Mixed-type reverse order laws for the group inverses in rings with involution

Dijana Mosić and Dragan S. Djordjević*

Abstract

We investigate some equivalent conditions for the reverse order laws $(ab)^{\#} = b^{\dagger}a^{\#}$ and $(ab)^{\#} = b^{\#}a^{\dagger}$ in rings with involution. Similar results for $(ab)^{\#} = b^{\#}a^{*}$ and $(ab)^{\#} = b^{*}a^{\#}$ are presented too.

 $Key\ words\ and\ phrases:$ Group inverse; Moore–Penrose inverse; Reverse order law.

2010 Mathematics subject classification: 16B99, 15A09, 46L05.

1 Introduction

Let \mathcal{R} be an associative ring with the unit 1, and let $a \in \mathcal{R}$. Then a is group *invertible* if there is $a^{\#} \in \mathcal{R}$ such that

(1)
$$aa^{\#}a = a$$
, (2) $a^{\#}aa^{\#} = a^{\#}$, (5) $aa^{\#} = a^{\#}a$;

 $a^{\#}$ is a group inverse of a and it is uniquely determined by these equations. The group inverse $a^{\#}$ double commutes with a, that is, ax = xa implies $a^{\#}x = xa^{\#}$ [1]. Denote by $\mathcal{R}^{\#}$ the set of all group invertible elements of \mathcal{R} .

An involution $a \mapsto a^*$ in a ring \mathcal{R} is an anti-isomorphism of degree 2, that is,

$$(a^*)^* = a, \quad (a+b)^* = a^* + b^*, \quad (ab)^* = b^*a^*,$$

An element $a \in \mathcal{R}$ is self-adjoint (or Hermitian) if $a^* = a$.

The Moore–Penrose inverse (or MP-inverse) of $a \in \mathcal{R}$ is the element $a^{\dagger} \in \mathcal{R}$, if the following equations hold [9]:

(1)
$$aa^{\dagger}a = a$$
, (2) $a^{\dagger}aa^{\dagger} = a^{\dagger}$, (3) $(aa^{\dagger})^* = aa^{\dagger}$, (4) $(a^{\dagger}a)^* = a^{\dagger}a$.

^{*}The authors are supported by the Ministry of the Ministry of Education and Science, Republic of Serbia, grant no. 174007.

There is at most one a^{\dagger} such that above conditions hold. The set of all Moore–Penrose invertible elements of \mathcal{R} will be denoted by \mathcal{R}^{\dagger} .

If $\delta \subset \{1, 2, 3, 4, 5\}$ and b satisfies the equations (i) for all $i \in \delta$, then b is an δ -inverse of a. The set of all δ -inverse of a is denoted by $a\{\delta\}$. Notice that $a\{1, 2, 5\} = \{a^{\#}\}$ and $a\{1, 2, 3, 4\} = \{a^{\dagger}\}$. If a is invertible, then $a^{\#}$ and a^{\dagger} coincide with the ordinary inverse a^{-1} of a. The set of all invertible elements of \mathcal{R} will be denoted by \mathcal{R}^{-1} .

For $a \in \mathcal{R}$ consider two annihilators

$$a^{\circ} = \{ x \in \mathcal{R} : ax = 0 \}, \qquad {}^{\circ}a = \{ x \in \mathcal{R} : xa = 0 \}.$$

For invertible elements $a, b \in \mathcal{R}$, the inverse of the product ab satisfied the reverse order law $(ab)^{-1} = b^{-1}a^{-1}$. A natural consideration is to see what will be obtained if we replace the inverse by other type of generalized inverses. The reverse order laws for various generalized inverses yield a class of interesting problems which are fundamental in the theory of generalized inverses. They have attracted considerable attention since the middle 1960s, and many interesting results have been obtained [1, 2, 3, 4, 5, 6].

C.Y. Deng [3] presented some necessary and sufficient conditions concerning the reverse order law $(ab)^{\#} = b^{\#}a^{\#}$ for the group invertible linear bounded operators a and b on a Hilbert space. He used the matrix form of operators induced by some natural decomposition of Hilbert spaces.

Inspired by [3], in this paper we present equivalent conditions which are related to the reverse order laws for the group inverses in rings with involution. In particular, we obtain equivalent conditions for $(ab)^{\#} = b^{\#}a^{\dagger}$ and $(ab)^{\#} = b^{\dagger}a^{\#}$ to hold. We also characterize the rules $(ab)^{\#} = b^{\#}a^{\dagger}$ and $(ab)^{\#} = b^{\dagger}a^{\#}$. Assuming that a is Moore-Penrose invertible, and that b is group invertible, we study the reverse order laws $(ab)^{\#} = (a^{\dagger}ab)^{\#}a^{\dagger}$, $(ab)^{\#} = (a^{*}ab)^{\#}a^{*}$, $(a^{\dagger}ab)^{\#} = b^{\#}a^{\dagger}a$, $(a^{*}ab)^{\#} = b^{\#}a^{\dagger}a$, $(a^{\dagger}ab)^{\#}a^{\dagger} = b^{\#}a^{\dagger}$ and $(a^{*}ab)^{\#}a^{*} = b^{\#}a^{*}$. When we suppose that a is group invertible and b is Moore-Penrose invertible, we get similar results for the reverse order laws $(ab)^{\#} = b^{\dagger}(abb^{\dagger})^{\#}$, $(ab)^{\#} = b^{*}(abb^{*})^{\#}$, $(abb^{\dagger})^{\#} = bb^{\dagger}a^{\#}$, $(abb^{*})^{\#} = bb^{\dagger}a^{\#}$, $b^{\dagger}(abb^{\dagger})^{\#} = b^{\dagger}a^{\#}$ and $b^{*}(abb^{*})^{\#} = b^{*}a^{\#}$. Also, we show that $(ab)\{5\} \subseteq (a^{\dagger}ab)\{1,5\} \cdot a^{\dagger}$ and similar statements for $(ab)\{5\} \subseteq (a^{*}ab)\{1,5\} \cdot a^{*}$, $(abb^{*})\{1,5\}$.

2 Reverse order laws involving triple products

Several equivalent conditions for $(ab)^{\#} = (a^{\dagger}ab)^{\#}a^{\dagger}$ and $(ab)^{\#} = (a^{*}ab)^{\#}a^{*}$ to hold are presented in the following theorems.

Theorem 2.1. Let $b \in \mathcal{R}$ and $a \in \mathcal{R}^{\dagger}$. If $a^{\dagger}ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $ab \in \mathcal{R}^{\#}$ and $(ab)^{\#} = (a^{\dagger}ab)^{\#}a^{\dagger}$,
- (ii) $(a^{\dagger}ab)^{\#}a^{\dagger} \in (ab)\{5\},\$
- (iii) $abaa^{\dagger} = ab$ and $(a^{\dagger}ab)^{\#}a^{\dagger}aba = ab(a^{\dagger}ab)^{\#}a^{\dagger}a$,
- (iv) $(a^{\dagger}ab)\{1,5\} \cdot a^{\dagger} \subseteq (ab)\{5\}.$

Proof. (i) \Rightarrow (ii): Obviously.

(ii) \Rightarrow (iii): From the condition $(a^{\dagger}ab)^{\#}a^{\dagger} \in (ab)\{5\}$, we have $ab(a^{\dagger}ab)^{\#}a^{\dagger} = (a^{\dagger}ab)^{\#}a^{\dagger}ab$. So, $ab(a^{\dagger}ab)^{\#}a^{\dagger}a = (a^{\dagger}ab)^{\#}a^{\dagger}aba$. Observe that $(a^{\dagger}ab)^{\#}a^{\dagger} \in (ab)\{1\}$, by

$$ab(a^{\dagger}ab)^{\#}a^{\dagger}ab = a(a^{\dagger}ab(a^{\dagger}ab)^{\#}a^{\dagger}ab) = aa^{\dagger}ab = ab.$$

$$\tag{1}$$

Now, we get

$$abaa^{\dagger} = abab(a^{\dagger}ab)^{\#}a^{\dagger}aa^{\dagger} = abab(a^{\dagger}ab)^{\#}a^{\dagger} = ab$$

(iii) \Rightarrow (iv): Assume that $abaa^{\dagger} = ab$ and $(a^{\dagger}ab)^{\#}a^{\dagger}aba = ab(a^{\dagger}ab)^{\#}a^{\dagger}a$. If $(a^{\dagger}ab)^{(1,5)} \in (a^{\dagger}ab)\{1,5\}$, then

$$a^{\dagger}ab(a^{\dagger}ab)^{(1,5)} = (a^{\dagger}ab)^{\#}a^{\dagger}ab(a^{\dagger}ab(a^{\dagger}ab)^{(1,5)}) = (a^{\dagger}ab)^{\#}(a^{\dagger}ab(a^{\dagger}ab)^{(1,5)}a^{\dagger}ab)$$

= $(a^{\dagger}ab)^{\#}a^{\dagger}ab.$ (2)

Using the equalities (2) and (iii), we obtain that $(a^{\dagger}ab)^{(1,5)}a^{\dagger} \in (ab)\{5\}$:

$$ab(a^{\dagger}ab)^{(1,5)}a^{\dagger} = a(a^{\dagger}ab(a^{\dagger}ab)^{(1,5)})a^{\dagger} = aa^{\dagger}ab(a^{\dagger}ab)^{\#}a^{\dagger}$$
$$= (ab(a^{\dagger}ab)^{\#}a^{\dagger}a)a^{\dagger} = (a^{\dagger}ab)^{\#}a^{\dagger}(abaa^{\dagger})$$
$$= (a^{\dagger}ab)^{\#}a^{\dagger}ab = (a^{\dagger}ab)^{(1,5)}a^{\dagger}ab.$$

Hence, for any $(a^{\dagger}ab)^{(1,5)} \in (a^{\dagger}ab)\{1,5\}$, $(a^{\dagger}ab)^{(1,5)}a^{\dagger} \in (ab)\{5\}$ and the statement (iv) holds.

(iv) \Rightarrow (i): Since $(a^{\dagger}ab)^{\#} \in (a^{\dagger}ab)\{1,5\}$, by (iv), $(a^{\dagger}ab)^{\#}a^{\dagger} \in (ab)\{5\}$. The equalities (1) and

$$((a^{\dagger}ab)^{\#}a^{\dagger}ab(a^{\dagger}ab)^{\#})a^{\dagger} = (a^{\dagger}ab)^{\#}a^{\dagger}$$

imply $(a^{\dagger}ab)^{\#}a^{\dagger} \in (ab)\{1,2\}$ and the condition (i) is satisfied.

Theorem 2.2. Let $b \in \mathcal{R}$ and $a \in \mathcal{R}^{\dagger}$. If $a^*ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $ab \in \mathcal{R}^{\#} and (ab)^{\#} = (a^*ab)^{\#}a^*,$
- (ii) $(a^*ab)^{\#}a^* \in (ab)\{5\},\$
- (iii) $abaa^{\dagger} = ab \ and \ (a^*ab)^{\#}a^*aba = ab(a^*ab)^{\#}a^*a,$
- (iv) $(a^*ab)\{1,5\} \cdot a^* \subseteq (ab)\{5\}.$

Proof. Using $a = (a^{\dagger})^* a^* a$ and $a^* = a^* a a^{\dagger}$, we verify this result similarly as in Theorem 2.1.

The following results concerning $(ab)^{\#} = b^{\dagger}(abb^{\dagger})^{\#}$ and $(ab)^{\#} = b^{*}(abb^{*})^{\#}$ are actually dual to Theorems 2.1 and 2.2, where dual means "working in the opposite ring (\mathcal{R}, \circ) with reverse multiplication $a \circ b = ba$ ".

Corollary 2.1. Let $a \in \mathcal{R}$ and $b \in \mathcal{R}^{\dagger}$. If $abb^{\dagger} \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $ab \in \mathcal{R}^{\#}$ and $(ab)^{\#} = b^{\dagger}(abb^{\dagger})^{\#}$,
- (ii) $b^{\dagger}(abb^{\dagger})^{\#} \in (ab)\{5\},\$
- (iii) $b^{\dagger}bab = ab$ and $babb^{\dagger}(abb^{\dagger})^{\#} = bb^{\dagger}(abb^{\dagger})^{\#}ab$,
- (iv) $b^{\dagger} \cdot (abb^{\dagger})\{1,5\} \subseteq (ab)\{5\}.$

Corollary 2.2. Let $a \in \mathcal{R}$ and $b \in \mathcal{R}^{\dagger}$. If $abb^* \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $ab \in \mathcal{R}^{\#}$ and $(ab)^{\#} = b^*(abb^*)^{\#}$,
- (ii) $b^*(abb^*)^{\#} \in (ab)\{5\},\$
- (iii) $b^{\dagger}bab = ab and babb^{*}(abb^{*})^{\#} = bb^{*}(abb^{*})^{\#}ab$,
- (iv) $b^* \cdot (abb^*)\{1,5\} \subseteq (ab)\{5\}.$

In the following theorem, we prove that $(ab){5} \subseteq (a^{\dagger}ab){1,5} \cdot a^{\dagger}$ is equivalent to $(ab){5} = (a^{\dagger}ab){1,5} \cdot a^{\dagger}$.

Theorem 2.3. Let $b \in \mathcal{R}$ and $a \in \mathcal{R}^{\dagger}$. If $ab, a^{\dagger}ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

(i) $(ab){5} \subseteq (a^{\dagger}ab){1,5} \cdot a^{\dagger}$,

(ii) $(ab){5} = (a^{\dagger}ab){1,5} \cdot a^{\dagger}$.

Proof. (i) \Rightarrow (ii): Assume that $(ab)\{5\} \subseteq (a^{\dagger}ab)\{1,5\} \cdot a^{\dagger}$. Because $(ab)^{\#} \in (ab)\{5\}$, then there exists $(a^{\dagger}ab)^{(1,5)} \in (a^{\dagger}ab)\{1,5\}$ such that $(ab)^{\#} = (a^{\dagger}ab)^{(1,5)}a^{\dagger}$. Since the equalities (2) hold again, we obtain

$$(a^{\dagger}ab)^{\#} = (a^{\dagger}ab)^{\#}a^{\dagger}ab(a^{\dagger}ab)^{\#} = (a^{\dagger}ab)^{(1,5)}a^{\dagger}ab(a^{\dagger}ab)^{(1,5)}$$

which implies

$$(a^{\dagger}ab)^{\dagger}a^{\dagger} = ((a^{\dagger}ab)^{(1,5)}a^{\dagger})ab((a^{\dagger}ab)^{(1,5)}a^{\dagger}) = (ab)^{\#}ab(ab)^{\#} = (ab)^{\#}.$$

By Theorem 2.1, we deduce that $(a^{\dagger}ab)\{1,5\} \cdot a^{\dagger} \subseteq (ab)\{5\}$. Hence, the condition (ii) holds.

(ii) \Rightarrow (i): This is obvious.

Analogously to Theorem 2.3, we obtain the following theorem.

Theorem 2.4. Let $b \in \mathcal{R}$ and $a \in \mathcal{R}^{\dagger}$. If $ab, a^*ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $(ab){5} \subseteq (a^*ab){1,5} \cdot a^*$,
- (ii) $(ab){5} = (a^*ab){1,5} \cdot a^*$.

Applying Theorems 2.3 and 2.4 to the opposite ring (\mathcal{R}, \circ) , we get the dual statements.

Corollary 2.3. Let $a \in \mathcal{R}$ and $b \in \mathcal{R}^{\dagger}$. If $ab, abb^{\dagger} \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $(ab){5} \subseteq b^{\dagger} \cdot (abb^{\dagger}){1,5},$
- (ii) $(ab){5} = b^{\dagger} \cdot (abb^{\dagger}){1,5}.$

Corollary 2.4. Let $a \in \mathcal{R}$ and $b \in \mathcal{R}^{\dagger}$. If $ab, abb^* \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $(ab){5} \subseteq b^* \cdot (abb^*){1,5},$
- (ii) $(ab){5} = b^* \cdot (abb^*){1,5}.$

Now, we consider the conditions which ensure that the reverse order laws $(a^{\dagger}ab)^{\#} = b^{\#}a^{\dagger}a$ and $(abb^{\dagger})^{\#} = bb^{\dagger}a^{\#}$ hold.

Theorem 2.5. If $a \in \mathcal{R}^{\dagger}$ and $b \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $a^{\dagger}ab \in \mathcal{R}^{\#}$ and $(a^{\dagger}ab)^{\#} = b^{\#}a^{\dagger}a$,
- (ii) $a^{\dagger}ab = ba^{\dagger}a$.

Proof. (i) \Rightarrow (ii): From the assumption $(a^{\dagger}ab)^{\#} = b^{\#}a^{\dagger}a$, we obtain

$$a^{\dagger}abb^{\#}a^{\dagger}a = b^{\#}a^{\dagger}aa^{\dagger}ab = b^{\#}a^{\dagger}ab \tag{3}$$

and

$$b^{\#}a^{\dagger}a = b^{\#}a^{\dagger}a(a^{\dagger}ab)b^{\#}a^{\dagger}a = b^{\#}(a^{\dagger}abb^{\#}a^{\dagger}a) = b^{\#}b^{\#}a^{\dagger}ab.$$
(4)

The equalities (3) and (4) imply

$$ba^{\dagger}a = b^{2}(b^{\#}a^{\dagger}a) = b^{2}b^{\#}b^{\#}a^{\dagger}ab = bb^{\#}a^{\dagger}ab.$$
(5)

and

$$(a^{\dagger}abb^{\#}a^{\dagger}a)b = b^{\#}a^{\dagger}abb = b(b^{\#}b^{\#}a^{\dagger}ab)b = bb^{\#}a^{\dagger}ab.$$
(6)

Since

$$a^{\dagger}ab = a^{\dagger}ab(a^{\dagger}ab)^{\#}a^{\dagger}ab = a^{\dagger}abb^{\#}a^{\dagger}aa^{\dagger}ab = a^{\dagger}abb^{\#}a^{\dagger}ab$$

by (6) and (5), we get

$$a^{\dagger}ab = bb^{\#}a^{\dagger}ab = ba^{\dagger}a$$

Hence, the condition (ii) holds.

(ii) \Rightarrow (i): Assume that $a^{\dagger}ab = ba^{\dagger}a$. Because the group inverse $b^{\#}$ double commutes with b, we deduce that $a^{\dagger}ab^{\#} = b^{\#}a^{\dagger}a$ and $a^{\dagger}abb^{\#} = bb^{\#}a^{\dagger}a$. We can easily verify that $b^{\#}a^{\dagger}a \in (a^{\dagger}ab)\{1,2,5\}$.

Remark 2.1 Applying Theorem 2.5 with a projection $p = a^{\dagger}a$ (hence $p = p^{\#}$), for $b \in \mathcal{R}^{\#}$, we recover the equivalence $pb \in \mathcal{R}^{\#}$ and $(pb)^{\#} = b^{\#}p \Leftrightarrow pb = bp$.

Dually to Theorem 2.5, we can check the following result.

Corollary 2.5. If $a \in \mathcal{R}^{\#}$ and $b \in \mathcal{R}^{\dagger}$, then the following statements are equivalent:

- (i) $abb^{\dagger} \in \mathcal{R}^{\#}$ and $(abb^{\dagger})^{\#} = bb^{\dagger}a^{\#}$,
- (ii) $abb^{\dagger} = bb^{\dagger}a$.

Notice that the condition (ii) of Theorem 2.5 can be written as $a_l^{\pi}b = ba_l^{\pi}$, where $a_l^{\pi} = 1 - a^{\dagger}a$. The condition $abb^{\dagger} = bb^{\dagger}a$ of Corollary 2.5 is equivalent to $ab_r^{\pi} = b_r^{\pi}a$, where $b_r^{\pi} = 1 - bb^{\dagger}$. If a is EP element ($a \in \mathcal{R}^{\dagger}$ and $a^{\dagger}a = aa^{\dagger}$ or equivalently $a \in \mathcal{R}^{\dagger} \cap \mathcal{R}^{\#}$ and $a^{\dagger} = a^{\#}$), then $a^{\pi} = a_l^{\pi} = a_r^{\pi}$ is the spectral idempotent of the element a.

The following results give the equivalent conditions to $(a^*ab)^{\#} = b^{\#}a^{\dagger}a$ and $(abb^*)^{\#} = bb^{\dagger}a^{\#}$.

Theorem 2.6. If $a \in \mathbb{R}^{\dagger}$ and $b, a^*ab \in \mathbb{R}^{\#}$, then the following statements are equivalent:

- (i) $(a^*ab)^{\#} = b^{\#}a^{\dagger}a$,
- (ii) $a^*ab = ba^{\dagger}a$.

Proof. (i)
$$\Rightarrow$$
 (ii): Suppose that $(a^*ab)^{\#} = b^{\#}a^{\dagger}a$. Then

$$b^{\#}a^{\dagger}a = b^{\#}a^{\dagger}a(a^{*}ab)b^{\#}a^{\dagger}a = b^{\#}(a^{*}abb^{\#}a^{\dagger}a) = b^{\#}b^{\#}a^{\dagger}aa^{*}ab = b^{\#}b^{\#}a^{*}ab^{\#}a^{*}ab = b^{\#}b^{\#}a^{*}ab = b^{\#}b^{\#}a$$

gives

$$\begin{array}{ll} a^{*}ab &=& (a^{*}ab)^{\#}a^{*}aba^{*}ab = b^{\#}a^{\dagger}aa^{*}aba^{*}ab = b(b^{\#}b^{\#}a^{*}ab)a^{*}ab \\ &=& bb^{\#}a^{\dagger}aa^{*}ab = bb^{\#}a^{*}ab = bb(b^{\#}b^{\#}a^{*}ab) = bbb^{\#}a^{\dagger}a = ba^{\dagger}a. \end{array}$$

(ii)
$$\Rightarrow$$
 (i): If $a^*ab = ba^{\dagger}a$, we get

$$a^*ab = ba^{\dagger}a = bb^{\#}(ba^{\dagger}a) = bb^{\#}a^*ab.$$

Now, from

$$(a^*ab)^{\#} = (a^*ab)[(a^*ab)^{\#}]^2 = bb^{\#}a^*ab[(a^*ab)^{\#}]^2$$

= $bb^{\#}a^{\dagger}a(a^*ab[(a^*ab)^{\#}]^2) = bb^{\#}a^{\dagger}a(a^*ab)^{\#}$

and

$$b^{\#}a^{\dagger}a = b^{\#}b^{\#}(ba^{\dagger}a) = b^{\#}b^{\#}(a^{*}ab) = b^{\#}b^{\#}(a^{*}ab)a^{*}ab(a^{*}ab)^{\#}$$
$$= b^{\#}b^{\#}ba^{\dagger}aa^{*}ab(a^{*}ab)^{\#} = b^{\#}(a^{*}ab)(a^{*}ab)^{\#} = b^{\#}ba^{\dagger}a(a^{*}ab)^{\#},$$

we obtain that $(a^*ab)^{\#} = b^{\#}a^{\dagger}a$.

The dual statement to Theorem 2.6 also holds.

Corollary 2.6. If $b \in \mathbb{R}^{\dagger}$ and $a, abb^* \in \mathbb{R}^{\#}$, then the following statements are equivalent:

- (i) $(abb^*)^{\#} = bb^{\dagger}a^{\#}$,
- (ii) $abb^* = bb^{\dagger}a$.

In the following theorem, we give necessary and sufficient conditions for $(a^{\dagger}ab)^{\#}a^{\dagger} = b^{\#}a^{\dagger}$ to be satisfied.

Theorem 2.7. If $a \in \mathcal{R}^{\dagger}$ and $b, a^{\dagger}ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $(a^{\dagger}ab)^{\#}a^{\dagger} = b^{\#}a^{\dagger},$
- (ii) $ba^{\dagger}a = a^{\dagger}aba^{\dagger}a$,

(iii)
$$ba^{\dagger}a\mathcal{R} \subseteq a^*\mathcal{R} \ (or \circ (a^*) \subseteq \circ (ba^{\dagger}a) \).$$

Proof. (i) \Rightarrow (ii): Let $(a^{\dagger}ab)^{\#}a^{\dagger} = b^{\#}a^{\dagger}$. Now the equality

$$a^{\dagger}ab = a^{\dagger}ab(a^{\dagger}ab)^{\#}a^{\dagger}ab = ((a^{\dagger}ab)^{\#}a^{\dagger})aba^{\dagger}ab = b^{\#}a^{\dagger}aba^{\dagger}ab$$

implies

$$\begin{aligned} (a^{\dagger}ab)a^{\dagger}a &= b^{\#}a^{\dagger}aba^{\dagger}aba^{\dagger}a = b^{\#}b(b^{\#}a^{\dagger}aba^{\dagger}ab)a^{\dagger}a \\ &= b^{\#}ba^{\dagger}aba^{\dagger}a = b(b^{\#}a^{\dagger})aba^{\dagger}a = b((a^{\dagger}ab)^{\#}a^{\dagger}ab)a^{\dagger}a \\ &= ba^{\dagger}ab((a^{\dagger}ab)^{\#}a^{\dagger})a = ba^{\dagger}abb^{\#}a^{\dagger}a. \end{aligned}$$

Using this equality and

$$b^{\#}a^{\dagger} = (a^{\dagger}ab)^{\#}a^{\dagger} = (a^{\dagger}ab)^{\#}a^{\dagger}ab(a^{\dagger}ab)^{\#}a^{\dagger} = b^{\#}a^{\dagger}abb^{\#}a^{\dagger},$$

we obtain

$$a^{\dagger}aba^{\dagger}a = ba^{\dagger}abb^{\#}a^{\dagger}a = b^{2}(b^{\#}a^{\dagger}abb^{\#}a^{\dagger})a = b^{2}b^{\#}a^{\dagger}a = ba^{\dagger}a$$

So, the statement (ii) is satisfied.

(ii) \Rightarrow (i): Applying the hypothesis $ba^{\dagger}a = a^{\dagger}aba^{\dagger}a$, we get

$$b^{\#}a^{\dagger} = b^{\#}b^{\#}(ba^{\dagger}a)a^{\dagger} = b^{\#}b^{\#}(a^{\dagger}ab)a^{\dagger}aa^{\dagger} = b^{\#}b^{\#}a^{\dagger}ab((a^{\dagger}ab)^{\#}a^{\dagger}ab)a^{\dagger}$$

$$= b^{\#}b^{\#}(a^{\dagger}aba^{\dagger}a)b(a^{\dagger}ab)^{\#}a^{\dagger} = b^{\#}b^{\#}ba^{\dagger}ab(a^{\dagger}ab)^{\#}a^{\dagger}$$

$$= b^{\#}a^{\dagger}ab(a^{\dagger}ab)^{\#}a^{\dagger}.$$
 (7)

Since

$$(a^{\dagger}ab)^{\#} = a^{\dagger}ab[(a^{\dagger}ab)^{\#}]^{2} = a^{\dagger}a(a^{\dagger}ab[(a^{\dagger}ab)^{\#}]^{2}) = a^{\dagger}a(a^{\dagger}ab)^{\#},$$

then

$$\begin{aligned} (a^{\dagger}ab)^{\#}a^{\dagger} &= (a^{\dagger}aba^{\dagger}a)b[(a^{\dagger}ab)^{\#}]^{3}a^{\dagger} = ba^{\dagger}ab[(a^{\dagger}ab)^{\#}]^{3}a^{\dagger} \\ &= bb^{\#}(ba^{\dagger}a)b[(a^{\dagger}ab)^{\#}]^{3}a^{\dagger} = bb^{\#}a^{\dagger}aba^{\dagger}ab[(a^{\dagger}ab)^{\#}]^{3}a^{\dagger} \\ &= bb^{\#}a^{\dagger}a(a^{\dagger}aba^{\dagger}ab[(a^{\dagger}ab)^{\#}]^{3})a^{\dagger} = b^{\#}(ba^{\dagger}a)(a^{\dagger}ab)^{\#}a^{\dagger} \\ &= b^{\#}a^{\dagger}ab(a^{\dagger}a(a^{\dagger}ab)^{\#})a^{\dagger} = b^{\#}a^{\dagger}ab(a^{\dagger}ab)^{\#}a^{\dagger}, \end{aligned}$$

which yields, by (7), $(a^{\dagger}ab)^{\#}a^{\dagger} = b^{\#}a^{\dagger}$.

(ii) \Leftrightarrow (iii): The condition $ba^{\dagger}a = a^{\dagger}aba^{\dagger}a$ gives $ba^{\dagger}a\mathcal{R} \subseteq a^{\dagger}\mathcal{R} = a^{*}\mathcal{R}$. Conversely, from $ba^{\dagger}a\mathcal{R} \subseteq a^{*}\mathcal{R}$, we conclude that $ba^{\dagger}a = a^{*}x$ for some $x \in \mathcal{R}$. Now, $ba^{\dagger}a = a^{*}x = a^{\dagger}a(a^{*}x) = a^{\dagger}aba^{\dagger}a$.

Obviously, for condition (ii) of Theorem 2.7, we have $ba^{\dagger}a = a^{\dagger}aba^{\dagger}a \Leftrightarrow a_{l}^{\pi}b(1-a_{l}^{\pi}) = 0 \Leftrightarrow a_{l}^{\pi}b(1-a_{l}^{\pi}) = (1-a_{l}^{\pi})a_{l}^{\pi}b.$

The following theorem can be proved in the similar manner as Theorem 2.7.

Theorem 2.8. If $a \in \mathcal{R}^{\dagger}$ and $b, a^*ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $(a^*ab)^{\#}a^* = b^{\#}a^*$,
- (ii) $ba^*a = a^*aba^*a$ (or $ba^{\dagger}a = a^*aba^{\dagger}a$).

Using Theorems 2.7 and 2.8 to the opposite ring, we obtain the dual results.

Corollary 2.7. If $b \in \mathbb{R}^{\dagger}$ and $a, abb^{\dagger} \in \mathbb{R}^{\#}$, then the following statements are equivalent:

- (i) $b^{\dagger}(abb^{\dagger})^{\#} = b^{\dagger}a^{\#}$,
- (ii) $bb^{\dagger}a = bb^{\dagger}abb^{\dagger}$,
- (iii) $\mathcal{R}bb^{\dagger}a \subseteq \mathcal{R}b^*$ (or $(b^*)^{\circ} \subseteq (bb^{\dagger}a)^{\circ}$).

Note that $bb^{\dagger}a = bb^{\dagger}abb^{\dagger} \Leftrightarrow (1-b_r^{\pi})ab_r^{\pi} = 0 \Leftrightarrow (1-b_r^{\pi})ab_r^{\pi} = ab_r^{\pi}(1-b_r^{\pi}).$

Corollary 2.8. If $b \in \mathcal{R}^{\dagger}$ and $a, abb^* \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $b^*(abb^*)^{\#} = b^*a^{\#}$,
- (ii) $bb^*a = bb^*abb^*$ (or $bb^{\dagger}a = bb^{\dagger}abb^*$).

Notice that the conditions of Theorem 2.5 (Theorem 2.6, Corollary 2.5, Corollary 2.6, respectively) imply the conditions of Theorem 2.7 (Theorem 2.8, Corollary 2.7, Corollary 2.8, respectively)

3 Reverse order laws $(ab)^{\#} = b^{\#}a^{\dagger}$ and $(ab)^{\#} = b^{\#}a^{*}$

Assuming that a is Moore-Penrose invertible, and that b is group invertible in a ring with involution, equivalent conditions to the reverse order law $(ab)^{\#} = b^{\#}a^{\dagger}$ are presented in the following theorem.

Theorem 3.1. If $a \in \mathbb{R}^{\dagger}$ and $b, ab \in \mathbb{R}^{\#}$, then the following statements are equivalent:

- (i) $(ab)^{\#} = b^{\#}a^{\dagger}$,
- (ii) $(ab)^{\#}a = b^{\#}a^{\dagger}a$ and $a^*ab = a^*abaa^{\dagger}$,
- (iii) $(ab)^{\#}a = b^{\#}a^{\dagger}a \text{ and } a^{\dagger}ab = a^{\dagger}abaa^{\dagger},$
- (iv) $b(ab)^{\#} = bb^{\#}a^{\dagger}$ and $abb^{\#} = bb^{\#}abb^{\#}$.

Proof. (i) \Rightarrow (ii): The hypothesis $(ab)^{\#} = b^{\#}a^{\dagger}$ gives $(ab)^{\#}a = b^{\#}a^{\dagger}a$ and

$$\begin{aligned} a^*ab &= a^*ab((ab)^{\#}ab) = a^*abab(ab)^{\#} = a^*ababb^{\#}a^{\dagger} \\ &= a^*(ababb^{\#}a^{\dagger})aa^{\dagger} = a^*abaa^{\dagger}. \end{aligned}$$

Hence, the condition (ii) holds.

(ii) \Rightarrow (iii): Because $(ab)^{\#}a = b^{\#}a^{\dagger}a$ and $a^*ab = a^*abaa^{\dagger}$, then

 $a^{\dagger}ab = a^{\dagger}(a^{\dagger})^*(a^*ab) = a^{\dagger}(a^{\dagger})^*a^*abaa^{\dagger} = a^{\dagger}abaa^{\dagger}.$

So, (iii) is satisfied.

(iii) \Rightarrow (i): Suppose that $(ab)^{\#}a = b^{\#}a^{\dagger}a$ and $a^{\dagger}ab = a^{\dagger}abaa^{\dagger}$. First, we show that $b^{\#}a^{\dagger} \in (ab)\{5\}$:

$$\begin{aligned} (b^{\#}a^{\dagger}a)b &= (ab)^{\#}ab = (ab)^{\#}a(a^{\dagger}ab) = (ab)^{\#}aa^{\dagger}abaa^{\dagger} \\ &= ((ab)^{\#}ab)aa^{\dagger} = ab((ab)^{\#}a)a^{\dagger} = abb^{\#}a^{\dagger}aa^{\dagger} \\ &= abb^{\#}a^{\dagger}. \end{aligned}$$

Further, from

$$ab = ab((ab)^{\#}a)b = abb^{\#}a^{\dagger}ab$$

and

$$b^{\#}a^{\dagger} = (b^{\#}a^{\dagger}a)a^{\dagger} = (ab)^{\#}aa^{\dagger} = ((ab)^{\#}a)b((ab)^{\#}a)a^{\dagger} = b^{\#}a^{\dagger}abb^{\#}a^{\dagger}aa^{\dagger} = b^{\#}a^{\dagger}abb^{\#}a^{\dagger},$$

we deduce that $b^{\#}a^{\dagger} \in (ab)\{1,2\}$, i.e. $(ab)^{\#} = b^{\#}a^{\dagger}$.

(i) \Leftrightarrow (iv): This equivalence can be proved similarly as previous parts.

The condition $a^{\dagger}ab = a^{\dagger}abaa^{\dagger}$ in Theorem 3.1 can be replaced with equivalent conditions $\mathcal{R}a^{\dagger}ab \subseteq \mathcal{R}a^*$ or $(a^*)^{\circ} \subseteq (a^{\dagger}ab)^{\circ}$. Also, the condition $abb^{\#} = bb^{\#}abb^{\#}$ in Theorem 3.1 can be replaced with equivalent conditions $abb^{\#}\mathcal{R} \subseteq b\mathcal{R}$ or $^{\circ}b \subseteq ^{\circ}(abb^{\#})$.

Similarly as in the proof of Theorem 3.1, we get necessary and sufficient conditions which ensure that $(ab)^{\#} = b^{\#}a^*$ is satisfied.

Theorem 3.2. If $a \in \mathbb{R}^{\dagger}$ and $b, ab \in \mathbb{R}^{\#}$, then the following statements are equivalent:

- (i) $(ab)^{\#} = b^{\#}a^*$,
- (ii) $(ab)^{\#}a = b^{\#}a^*a \text{ and } a^*ab = a^*abaa^{\dagger},$
- (iii) $(ab)^{\#}a = b^{\#}a^*a$ and $a^{\dagger}ab = a^{\dagger}abaa^{\dagger}$,
- (iv) $b(ab)^{\#} = bb^{\#}a^*$ and $abb^{\#} = bb^{\#}abb^{\#}$.

If we suppose that a is EP element in Theorem 3.1 or that $a \in \mathcal{R}^{\dagger} \cap \mathcal{R}^{\#}$ and $a^* = a^{\#}$ in Theorem 3.2, we obtain new characterizations of the classical reverse order law $(ab)^{\#} = b^{\#}a^{\#}$.

Dually to Theorems 3.1 and 3.2, equivalent conditions for $(ab)^{\#} = b^{\dagger}a^{\#}$ and $(ab)^{\#} = b^*a^{\#}$ are presented.

Corollary 3.1. If $b \in \mathcal{R}^{\dagger}$ and $a, ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $(ab)^{\#} = b^{\dagger}a^{\#}$,
- (ii) $(ab)^{\#}a = b^{\dagger}a^{\#}a \text{ and } a^{\#}ab = a^{\#}abaa^{\#},$
- (iii) $b(ab)^{\#} = bb^{\dagger}a^{\#}$ and $abb^{\dagger} = b^{\dagger}babb^{\dagger}$,
- (iv) $b(ab)^{\#} = bb^{\dagger}a^{\#}$ and $abb^* = b^{\dagger}babb^*$.

In Corollary 3.1, the condition $a^{\#}ab = a^{\#}abaa^{\#}$ can be replaced with $\mathcal{R}a^{\#}ab \subseteq \mathcal{R}a$ or $a^{\circ} \subseteq (a^{\#}ab)^{\circ}$, and the condition $abb^{\dagger} = b^{\dagger}babb^{\dagger}$ can be replaced with $abb^{\dagger}\mathcal{R} \subseteq b^{*}\mathcal{R}$ or $^{\circ}(b^{*}) \subseteq ^{\circ}(abb^{\dagger})$.

Corollary 3.2. If $b \in \mathcal{R}^{\dagger}$ and $a, ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $(ab)^{\#} = b^* a^{\#}$,
- (ii) $(ab)^{\#}a = b^*a^{\#}a \text{ and } a^{\#}ab = a^{\#}abaa^{\#},$

- (iii) $b(ab)^{\#} = bb^*a^{\#}$ and $abb^{\dagger} = b^{\dagger}babb^{\dagger}$,
- (iv) $b(ab)^{\#} = bb^*a^{\#}$ and $abb^* = b^{\dagger}babb^*$.

Several sufficient conditions for the reverse order law $(ab)^{\#} = b^{\#}a^{\dagger}$ are presented in the next results.

Theorem 3.3. Suppose that $a \in \mathcal{R}^{\dagger}$ and $b, ab, a^{\dagger}ab, abb^{\#}, a^{*}ab \in \mathcal{R}^{\#}$. Then each of the following conditions is sufficient for $(ab)^{\#} = b^{\#}a^{\dagger}$ to hold:

- (i) $(ab)^{\#}a = b^{\#}a^{\dagger}a$ and $a^{\dagger}ab = baa^{\dagger}$,
- (ii) $(ab)^{\#} = (a^{\dagger}ab)^{\#}a^{\dagger}$ and $(a^{\dagger}ab)^{\#} = b^{\#}a^{\dagger}a$,
- (iii) $(ab)^{\#} = b^{\#}(abb^{\#})^{\#}$ and $(abb^{\#})^{\#} = bb^{\#}a^{\dagger}$,
- (iv) $b(ab)^{\#} = bb^{\#}a^{\dagger} = (abb^{\#})^{\#}$,
- (v) $(ab)^{\#} = (a^*ab)^{\#}a^*$ and $(a^*ab)^{\#} = b^{\#}(a^*a)^{\#}$.

Proof. (i) Assume that $(ab)^{\#}a = b^{\#}a^{\dagger}a$ and $a^{\dagger}ab = baa^{\dagger}$. As $a^{\dagger}a$ is idempotent, then $a^{\dagger}ab = a^{\dagger}abaa^{\dagger}$ and $(ab)^{\#} = b^{\#}a^{\dagger}$ by (iii) of Theorem 3.1.

(ii) From the hypothesis $(ab)^{\#} = (a^{\dagger}ab)^{\#}a^{\dagger}$ and $(a^{\dagger}ab)^{\#} = b^{\#}a^{\dagger}a$, we get

$$(ab)^{\#} = (a^{\dagger}ab)^{\#}a^{\dagger} = b^{\#}a^{\dagger}aa^{\dagger} = b^{\#}a^{\dagger}.$$

- (iii) It follows as part (ii).
- (iv) Suppose that $b(ab)^{\#} = bb^{\#}a^{\dagger} = (abb^{\#})^{\#}$. Then

$$abb^{\#} = (abb^{\#})^{\#}(abb^{\#})^2 = bb^{\#}a^{\dagger}(abb^{\#})^2 = (bb^{\#})^2a^{\dagger}(abb^{\#})^2 = bb^{\#}abb^{\#}.$$

By part (iv) of Theorem 3.1, $(ab)^{\#} = b^{\#}a^{\dagger}$.

(v) The condition $a \in \mathcal{R}^{\dagger}$ implies $a^*a \in \mathcal{R}^{\#}$ and $a^{\dagger} = (a^*a)^{\#}a^*$ (see [8]). The rest of this part follows as (ii).

The following theorem can be proved in the similar way as Theorem 3.3.

Theorem 3.4. Suppose that $a \in \mathcal{R}^{\dagger}$ and $b, ab, a^{\dagger}ab, abb^{\#}, a^{*}ab \in \mathcal{R}^{\#}$. Then each of the following conditions is sufficient for $(ab)^{\#} = b^{\#}a^{*}$ to hold:

- (i) $(ab)^{\#}a = b^{\#}a^*a \text{ and } a^{\dagger}ab = baa^{\dagger},$
- (ii) $(ab)^{\#} = (a^*ab)^{\#}a^*$ and $(a^*ab)^{\#} = b^{\#}a^{\dagger}a$,
- (iii) $(ab)^{\#} = b^{\#}(abb^{\#})^{\#}$ and $(abb^{\#})^{\#} = bb^{\#}a^{*}$,

- (iv) $b(ab)^{\#} = bb^{\#}a^* = (abb^{\#})^{\#}$,
- (v) $(ab)^{\#} = (a^{\dagger}ab)^{\#}a^{\dagger}$ and $(a^{\dagger}ab)^{\#} = b^{\#}a^{*}a$.

Notice that the dual results to Theorems 3.3 and 3.4 are satisfied too.

Corollary 3.3. Suppose that $b \in \mathcal{R}^{\dagger}$ and $a, ab, a^{\#}ab, abb^{\dagger}, abb^{\dagger}, abb^{*} \in \mathcal{R}^{\#}$. Then each of the following conditions is sufficient for $(ab)^{\#} = b^{\dagger}a^{\#}$ to hold:

- (i) $b(ab)^{\#} = bb^{\dagger}a^{\#}$ and $b^{\dagger}ba = abb^{\dagger}$,
- (ii) $(ab)^{\#} = (a^{\#}ab)^{\#}a^{\#}$ and $(a^{\#}ab)^{\#} = b^{\dagger}a^{\#}a$,
- (iii) $(ab)^{\#} = b^{\dagger}(abb^{\dagger})^{\#}$ and $(abb^{\dagger})^{\#} = bb^{\dagger}a^{\#}$,
- (iv) $(ab)^{\#}a = b^{\dagger}a^{\#}a = (a^{\#}ab)^{\#},$
- (v) $(ab)^{\#} = b^*(abb^*)^{\#}$ and $(abb^*)^{\#} = (bb^*)^{\#}a^{\#}$.

Corollary 3.4. Suppose that $b \in \mathcal{R}^{\dagger}$ and $a, ab, a^{\#}ab, abb^{\dagger}, abb^{*} \in \mathcal{R}^{\#}$. Then each of the following conditions is sufficient for $(ab)^{\#} = b^*a^{\#}$ to hold:

- (i) $b(ab)^{\#} = bb^*a^{\#}$ and $b^{\dagger}ba = abb^{\dagger}$,
- (ii) $(ab)^{\#} = (a^{\#}ab)^{\#}a^{\#}$ and $(a^{\#}ab)^{\#} = b^*a^{\#}a$,
- (iii) $(ab)^{\#} = b^*(abb^*)^{\#}$ and $(abb^*)^{\#} = bb^{\dagger}a^{\#}$,
- (iv) $(ab)^{\#}a = b^*a^{\#}a = (a^{\#}ab)^{\#},$
- (v) $(ab)^{\#} = b^{\dagger} (abb^{\dagger})^{\#}$ and $(abb^{*})^{\#} = bb^{*}a^{\#}$.

Remark 3.1. Combining the conditions of Theorem 2.1 and Theorem 2.7, we get the sufficient conditions for the reverse order law $(ab)^{\#} = b^{\#}a^{\dagger}$ to hold. If we combine the conditions of Corollary 2.1 and Corollary 2.7, we obtain the sufficient conditions for $(ab)^{\#} = b^{\dagger}a^{\#}$ to be satisfied.

Sufficient conditions for the reverse order law $(ab)^{\#} = b^{\#}a^{*}$ $((ab)^{\#} = b^{*}a^{\#})$ to hold can be obtained combining the conditions of Theorem 2.2 and Theorem 2.8 (Corollary 2.2 and Corollary 2.8).

4 Other results

More specific results are proved in this section.

Theorem 4.1. If $a \in \mathbb{R}^{\dagger}$ and $b, ab \in \mathbb{R}^{\#}$, then the following statements are equivalent:

- (i) $b^{\#} = (ab)^{\#}a$,
- (ii) $b = aa^{\dagger}b = ba^{\dagger}a$ and $abb^{\#} = bb^{\#}a$,
- (iii) $b\mathcal{R} \subseteq a\mathcal{R}, aa^{\dagger}b = ba^{\dagger}a \text{ and } abb^{\#} = bb^{\#}a,$
- (iv) $a^{\circ} \subseteq b^{\circ}$, $aa^{\dagger}b = ba^{\dagger}a$ and $abb^{\#} = bb^{\#}a$.

Proof. (i) \Rightarrow (ii): Using the equality $b^{\#} = (ab)^{\#}a$, we observe that

 $ba^{\dagger}a = b^{2}b^{\#}a^{\dagger}a = b^{2}(ab)^{\#}aa^{\dagger}a = b^{2}(ab)^{\#}a = b^{2}b^{\#} = b$

and $b = b^{\#}b^2 = ((ab)^{\#}ab)b = ab(ab)^{\#}b$ which yields

$$b = ab(ab)^{\#}b = aa^{\dagger}(ab(ab)^{\#}b) = aa^{\dagger}b.$$

Also, by (i), we get

$$abb^{\#} = (ab(ab)^{\#})a = ((ab)^{\#}a)ba = b^{\#}ba.$$

So, the condition (ii) holds.

(ii) \Rightarrow (i): Suppose that $b = aa^{\dagger}b = ba^{\dagger}a$ and $abb^{\#} = bb^{\#}a$. Then, from $b(ab)^{\#}ab = b^{\#}bb(ab)^{\#}ab = b^{\#}ba^{\dagger}(ab(ab)^{\#}ab) = b^{\#}(ba^{\dagger}a)b = b^{\#}bb = b$

and

$$(ab)^{\#}ab(ab)^{\#}a = (ab)^{\#}a,$$

we conclude that $(ab)^{\#}a \in b\{1,2\}$. Since

$$b(ab)^{\#}a = b[(ab)^{\#}]^2aba = b([(ab)^{\#}]^2ab)(bb^{\#}a) = (b(ab)^{\#}ab)b^{\#} = bb^{\#}abb$$

and

$$ab(ab)^{\#} = (abb^{\#})b(ab)^{\#} = bb^{\#}ab(ab)^{\#} = b^{\#}(b(ab)^{\#}ab) = b^{\#}b,$$

we have $b(ab)^{\#}a = ab(ab)^{\#} = (ab)^{\#}ab$, that is, $(ab)^{\#}a \in b\{5\}$. Hence, the condition (i) is satisfied.

(ii) \Leftrightarrow (iii): We will show that $b = aa^{\dagger}b$ is equivalent to $b\mathcal{R} \subseteq a\mathcal{R}$. First, $b = aa^{\dagger}b$ implies $b\mathcal{R} \subseteq a\mathcal{R}$. Conversely, if $b\mathcal{R} \subseteq a\mathcal{R}$, then, for some $x \in R$, b = ax which gives $b = aa^{\dagger}(ax) = aa^{\dagger}b$.

(ii) \Leftrightarrow (iv): It follows from $b = ba^{\dagger}a$ iff $b(1 - a^{\dagger}a) = 0$ iff $(1 - a^{\dagger}a)\mathcal{R} \subseteq b^{\circ}$ iff $a^{\circ} \subseteq b^{\circ}$. The next result follows dually to Theorem 4.1.

Theorem 4.2. If $b \in \mathcal{R}^{\dagger}$ and $a, ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $a^{\#} = b(ab)^{\#}$,
- (ii) $aa^{\#}b = baa^{\#}$ and $a = ab^{\dagger}b = bb^{\dagger}a$,
- (iii) $a\mathcal{R} \subseteq b\mathcal{R}$, $aa^{\#}b = baa^{\#}$ and $ab^{\dagger}b = bb^{\dagger}a$,
- (iv) $b^{\circ} \subseteq a^{\circ}$, $aa^{\#}b = baa^{\#}$ and $ab^{\dagger}b = bb^{\dagger}a$.

Some conditions of Theorem 4.1 and Theorem 4.2 can be written as $aa^{\dagger}b = ba^{\dagger}a$ and $abb^{\#} = bb^{\#}a \Leftrightarrow a_r^{\pi}b = ba_l^{\pi}$ and $ab^{\pi} = b^{\pi}a$; $aa^{\#}b = baa^{\#}$ and $ab^{\dagger}b = bb^{\dagger}a \Leftrightarrow a^{\pi}b = ba^{\pi}$ and $ab_l^{\pi} = b_r^{\pi}a$.

Theorem 4.3. If $a \in \mathcal{R}^{\dagger}$, $b \in \mathcal{R}$ and $ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $a^{\dagger}ab = b(ab)^{\#}ab$,
- (ii) $baba = a^{\dagger}ababa$,
- (iii) $baba\mathcal{R} \subseteq a^*\mathcal{R} \ (or \circ (a^*) \subseteq \circ (baba) \).$

Proof. (i) \Rightarrow (ii): Using $a^{\dagger}ab = b(ab)^{\#}ab$, we have

$$(a^{\dagger}ab)aba = b((ab)^{\#}abab)a = baba.$$

Thus, the equality (ii) is satisfied.

(ii) \Rightarrow (i): Since $baba = a^{\dagger}ababa$, then

$$a^{\dagger}ab = a^{\dagger}abab(ab)^{\#} = (a^{\dagger}ababa)b[(ab)^{\#}]^2 = babab[(ab)^{\#}]^2 = b(ab)^{\#}ab.$$

(ii) \Rightarrow (iii): It follows by $a^*\mathcal{R} = a^{\dagger}\mathcal{R}$.

(iii) \Rightarrow (ii): By the condition $baba \mathcal{R} \subseteq a^* \mathcal{R}$, we see that $baba = a^* x$, for $x \in \mathcal{R}$. Hence, $baba = a^* x = a^{\dagger} a(a^* x) = a^{\dagger} a baba$.

In the same way as in Theorem 4.3, we prove the following theorem.

Theorem 4.4. If $a, b \in \mathcal{R}$ and $ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

(i) $a^*ab = b(ab)^{\#}ab$,

(ii) $baba = a^*ababa$.

Applying Theorems 4.3 and 4.4, we have that the next dual statements hold.

Theorem 4.5. If $a \in \mathcal{R}$, $b \in \mathcal{R}^{\dagger}$ and $ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $abb^{\dagger} = ab(ab)^{\#}a$,
- (ii) $baba = bababb^{\dagger}$,
- (iii) $\mathcal{R}baba \subseteq \mathcal{R}b^*$ (or $(b^*)^\circ \subseteq (baba)^\circ$).

Theorem 4.6. If $a, b \in \mathcal{R}$ and $ab \in \mathcal{R}^{\#}$, then the following statements are equivalent:

- (i) $abb^* = ab(ab)^{\#}a$,
- (ii) $baba = bababb^*$.

Some equivalent conditions for $aa^{\#} = bb^{\dagger}$ to hold are given in the following theorem in a ring with involution.

Theorem 4.7. If $a \in \mathbb{R}^{\#}$ and $b \in \mathbb{R}^{\dagger}$, then the following statements are equivalent:

(i)
$$aa^{\#} = bb^{\dagger}$$
,

- (ii) $a\mathcal{R} = b\mathcal{R} \text{ and } a^{\circ} = (b^*)^{\circ}$,
- (iii) $a+1-bb^{\dagger} \in \mathcal{R}^{-1}$ and $aa^{\#} = aa^{\#}bb^{\dagger} = bb^{\dagger}aa^{\#}$,
- (iv) $a + 1 bb^{\dagger}, 1 aa^{\#} + bb^{\dagger} \in \mathcal{R}^{-1}$ and $abb^{\dagger} = bb^{\dagger}a$,
- (v) $a + 1 bb^{\dagger}, 1 aa^{\#} + bb^{\dagger} \in \mathcal{R}^{-1}$ and $aa^{\#}bb^{\dagger} = bb^{\dagger}aa^{\#}$.

Proof. (i) \Rightarrow (ii)-(v): This is trivial, when we notice that $(a+1-aa^{\#})(a^{\#}+1-aa^{\#})=1$ gives $a+1-aa^{\#} \in \mathcal{R}^{-1}$.

(ii) \Rightarrow (i): Assume that $a\mathcal{R} = b\mathcal{R}$ and $a^{\circ} = (b^{*})^{\circ}$. Now, we have b = ax for $x \in \mathcal{R}$ and, by $(b^{*})^{\circ} = (1 - bb^{\dagger})\mathcal{R}$, $a^{\circ} = (1 - bb^{\dagger})\mathcal{R}$. Further, $b = aa^{\#}(ax) = aa^{\#}b$ and $a(1 - bb^{\dagger}) = 0$. Thus, $bb^{\dagger} = aa^{\#}bb^{\dagger} = a^{\#}(abb^{\dagger}) = a^{\#}a$.

(iii) \Rightarrow (i): Let $a + 1 - bb^{\dagger} \in \mathcal{R}^{-1}$ and $aa^{\#} = aa^{\#}bb^{\dagger} = bb^{\dagger}aa^{\#}$. The equalities

$$(a+1-bb^{\dagger})bb^{\dagger} = abb^{\dagger} + bb^{\dagger} - bb^{\dagger} = abb^{\dagger}$$

$$(a+1-bb^{\dagger})bb^{\dagger}aa^{\#} = a(bb^{\dagger}aa^{\#}) = aaa^{\#}bb^{\dagger} = abb^{\dagger},$$

imply $bb^{\dagger} = bb^{\dagger}aa^{\#}$. Hence, we get $bb^{\dagger} = aa^{\#}$.

(iv) \Rightarrow (iii): Since $abb^{\dagger} = bb^{\dagger}a$, and the group inverse $a^{\#}$ double commutes with a, then $a^{\#}bb^{\dagger} = bb^{\dagger}a^{\#}$ and $aa^{\#}bb^{\dagger} = bb^{\dagger}aa^{\#}$. From

$$(1 - aa^{\#} + bb^{\dagger})aa^{\#} = aa^{\#} - aa^{\#} + bb^{\dagger}aa^{\#} = bb^{\dagger}aa^{\#}$$
$$(1 - aa^{\#} + bb^{\dagger})aa^{\#}bb^{\dagger} = bb^{\dagger}(aa^{\#}bb^{\dagger}) = bb^{\dagger}aa^{\#},$$

and the condition $1 - aa^{\#} + bb^{\dagger} \in \mathcal{R}^{-1}$, we obtain $aa^{\#} = aa^{\#}bb^{\dagger}$. So, the statements (iii) holds.

(v) \Rightarrow (i): This part can be check in the same way as (iv) \Rightarrow (iii) \Rightarrow (i).

Changing b in previous theorem by b^{\dagger} , by $(b^{\dagger})^{\dagger} = b$, we obtain equivalent conditions for $aa^{\#} = b^{\dagger}b$.

Theorem 4.8. If $a \in \mathbb{R}^{\#}$ and $b \in \mathbb{R}^{\dagger}$, then the following statements are equivalent:

- (i) $aa^{\#} = b^{\dagger}b$,
- (ii) $a\mathcal{R} = b^*\mathcal{R} \text{ and } a^\circ = b^\circ$,
- (iii) $a+1-b^{\dagger}b \in \mathcal{R}^{-1}$ and $aa^{\#} = aa^{\#}b^{\dagger}b = b^{\dagger}baa^{\#}$,
- (iv) $a + 1 b^{\dagger}b, 1 aa^{\#} + b^{\dagger}b \in \mathcal{R}^{-1}$ and $abb^{\dagger} = b^{\dagger}ba$,
- (v) $a + 1 b^{\dagger}b, 1 aa^{\#} + b^{\dagger}b \in \mathcal{R}^{-1}$ and $aa^{\#}b^{\dagger}b = b^{\dagger}baa^{\#}$.

5 Characterization of operators on Hilbert space

Let H be a Hilbert space and $\mathcal{L}(H)$ the set of all linear bounded operators on H. In addition, if $T \in \mathcal{L}(H)$, then T^* , N(T) and R(T) stand for the adjoint, the null space and the range of T, respectively.

In the spirit of previous results, we prove the following one.

Theorem 5.1. Let $A \in \mathcal{L}(H)$ have a closed range and let $B \in \mathcal{L}(H)$. (i) If AB is group invertible, then

 $I + A^{\dagger}(B - A)$ is invertible $\Leftrightarrow AB(AB)^{\#}A = A.$

(ii) If BA is group invertible, then

 $I + A^{\dagger}(B - A)$ is invertible $\Leftrightarrow A(BA)^{\#}BA = A$

and

Proof. (i) Since $A \in \mathcal{L}(H)$ have a closed range, there exists the unique Moore–Penrose inverse $A^{\dagger} \in \mathcal{L}(H)$ of A. The operators A, B and AB have the matrix representations on $H = R(A^*) \oplus N(A)$ of the forms

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} B_1 & B_3 \\ B_4 & B_2 \end{bmatrix} \quad and \quad AB = \begin{bmatrix} A_1B_1 & A_1B_3 \\ 0 & 0 \end{bmatrix},$$

where A_1 is invertible. The Moore–Penrose inverse of A is given by

$$A^{\dagger} = \left[\begin{array}{cc} A_1^{-1} & 0\\ 0 & 0 \end{array} \right].$$

Analogously as in Theorem [7, Theorem 1] for the matrix case, we can verify that AB is group invertible if and only if A_1B_1 is group invertible and $A_1B_1(A_1B_1)^{\#}A_1B_3 = A_1B_3$. In this case,

$$(AB)^{\#} = \left[\begin{array}{cc} (A_1B_1)^{\#} & [(A_1B_1)^{\#}]^2 A_1B_3 \\ 0 & 0 \end{array} \right].$$

Observe that, $AB(AB)^{\#}A = A$ iff $A_1B_1(A_1B_1)^{\#}A_1 = A_1$ iff $A_1B_1(A_1B_1)^{\#} = I$ iff A_1B_1 is invertible iff B_1 is invertible. Then, by

$$I + A^{\dagger}(B - A) = \begin{bmatrix} A_1^{-1}B_1 & A_1^{-1}B_3 \\ 0 & I \end{bmatrix}$$

we deduce that $I + A^{\dagger}(B - A)$ is invertible iff B_1 is invertible.

(ii) Applying (i) to the opposite ring, we get $I + (B - A)A^{\dagger}$ is invertible $\Leftrightarrow A(BA)^{\#}BA = A$. But by Jacobson lemma, $I + (B - A)A^{\dagger}$ is invertible $\Leftrightarrow I + A^{\dagger}(B - A)$ is invertible.

6 Conclusions

In this paper we consider necessary and sufficient conditions related to the reverse order laws $(ab)^{\#} = b^{\#}a^{\dagger}$ and $(ab)^{\#} = b^{\dagger}a^{\#}$ in rings with involution, applying a purely algebraic technique. In the case of linear bounded operators on Hilbert spaces, where the method of operator matrices is very useful, similar results for the reverse order law $(ab)^{\#} = b^{\#}a^{\#}$ are given. In a *-regular ring \mathcal{R} , observe that the assumption $a \in \mathcal{R}^{\dagger}$ is automatically satisfied. It could be interesting to extend this work to the reverse order laws of a triple product.

References

- A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd ed., Springer, New York, 2003.
- [2] C. Cao, X. Zhang, X. Tang, Reverse order law of group inverses of products of two matrices, Appl. Math. Comput. 158 (2004) 489-495.
- [3] C.Y. Deng, Reverse order law for the group inverses, J. Math. Anal. Appl. 382 (2) (2011), 663-671.
- [4] D. S. Djordjević, Unified approach to the reverse order rule for generalized inverses, Acta Sci. Math. (Szeged), 67 (2001), 761-776.
- [5] T.N.E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev. 8 (1966), 518–521.
- [6] S. Izumino, The product of operators with closed range and an extension of the reverse order law, Tohoku Math. J. 34 (1982), 43–52.
- [7] R.E. Hartwig, J. Shoaf Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc. 24(A) (1977), 10–34.
- [8] J.J. Koliha, P. Patrício Elements of rings with equal spectral idempotents, J. Australian Math. Soc. 72 (2002), 137–152.
- [9] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413.

Address:

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

E-mail

D. Mosić: dijana@pmf.ni.ac.rs D. S. Djordjević: dragan@pmf.ni.ac.rs