal{R}$ and $a \in \mathcal{R}^\dagger$. If $ab, a^\dagger ab \in \mathcal{R}^#$, then the following statements are equivalent:

(i) $(ab)\{5\} \subseteq (a^\dagger ab)\{1,5\} \cdot a^\dagger,$
(ii) \((ab)\{5\} = (a^\dagger ab)\{1,5\} \cdot a^\dagger\).

Proof. (i) \(\Rightarrow\) (ii): Assume that \((ab)\{5\} \subseteq (a^\dagger ab)\{1,5\} \cdot a^\dagger\). Because \((ab)^\# \in (ab)\{5\}\), then there exists \((a^\dagger ab)^{(1,5)} \in (a^\dagger ab)\{1,5\}\) such that \((ab)^\# = (a^\dagger ab)^{(1,5)}a^\dagger\). Since the equalities (2) hold again, we obtain

\[(a^\dagger ab)^\# = (a^\dagger ab)^\# a^\dagger ab(a^\dagger ab)^\# = (a^\dagger ab)^{(1,5)}a^\dagger ab(a^\dagger ab)^{(1,5)}\]

which implies

\[(a^\dagger ab)^\dagger a^\dagger = ((a^\dagger ab)^{(1,5)}a^\dagger)ab((a^\dagger ab)^{(1,5)}a^\dagger) = (ab)^\# ab(ab)^\# = (ab)^\#\].

By Theorem 2.1, we deduce that \((a^\dagger ab)\{1,5\} \cdot a^\dagger \subseteq (ab)\{5\}\). Hence, the condition (ii) holds.

(ii) \(\Rightarrow\) (i): This is obvious. \(\square\)

Analogously to Theorem 2.3, we obtain the following theorem.

Theorem 2.4. Let \(b \in \mathcal{R}\) and \(a \in \mathcal{R}^\dagger\). If \(ab, a^* ab \in \mathcal{R}^\#\), then the following statements are equivalent:

(i) \((ab)\{5\} \subseteq (a^* ab)\{1,5\} \cdot a^*,\)

(ii) \((ab)\{5\} = (a^* ab)\{1,5\} \cdot a^*\).

Applying Theorems 2.3 and 2.4 to the opposite ring \((\mathcal{R}, \circ)\), we get the dual statements.

Corollary 2.3. Let \(a \in \mathcal{R}\) and \(b \in \mathcal{R}^\dagger\). If \(ab, abb^\dagger \in \mathcal{R}^\#\), then the following statements are equivalent:

(i) \((ab)\{5\} \subseteq b^\dagger \cdot (abb^\dagger)\{1,5\},\)

(ii) \((ab)\{5\} = b^\dagger \cdot (abb^\dagger)\{1,5\}.\)

Corollary 2.4. Let \(a \in \mathcal{R}\) and \(b \in \mathcal{R}^\dagger\). If \(ab, abb^* \in \mathcal{R}^\#\), then the following statements are equivalent:

(i) \((ab)\{5\} \subseteq b^* \cdot (abb^*)\{1,5\},\)

(ii) \((ab)\{5\} = b^* \cdot (abb^*)\{1,5\}.\)

Now, we consider the conditions which ensure that the reverse order laws \((a^\dagger ab)^\# = b^\# a^\dagger a\) and \((abb^\dagger)^\# = bb^\dagger a^\#\) hold.
Theorem 2.5. If $a \in \mathcal{R}^\dagger$ and $b \in \mathcal{R}^\#$, then the following statements are equivalent:

(i) $a^\dagger ab \in \mathcal{R}^\#$ and $(a^\dagger ab)^\# = b^\# a^\dagger a$,

(ii) $a^\dagger ab = ba^\dagger a$.

Proof. (i) \Rightarrow (ii): From the assumption $(a^\dagger ab)^\# = b^\# a^\dagger a$, we obtain

$$a^\dagger abb^\# a^\dagger a = b^\# a^\dagger a a^\dagger ab = b^\# a^\dagger ab$$

and

$$b^\# a^\dagger a = b^\# a^\dagger (a^\dagger ab)b^\# a^\dagger a = b^\# (a^\dagger abb^\# a^\dagger a) = b^\# b^\# a^\dagger ab. \tag{4}$$

The equalities (3) and (4) imply

$$ba^\dagger a = b^2 (b^\# a^\dagger a) = b^2 b^\# a^\dagger ab = bb^\# a^\dagger ab. \tag{5}$$

and

$$(a^\dagger abb^\# a^\dagger a)b = b^\# a^\dagger abb = b(b^\# b^\# a^\dagger ab)b = bb^\# a^\dagger ab. \tag{6}$$

Since

$$a^\dagger ab = a^\dagger ab(a^\dagger ab)^\dagger a^\dagger ab = a^\dagger abb^\# a^\dagger a a^\dagger ab = a^\dagger abb^\# a^\dagger ab,$$

by (6) and (5), we get

$$a^\dagger ab = bb^\# a^\dagger ab = ba^\dagger a.$$

Hence, the condition (ii) holds.

(ii) \Rightarrow (i): Assume that $a^\dagger ab = ba^\dagger a$. Because the group inverse $b^\#$ double commutes with b, we deduce that $a^\dagger ab^\# = b^\# a^\dagger a$ and $a^\dagger abb^\# = bb^\# a^\dagger a$. We can easily verify that $b^\# a^\dagger a \in (a^\dagger ab)\{1, 2, 5\}$. \hfill \square

Remark 2.1 Applying Theorem 2.5 with a projection $p = a^\dagger a$ (hence $p = p^\#$), for $b \in \mathcal{R}^\#$, we recover the equivalence $pb \in \mathcal{R}^\#$ and $(pb)^\# = b^\# p \iff pb = bp$.

Dually to Theorem 2.5, we can check the following result.

Corollary 2.5. If $a \in \mathcal{R}^\#$ and $b \in \mathcal{R}^\dagger$, then the following statements are equivalent:

(i) $abb^\dagger \in \mathcal{R}^\#$ and $(abb^\dagger)^\# = bb^\dagger a^\#$,

(ii) $abb^\dagger = bb^\dagger a$.

6
Notice that the condition (ii) of Theorem 2.5 can be written as \(a_\pi^\pi b = ba_\pi^\pi \), where \(a_\pi^\pi = 1 - a^\dagger a \). The condition \(ab_\pi^\pi = bb_\pi^\pi a \) of Corollary 2.5 is equivalent to \(ab_\pi^\pi = b_\pi^\pi a \), where \(b_\pi^\pi = 1 - bb_\pi^\star \). If \(a \) is EP element \((a \in \mathcal{R}_1 \text{ and } a^\dagger a = aa^\dagger \text{ or equivalently } a \in \mathcal{R}_1 \cap \mathcal{R}_\# \text{ and } a^\dagger = a^\#)\), then \(a^\pi = a_\pi^\pi = a_\pi^\star \) is the spectral idempotent of the element \(a \).

The following results give the equivalent conditions to \((a^\ast ab)^\# = b^\# a^\dagger a \) and \((ab^\ast)^\# = bb_\pi^\dagger a^\# \).

Theorem 2.6. If \(a \in \mathcal{R}_1 \) and \(b, a^\ast ab \in \mathcal{R}_\# \), then the following statements are equivalent:

(i) \((a^\ast ab)^\# = b^\# a^\dagger a \),

(ii) \(a^\ast ab = ba^\dagger a \).

Proof. (i) \(\Rightarrow\) (ii): Suppose that \((a^\ast ab)^\# = b^\# a^\dagger a \). Then

\[
\begin{align*}
 b^\# a^\dagger a &= b^\# a^\dagger a(a^\ast ab)b^\# a^\dagger a = b^\# (a^\ast ab b^\# a^\dagger a) = b^\# b^\# a^\dagger a a^\ast ab = b^\# b^\# a^\ast ab \\
 &= b^\# a^\dagger a a^\ast ab = bb^\# a^\ast ab = bb(b^\# b^\# a^\ast ab) = bbb^\# a^\dagger a = ba^\dagger a.
\end{align*}
\]

(ii) \(\Rightarrow\) (i): If \(a^\ast ab = ba^\dagger a \), we get

\[a^\ast ab = ba^\dagger a = bb^\# (ba^\dagger a) = bb^\# a^\ast ab. \]

Now, from

\[
(a^\ast ab)^\# = (a^\ast ab)(a^\# (a^\ast ab)^\#)^2 = bb^\# a^\ast ab[(a^\ast ab)^\#]^2 = bb^\# a^\dagger a (a^\ast ab)^\#
\]

and

\[
b^\# a^\dagger a = b^\# b^\# (ba^\dagger a) = b^\# b^\# (a^\ast ab) = b^\# b^\# (a^\ast ab) a^\ast ab(a^\ast ab)^\# = b^\# b^\# ba^\dagger a a^\ast ab(a^\ast ab)^\# = b^\# (a^\ast ab)(a^\ast ab)^\# = b^\# ba^\dagger a (a^\ast ab)^\#, \]

we obtain that \((a^\ast ab)^\# = b^\# a^\dagger a \).

The dual statement to Theorem 2.6 also holds.

Corollary 2.6. If \(b \in \mathcal{R}_1 \) and \(a, abb^\ast \in \mathcal{R}_\# \), then the following statements are equivalent:
In the following theorem, we give necessary and sufficient conditions for \((a^\dagger ab)^\#a^\dagger = b^\#a^\dagger\) to be satisfied.

Theorem 2.7. If \(a \in \mathcal{R}^\dagger\) and \(b, a^\dagger ab \in \mathcal{R}^\#\), then the following statements are equivalent:

(i) \((a^\dagger ab)^\#a^\dagger = b^\#a^\dagger\),

(ii) \(ba^\dagger a = a^\dagger aba^\dagger a\),

(iii) \(ba^\dagger a \mathcal{R} \subseteq a^\dagger \mathcal{R}\) (or \(\circ(a^*) \subseteq \circ(ba^\dagger a)\)).

Proof. (i) \(\Rightarrow\) (ii): Let \((a^\dagger ab)^\#a^\dagger = b^\#a^\dagger\). Now the equality

\[a^\dagger ab = a^\dagger ab(a^\dagger ab)^\#a^\dagger ab = ((a^\dagger ab)^\#a^\dagger)aba^\dagger ab = b^\#a^\dagger aba^\dagger ab\]

implies

\[(a^\dagger ab)^\dagger a = b^\#a^\dagger aba^\dagger a = b^\#b(b^\#a^\dagger aba^\dagger ab)a^\dagger a = b^\#ba^\dagger aba^\dagger a = b((a^\dagger ab)^\#a^\dagger ab)a^\dagger a = ba^\dagger ab((a^\dagger ab)^\#a^\dagger) a = ba^\dagger ab(b^\#a^\dagger a).\]

Using this equality and

\[b^\#a^\dagger = (a^\dagger ab)^\#a^\dagger = (a^\dagger ab)^\#a^\dagger ab(a^\dagger ab)^\#a^\dagger = b^\#a^\dagger abb^\#a^\dagger,\]

we obtain

\[a^\dagger aba^\dagger a = ba^\dagger abb^\#a^\dagger a = b^2(b^\#a^\dagger abb^\#a^\dagger) a = b^2b^\#a^\dagger a = ba^\dagger a.\]

So, the statement (ii) is satisfied.

(ii) \(\Rightarrow\) (i): Applying the hypothesis \(ba^\dagger a = a^\dagger aba^\dagger a\), we get

\[b^\#a^\dagger = b^\#b^\#(ba^\dagger a)a^\dagger = b^\#b^\#(a^\dagger ab)a^\dagger aa^\dagger = b^\#b^\#a^\dagger ab((a^\dagger ab)^\#a^\dagger ab)a^\dagger = b^\#b^\#a^\dagger ab(a^\dagger ab)^\#a^\dagger = b^\#a^\dagger ab(a^\dagger ab)^\#a^\dagger.\]

(7)

Since

\[(a^\dagger ab)^\# = a^\dagger ab[(a^\dagger ab)^\#]^2 = a^\dagger a(a^\dagger ab[(a^\dagger ab)^\#]^2) = a^\dagger a(a^\dagger ab)^\#,\]

8
then

\[(a^1ab)^\#a^1 = (a^1aba^1a)b[(a^1ab)^\#]^3a^1 = ba^1ab[(a^1ab)^\#]^3a^1 \]
\[= bb^\#(ba^1a)b[(a^1ab)^\#]^3a^1 = bb^\#a^1ab[(a^1ab)^\#]^3a^1 \]
\[= bb^\#a^1a(1)a^1ab[(a^1ab)^\#]^3a^1 = b^\#(ba^1a)(a^1ab)^\#a^1 \]
\[= b^\#a^1ab(a^1a(1)a^1)^\#a^1 = b^\#a^1ab(a^1ab)^\#a^1, \]

which yields, by (7), \((a^1ab)^\#a^1 = b^\#a^1.\)

(ii) \(\Leftrightarrow\) (iii): The condition \(ba^1a = a^1aba^1a\) gives \(ba^1aR \subseteq a^1R = a^*R.\) Conversely, from \(ba^1aR \subseteq a^*R,\) we conclude that \(ba^1a = a^*x\) for some \(x \in R.\) Now, \(ba^1a = a^*x = a^1a(a^*x) = a^1aba^1a.\)

Obviously, for condition (ii) of Theorem 2.7, we have \(ba^1a = a^1aba^1a \Leftrightarrow a^*b(1 - a^*f) = 0 \Leftrightarrow a^*b(1 - a^*f) = (1 - a^*f)a^*b.\)

The following theorem can be proved in the similar manner as Theorem 2.7.

Theorem 2.8. If \(a \in R^1\) and \(b, a^*ab \in R^\#,\) then the following statements are equivalent:

(i) \((a^*ab)^\#a^* = b^\#a^*,\)

(ii) \(ba^*a = a^*aba^*a\) (or \(ba^1a = a^*aba^1a\)).

Using Theorems 2.7 and 2.8 to the opposite ring, we obtain the dual results.

Corollary 2.7. If \(b \in R^1\) and \(a, abb^1 \in R^\#,\) then the following statements are equivalent:

(i) \(b^1(abb^1)^\# = b^1a^\#,\)

(ii) \(bb^1a = bb^1abb^1,\)

(iii) \(Rbb^1a \subseteq Rb^*\) (or \((b^*)^\circ \subseteq (bb^1a)^\circ).\)

Note that \(bb^1a = bb^1abb^1 \Leftrightarrow (1 - b^*f)ab^*f = 0 \Leftrightarrow (1 - b^*f)ab^*f = ab^*f(1 - b^*f).\)

Corollary 2.8. If \(b \in R^1\) and \(a, abb^* \in R^\#,\) then the following statements are equivalent:

(i) \(b^*(abb^*)^\# = b^*a^\#,\)

(ii) \(bb^*a = bb^*abb^*\) (or \(bb^1a = bb^1abb^*\)).

Notice that the conditions of Theorem 2.5 (Theorem 2.6, Corollary 2.5, Corollary 2.6, respectively) imply the conditions of Theorem 2.7 (Theorem 2.8, Corollary 2.7, Corollary 2.8, respectively)
3 Reverse order laws \((ab)^\# = b^# a^\dagger\) and \((ab)^\# = b^# a^*\)

Assuming that \(a\) is Moore-Penrose invertible, and that \(b\) is group invertible in a ring with involution, equivalent conditions to the reverse order law \((ab)^\# = b^# a^\dagger\) are presented in the following theorem.

Theorem 3.1. If \(a \in \mathcal{R}^\dagger\) and \(b, ab \in \mathcal{R}^\#\), then the following statements are equivalent:

(i) \((ab)^\# = b^# a^\dagger\),

(ii) \((ab)^\# a = b^# a^\dagger a\) and \(a^* ab = a^* abaa^\dagger\),

(iii) \((ab)^\# a = b^# a^\dagger a\) and \(a^\dagger ab = a^\dagger abaa^\dagger\),

(iv) \(b(ab)^\# = bb^# a^\dagger\) and \(abb^# = bb^# abb^#\).

Proof. (i) \(\Rightarrow\) (ii): The hypothesis \((ab)^\# = b^# a^\dagger\) gives \((ab)^\# a = b^# a^\dagger a\) and

\[
\begin{align*}
a^* ab &= a^* ab((ab)^\# ab) = a^* abab(ab)^\# = a^* ababb^# a^\dagger \\
&= a^* (ababb^# a^\dagger) aa^\dagger = a^* abaa^\dagger.
\end{align*}
\]

Hence, the condition (ii) holds.

(ii) \(\Rightarrow\) (iii): Because \((ab)^\# a = b^# a^\dagger a\) and \(a^* ab = a^* abaa^\dagger\), then

\[
a^\dagger ab = a^\dagger (a^\dagger)^* (a^* ab) = a^\dagger (a^\dagger)^* a^* abaa^\dagger = a^\dagger abaa^\dagger.
\]

So, (iii) is satisfied.

(iii) \(\Rightarrow\) (i): Suppose that \((ab)^\# a = b^# a^\dagger a\) and \(a^\dagger ab = a^\dagger abaa^\dagger\). First, we show that \(b^# a^\dagger \in (ab)^\{1,2\}\):

\[
\begin{align*}
(b^# a^\dagger a)b &= (ab)^# ab = (ab)^# a(a^\dagger ab) = (ab)^# a a^\dagger abaa^\dagger \\
&= ((ab)^# ab) aa^\dagger = ab((ab)^# a) a^\dagger = abb^# a^\dagger aa^\dagger \\
&= abb^# a^\dagger.
\end{align*}
\]

Further, from

\[
ab = ab((ab)^# a)b = abb^# a^\dagger ab
\]

and

\[
b^# a^\dagger = (b^# a^\dagger a)a^\dagger = (ab)^# aa^\dagger = ((ab)^# a)b((ab)^# a)a^\dagger \\
= b^# a^\dagger abbb^# a^\dagger aa^\dagger = b^# a^\dagger abbb^# a^\dagger.
\]

we deduce that \(b^# a^\dagger \in (ab)^\{1,2\}\), i.e. \((ab)^# = b^# a^\dagger\).

(i) \(\Leftrightarrow\) (iv): This equivalence can be proved similarly as previous parts. \(\square\)
The condition $a^\dagger ab = a^\dagger abaa^\dagger$ in Theorem 3.1 can be replaced with equivalent conditions $Ra^\dagger ab \subseteq Ra^*$ or $(a^*)^\circ \subseteq (a^\dagger ab)^\circ$. Also, the condition $abb^\# = bb^\# abb^\#$ in Theorem 3.1 can be replaced with equivalent conditions $abb^\# R \subseteq bR$ or $b^* \subseteq (abb^\#)$.

Similarly as in the proof of Theorem 3.1, we get necessary and sufficient conditions which ensure that $(ab)^\# = b^# a^*$ is satisfied.

Theorem 3.2. If $a \in R^\dagger$ and $b, ab \in R^\#$, then the following statements are equivalent:

(i) $(ab)^\# = b^# a^*$,
(ii) $(ab)^\# a = b^# a^* a$ and $a^* ab = a^# abaa^\dagger$,
(iii) $(ab)^\# a = b^# a^* a$ and $a^\dagger ab = a^\dagger abaa^\dagger$,
(iv) $b(ab)^\# = bb^\# a^*$ and $abb^\# = bb^\# abb^\#$.

If we suppose that a is EP element in Theorem 3.1 or that $a \in R^\dagger \cap R^\#$ and $a^* = a^#$ in Theorem 3.2, we obtain new characterizations of the classical reverse order law $(ab)^\# = b^# a^*$.

Dually to Theorems 3.1 and 3.2, equivalent conditions for $(ab)^\# = b^\dagger a^#$ and $(ab)^\# = b^* a^#$ are presented.

Corollary 3.1. If $b \in R^\dagger$ and $a, ab \in R^\#$, then the following statements are equivalent:

(i) $(ab)^\# = b^\dagger a^\#$,
(ii) $(ab)^\# a = b^\dagger a^\# a$ and $a^\# ab = a^\# abaa^\#$,
(iii) $b(ab)^\# = bb^\dagger a^\#$ and $abb^\dagger = b^\dagger babb^\dagger$,
(iv) $b(ab)^\# = bb^\dagger a^\#$ and $abb^* = b^\dagger babb^*$.

In Corollary 3.1, the condition $a^\# ab = a^\# abaa^\#$ can be replaced with $Ra^\# ab \subseteq Ra$ or $a^\circ \subseteq (a^\# ab)^\circ$, and the condition $abb^\dagger = b^\dagger babb^\dagger$ can be replaced with $abb^\dagger R \subseteq b^* R$ or $(b^*)^\circ \subseteq (abb^\dagger)^\circ$.

Corollary 3.2. If $b \in R^\dagger$ and $a, ab \in R^\#$, then the following statements are equivalent:

(i) $(ab)^\# = b^* a^#$,
(ii) $(ab)^\# a = b^* a^\# a$ and $a^\# ab = a^\# abaa^\#$,
Suppose that

(i) Assume that

Proof. (i) Assume that \((ab)^\# = b^*a^#\) and \(abb^\dagger = b^\dagger b a^\dagger b^\dagger\),

(ii) From the hypothesis \((ab)^\# = b^#a^\dagger\) and \((a^\dagger a)^\# = b^*a^#,\) we get

(iii) It follows as part (ii).

(iv) Suppose that \(b(ab)^\# = bb^#a^\dagger = (abb^\#)^\#.\) Then

\[abb^\# = (ab^\#)^\#(ab^\#)^2 = bb^#a^\dagger(ab^\#)^2 = (bb^#)^2a^\dagger(ab^\#)^2 = bb^#abb^#.\]

By part (iv) of Theorem 3.1, \((ab)^\# = b^\#a^\dagger\).

(v) The condition \(a \in \mathcal{R}^1\) implies \(a^\dagger a \in \mathcal{R}^\#\) and \(a^\dagger = (a^*a)^\#a^*\) (see [8]). The rest of this part follows as (ii).

The following theorem can be proved in the similar way as Theorem 3.3.

Theorem 3.4. Suppose that \(a \in \mathcal{R}^1\) and \(b, ab, a^\dagger ab, abb^\#, a^*ab \in \mathcal{R}^\#.\) Then each of the following conditions is sufficient for \((ab)^\# = b^#a^*\) to hold:

(i) \((ab)^\# = b^*a^\#\) and \(abb^\dagger = b^\dagger b a^\dagger b^\dagger\),

(ii) \((ab)^\# = b^#a^\dagger\) and \((a^\dagger a)^\# = b^#a^\dagger\),

(iii) \((ab)^\# = b^#(abb^\#)^\#\) and \((abb^\#)^\# = bb^#a^*\),
(iv) \(b(ab)^\# = bb^\# a^* = (abb^\#)^\#\),

(v) \((ab)^\# = (a^\dagger ab)^\# a^\dagger\) and \((a^\dagger ab)^\# = b^\# a^* a\).

Notice that the dual results to Theorems 3.3 and 3.4 are satisfied too.

Corollary 3.3. Suppose that \(b \in R^\dagger\) and \(a, ab, a^\# ab, abb^\dagger, ab^{*} \in R^\#\). Then each of the following conditions is sufficient for \((ab)^\# = b^\dagger a^\#\) to hold:

(i) \(b(ab)^\# = bb^\dagger a^\#\) and \(b^\dagger ba = abb^\dagger\),

(ii) \((ab)^\# = (a^\# ab)^\# a^\#\) and \((a^\# ab)^\# = b^\dagger a^\# a\),

(iii) \((ab)^\# = b^\dagger (abb^\dagger)^\#\) and \((abb^\dagger)^\# = bb^\dagger a^\#\),

(iv) \((ab)^\# a = b^\dagger a^\# a = (a^\# ab)^\#\),

(v) \((ab)^\# = b^{*} (abb^*)^\#\) and \((abb^*)^\# = (bb^*)^\# a^\#\).

Corollary 3.4. Suppose that \(b \in R^\dagger\) and \(a, ab, a^\# ab, abb^\dagger, ab^{*} \in R^\#\). Then each of the following conditions is sufficient for \((ab)^\# = b^* a^\#\) to hold:

(i) \(b(ab)^\# = bb^* a^\#\) and \(b^\dagger ba = abb^\dagger\),

(ii) \((ab)^\# = (a^\# ab)^\# a^\#\) and \((a^\# ab)^\# = b^* a^\# a\),

(iii) \((ab)^\# = b^* (abb^*)^\#\) and \((abb^*)^\# = bb^\dagger a^\#\),

(iv) \((ab)^\# a = b^* a^\# a = (a^\# ab)^\#\),

(v) \((ab)^\# = b^\dagger (abb^\dagger)^\#\) and \((abb^\dagger)^\# = bb^* a^\#\).

Remark 3.1. Combining the conditions of Theorem 2.1 and Theorem 2.7, we get the sufficient conditions for the reverse order law \((ab)^\# = b^\# a^\dagger\) to hold. If we combine the conditions of Corollary 2.1 and Corollary 2.7, we obtain the sufficient conditions for \((ab)^\# = b^\dagger a^\#\) to be satisfied.

Sufficient conditions for the reverse order law \((ab)^\# = b^\# a^*\) ((\(ab)^\# = b^{*} a^\#\)) to hold can be obtained combining the conditions of Theorem 2.2 and Theorem 2.8 (Corollary 2.2 and Corollary 2.8).
4 Other results

More specific results are proved in this section.

Theorem 4.1. If \(a \in \mathcal{R}^\dagger \) and \(b, ab \in \mathcal{R}^\# \), then the following statements are equivalent:

(i) \(b^\# = (ab)^\# a \),

(ii) \(b = aa^\dagger b = ba^\dagger a \) and \(abb^\# = bb^\# a \),

(iii) \(b \mathcal{R} \subseteq a \mathcal{R} \), \(aa^\dagger b = ba^\dagger a \) and \(abb^\# = bb^\# a \),

(iv) \(a^\circ \subseteq b^\circ \), \(aa^\dagger b = ba^\dagger a \) and \(abb^\# = bb^\# a \).

Proof. (i) \(\Rightarrow \) (ii): Using the equality \(b^\# = (ab)^\# a \), we observe that

\[
ba^\dagger a = b^2 b^\# a^\dagger a = b^2(ab)^\# a = b^2 b^\# = b
\]

and

\[
b = b^\# b^2 = ((ab)^\# ab)b = ab(ab)^\# b
\]

which yields

\[
b = ab(ab)^\# b = aa^\dagger(ab(ab)^\# b) = aa^\dagger b.
\]

Also, by (i), we get

\[
abb^\# = (ab(ab)^\#)a = ((ab)^\# a)ba = b^\# ba.
\]

So, the condition (ii) holds.

(ii) \(\Rightarrow \) (i): Suppose that \(b = aa^\dagger b = ba^\dagger a \) and \(abb^\# = bb^\# a \). Then, from

\[
b(ab)^\# ab = b^{\#} bb(ab)^\# ab = b^{\#} ba^\dagger (ab(ab)^\# ab) = b^{\#} (ba^\dagger a)b = b^{\#} bb = b
\]

and

\[
(ab)^\# ab(ab)^\# a = (ab)^\# a,
\]

we conclude that \((ab)^\# a \in b\{1, 2\} \). Since

\[
b(ab)^\# a = b[(ab)^\#]^2 aba = b[(ab)^\#]^2(ab)(bb^\# a) = (b(ab)^\# ab)b^\# = bb^\#
\]

and

\[
ab(ab)^\# = (abb^\#)b(ab)^\# = bb^\# ab(ab)^\# = b^\# (b(ab)^\# ab) = b^\# b,
\]

we have \(b(ab)^\# a = ab(ab)^\# = (ab)^\# ab \), that is, \((ab)^\# a \in b\{5\} \). Hence, the condition (i) is satisfied.

(ii) \(\Leftrightarrow \) (iii): We will show that \(b = aa^\dagger b \) is equivalent to \(b \mathcal{R} \subseteq a \mathcal{R} \). First, \(b = aa^\dagger b \) implies \(b \mathcal{R} \subseteq a \mathcal{R} \). Conversely, if \(b \mathcal{R} \subseteq a \mathcal{R} \), then, for some \(x \in R \), \(b = ax \) which gives \(b = aa^\dagger(ax) = aa^\dagger b \).

(ii) \(\Leftrightarrow \) (iv): It follows from \(b = ba^\dagger a \) iff \(b(1 - a^\dagger a) = 0 \) iff \((1 - a^\dagger a) \mathcal{R} \subseteq b^\circ \) iff \(a^\circ \subseteq b^\circ \). \(\square \)
The next result follows dually to Theorem 4.1.

Theorem 4.2. If $b \in \mathcal{R}^\dagger$ and $a, ab \in \mathcal{R}^\#$, then the following statements are equivalent:

(i) $a^\# = b(ab)^\#$,

(ii) $aa^\#b = baa^\#$ and $a = ab^\dagger b = bb^\dagger a$,

(iii) $a \mathcal{R} \subseteq b \mathcal{R}$, $aa^\#b = baa^\#$ and $ab^\dagger b = bb^\dagger a$,

(iv) $b^\circ \subseteq a^\circ$, $aa^\#b = baa^\#$ and $ab^\dagger b = bb^\dagger a$.

Some conditions of Theorem 4.1 and Theorem 4.2 can be written as $aa^\dagger b = ba^\dagger a$ and $abb^\# = bb^\# a$. Hence, $a R \subseteq b R$ and $ab^\dagger b = bb^\dagger a$.

Theorem 4.3. If $a \in \mathcal{R}^\dagger$, $b \in \mathcal{R}$ and $ab \in \mathcal{R}^\#$, then the following statements are equivalent:

(i) $a^\dagger ab = b(ab)^\# ab$,

(ii) $baba = a^\dagger ababa$,

(iii) $baba \mathcal{R} \subseteq a^\ast \mathcal{R}$ (or $^\circ (a^\ast) \subseteq ^\circ (baba)$).

Proof. (i) \Rightarrow (ii): Using $a^\dagger ab = b(ab)^\# ab$, we have $(a^\dagger ab)aba = b((ab)^\# abab)a = baba$.

Thus, the equality (ii) is satisfied.

(ii) \Rightarrow (i): Since $baba = a^\dagger ababa$, then $a^\dagger ab = a^\dagger abab(ab)^\# = (a^\dagger ababa)b[(ab)^\#]^2 = babab[(ab)^\#]^2 = b(ab)^\# ab$.

(ii) \Rightarrow (iii): It follows by $a^\ast \mathcal{R} = a^\dagger \mathcal{R}$.

(iii) \Rightarrow (ii): By the condition $baba \mathcal{R} \subseteq a^\ast \mathcal{R}$, we see that $baba = a^\ast x$, for $x \in \mathcal{R}$. Hence, $baba = a^\ast x = a^\dagger a(a^\ast x) = a^\dagger ababa$.

□

In the same way as in Theorem 4.3, we prove the following theorem.

Theorem 4.4. If $a, b \in \mathcal{R}$ and $ab \in \mathcal{R}^\#$, then the following statements are equivalent:

(i) $a^\ast ab = b(ab)^\# ab$,

15
Applying Theorems 4.3 and 4.4, we have that the next dual statements hold.

Theorem 4.5. If \(a \in \mathcal{R} \), \(b \in \mathcal{R}^\dagger \) and \(ab \in \mathcal{R}^\# \), then the following statements are equivalent:

(i) \(abb^\dagger = ab(ab)^\# a \),

(ii) \(baba = bababb^\dagger \),

(iii) \(\mathcal{R}baba \subseteq \mathcal{R}b^\ast \) (or \((b^\ast)^\circ \subseteq (baba)^\circ \)).

Theorem 4.6. If \(a, b \in \mathcal{R} \) and \(ab \in \mathcal{R}^\# \), then the following statements are equivalent:

(i) \(abb^\ast = ab(ab)^\# a \),

(ii) \(baba = bababb^\ast \).

Some equivalent conditions for \(aa^\# = bb^\dagger \) to hold are given in the following theorem in a ring with involution.

Theorem 4.7. If \(a \in \mathcal{R}^\# \) and \(b \in \mathcal{R}^\dagger \), then the following statements are equivalent:

(i) \(aa^\# = bb^\dagger \),

(ii) \(a\mathcal{R} = b\mathcal{R} \) and \(a^\circ = (b^\ast)^\circ \),

(iii) \(a + 1 - bb^\dagger \in \mathcal{R}^{-1} \) and \(aa^\# = aa^\# bb^\dagger = bb^\dagger aa^\# \),

(iv) \(a + 1 - bb^\dagger, 1 - aa^\# + bb^\dagger \in \mathcal{R}^{-1} \) and \(abb^\dagger = bb^\dagger a \),

(v) \(a + 1 - bb^\dagger, 1 - aa^\# + bb^\dagger \in \mathcal{R}^{-1} \) and \(aa^\# bb^\dagger = bb^\dagger aa^\# \).

Proof. (i) \(\Rightarrow \) (ii)-(v): This is trivial, when we notice that \((a + 1 - aa^\#)(a^\# + 1 - aa^\#) = 1\) gives \(a + 1 - aa^\# \in \mathcal{R}^{-1} \).

(ii) \(\Rightarrow \) (i): Assume that \(a\mathcal{R} = b\mathcal{R} \) and \(a^\circ = (b^\ast)^\circ \). Now, we have \(b = ax \) for \(x \in \mathcal{R} \) and, by \((b^\ast)^\circ = (1 - bb^\dagger)\mathcal{R}\), \(a^\circ = (1 - bb^\dagger)\mathcal{R} \). Further, \(b = aa^\#(ax) = aa^\# b \) and \(a(1 - bb^\dagger) = 0 \). Thus, \(bb^\dagger = aa^\# bb^\dagger = a^\#(abb^\dagger) = a^\# a \).

(iii) \(\Rightarrow \) (i): Let \(a + 1 - bb^\dagger \in \mathcal{R}^{-1} \) and \(aa^\# = aa^\# bb^\dagger = bb^\dagger aa^\# \). The equalities

\[
(a + 1 - bb^\dagger)bb^\dagger = abb^\dagger + bb^\dagger - bb^\dagger = abb^\dagger
\]
and
\[(a + 1 - bb^\dagger)bb^\dagger aa^\# = a(bb^\dagger aa^\#) = aaa^\# bb^\dagger = abb^\dagger,\]
imply \(bb^\dagger = bb^\dagger aa^\#\). Hence, we get \(bb^\dagger = aa^\#\).

(iv) \(\Rightarrow\) (iii): Since \(abb^\dagger = bb^\dagger a\), and the group inverse \(a^\#\) double commutes with \(a\), then \(a^\# bb^\dagger = bb^\dagger a^\#\) and \(aa^\# bb^\dagger = bb^\dagger aa^\#\). From
\[(1 - aa^\# + bb^\dagger)aa^\# = aa^\# - aa^\# + bb^\dagger aa^\# = bb^\dagger aa^\#,
\[(1 - aa^\# + bb^\dagger)aa^\# bb^\dagger = bb^\dagger(aa^\# bb^\dagger) = bb^\dagger aa^\#,
\]and the condition \(1 - aa^\# + bb^\dagger \in \mathcal{R}^{-1}\), we obtain \(aa^\# = aa^\# bb^\dagger\). So, the statements (iii) holds.

(v) \(\Rightarrow\) (i): This part can be check in the same way as (iv) \(\Rightarrow\) (iii) \(\Rightarrow\) (i).

Changing \(b\) in previous theorem by \(b^\dagger\), by \((b^\dagger)^\dagger = b\), we obtain equivalent conditions for \(aa^\# = b^\dagger b^\dagger\).

Theorem 4.8. If \(a \in \mathcal{R}^\#\) and \(b \in \mathcal{R}^\dagger\), then the following statements are equivalent:

(i) \(aa^\# = b^\dagger b\),

(ii) \(a\mathcal{R} = b^*\mathcal{R} \text{ and } a^\circ = b^\circ\),

(iii) \(a + 1 - b^\dagger b \in \mathcal{R}^{-1}\) and \(aa^\# = aa^\# b^\dagger b = b^\dagger baa^\#\),

(iv) \(a + 1 - b^\dagger b, 1 - aa^\# + b^\dagger b \in \mathcal{R}^{-1}\) and \(abb^\dagger = b^\dagger ba\),

(v) \(a + 1 - b^\dagger b, 1 - aa^\# + b^\dagger b \in \mathcal{R}^{-1}\) and \(aa^\# b^\dagger b = b^\dagger baa^\#\).

5 Characterization of operators on Hilbert space

Let \(H\) be a Hilbert space and \(\mathcal{L}(H)\) the set of all linear bounded operators on \(H\). In addition, if \(T \in \mathcal{L}(H)\), then \(T^*\), \(N(T)\) and \(R(T)\) stand for the adjoint, the null space and the range of \(T\), respectively.

In the spirit of previous results, we prove the following one.

Theorem 5.1. Let \(A \in \mathcal{L}(H)\) have a closed range and let \(B \in \mathcal{L}(H)\).

(i) If \(AB\) is group invertible, then
\[I + A^\dagger (B - A) \text{ is invertible } \iff AB(AB)^\dagger A = A.\]

(ii) If \(BA\) is group invertible, then
\[I + A^\dagger (B - A) \text{ is invertible } \iff A(BA)^\dagger BA = A.\]
Proof. (i) Since $A \in \mathcal{L}(H)$ have a closed range, there exists the unique Moore–Penrose inverse $A^\dagger \in \mathcal{L}(H)$ of A. The operators A, B and AB have the matrix representations on $H = R(A^*) \oplus N(A)$ of the forms

$$
A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} B_1 & B_3 \\ B_4 & B_2 \end{bmatrix} \quad \text{and} \quad AB = \begin{bmatrix} A_1 B_1 & A_1 B_3 \\ 0 & 0 \end{bmatrix},
$$

where A_1 is invertible. The Moore–Penrose inverse of A is given by

$$
A^\dagger = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & 0 \end{bmatrix}.
$$

Analogously as in Theorem [7, Theorem 1] for the matrix case, we can verify that AB is group invertible if and only if $A_1 B_1$ is group invertible and $A_1 B_1 (A_1 B_1)^\# A_1 B_3 = A_1 B_3$. In this case,

$$
(AB)^\# = \begin{bmatrix} (A_1 B_1)^\# & [(A_1 B_1)^\#]^2 A_1 B_3 \\ 0 & 0 \end{bmatrix}.
$$

Observe that, $AB(AB)^\# A = A$ iff $A_1 B_1 (A_1 B_1)^\# A_1 = A_1$ iff $A_1 B_1 (A_1 B_1)^\# = I$ iff $A_1 B_1$ is invertible iff B_1 is invertible. Then, by

$$
I + A^\dagger (B - A) = \begin{bmatrix} A_1^{-1} B_1 & A_1^{-1} B_3 \\ 0 & I \end{bmatrix},
$$

we deduce that $I + A^\dagger (B - A)$ is invertible iff B_1 is invertible.

(ii) Applying (i) to the opposite ring, we get $I + (B - A) A^\dagger$ is invertible $\Leftrightarrow A(BA)^\# BA = A$. But by Jacobson lemma, $I + (B - A) A^\dagger$ is invertible $\Leftrightarrow I + A^\dagger (B - A)$ is invertible. \hfill \Box

6 Conclusions

In this paper we consider necessary and sufficient conditions related to the reverse order laws $(ab)^\# = b^\# a^\dagger$ and $(ab)^\# = b_1^\dagger a^\#$ in rings with involution, applying a purely algebraic technique. In the case of linear bounded operators on Hilbert spaces, where the method of operator matrices is very useful, similar results for the reverse order law $(ab)^\# = b^\# a^\#$ are given. In a \textit{*}-regular ring R, observe that the assumption $a \in R^\dagger$ is automatically satisfied. It could be interesting to extend this work to the reverse order laws of a triple product.

18
References

Address:

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

E-mail

D. Mosić: dijana@pmf.ni.ac.rs
D. S. Djordjević: dragan@pmf.ni.ac.rs