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Abstract

We investigate some equivalent conditions for the reverse order laws
(ab)* = bla¥ and (ab)* = b*a' in rings with involution. Similar
results for (ab)# = b%a* and (ab)” = b*a” are presented too.
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1 Introduction

Let R be an associative ring with the unit 1, and let a € R. Then a is group
invertible if there is a € R such that

(1) aa®a =a, (2) a®aa® =a”, (5) aa® =a"q;

a™ is a group inverse of a and it is uniquely determined by these equations.
The group inverse a” double commutes with a, that is, ax = za implies
ax = za? [1]. Denote by R¥ the set of all group invertible elements of R.
An involution a¢ — a* in a ring R is an anti-isomorphism of degree 2,
that is,
(@) =a, (a+b)*=a"+0b", (ab)" =b"a".

An element a € R is self-adjoint (or Hermitian) if a* = a.
The Moore—Penrose inverse (or MP-inverse) of a € R is the element
al € R, if the following equations hold [9]:

(1) ad'a=a, (2)d'aa’ =a', (3) (aa")* =aal, (4) (a'a)* =aa.
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There is at most one a' such that above conditions hold. The set of all
Moore-Penrose invertible elements of R will be denoted by RT.

If 6 € {1,2,3,4,5} and b satisfies the equations (i) for all i € d, then b
is an d0—inverse of a. The set of all §—inverse of a is denoted by a{d}. Notice
that a{1,2,5} = {a”} and a{1,2,3,4} = {a'}. If a is invertible, then a#
and al coincide with the ordinary inverse a=! of a. The set of all invertible
elements of R will be denoted by R~!.

For a € R consider two annihilators

a’° ={r € R:azx =0}, °a ={r € R:za=0}.

For invertible elements a,b € R, the inverse of the product ab satisfied
the reverse order law (ab)™! = b~la~!. A natural consideration is to see
what will be obtained if we replace the inverse by other type of generalized
inverses. The reverse order laws for various generalized inverses yield a class
of interesting problems which are fundamental in the theory of generalized
inverses. They have attracted considerable attention since the middle 1960s,
and many interesting results have been obtained [1, 2, 3, 4, 5, 6].

C.Y. Deng [3] presented some necessary and sufficient conditions con-
cerning the reverse order law (ab)# = b#a” for the group invertible linear
bounded operators a and b on a Hilbert space. He used the matrix form of
operators induced by some natural decomposition of Hilbert spaces.

Inspired by [3], in this paper we present equivalent conditions which are
related to the reverse order laws for the group inverses in rings with in-
volution. In particular, we obtain equivalent conditions for (ab)” = b#al
and (ab)#® = bfa# to hold. We also characterize the rules (ab)# = b#a*
and (ab)™ = b*a®. Assuming that a is Moore-Penrose invertible, and that
b is group invertible, we study the reverse order laws (ab)# = (alab)#al,
(ab)? = (a*ab)?a*, (a'ab)” = b7 ala, (a*ab)® = b7ala, (aTab)?al = b7 al
and (a*ab)”a* = b7a*. When we suppose that a is group invertible and b
is Moore-Penrose invertible, we get similar results for the reverse order laws
(ab)# = b (abbD)#, (ab)# = b*(abb*)#, (abb!)# = bbTa¥, (abb*)# = bbia?,
bi(abb?)# = bla® and b*(abb*)” = b*a”. Also, we show that (ab){5} C
(afab){1,5} - a' is equivalent to (ab){5} = (afab){1,5} - af and similar
statements for (ab){5} C (a*ab){1,5} - a*, (ab){5} C b' - (abb’){1,5} and
(ab){5} C b* - (abb*){1,5}.



2 Reverse order laws involving triple products
Several equivalent conditions for (ab)* = (afab)#al and (ab)* = (a*ab)*a*
to hold are presented in the following theorems.

Theorem 2.1. Let b € R and a € R, If atab € R#, then the following
statements are equivalent:

(i) ab € R* and (ab)* = (afab)*al,

(ii) (a'ab)*al € (ab){5},

(iii) abaa’ = ab and (a'ab)*a’aba = ab(a’ab)*ala,
(iv) (aTab){1,5}-a' C (ab){5}.
Proof. (i) = (ii): Obviously.

(ii) = (iii): From the condition (afab)#a' € (ab){5}, we have ab(a'ab)*al =
(atab)#atab. So, ab(a’ab)#ala = (atab)#afaba. Observe that (afab)#al €
(ab){1}, by

ab(aTab)”alab = a(a'ab(a’ab)?alab) = aalab = ab. (1)
Now, we get
abaa’ = abab(a’ab)?alaa’ = abab(aTab)?a’ = ab.
(iii) = (iv): Assume that abaa’ = ab and (a'ab)#ataba = ab(a’ab)#ala.
If (afab)(1®) € (alab){1,5}, then
afab(atab)® = (afab)#alab(atab(afab)?)) = (afab)# (afab(alab) B atab)
= (alab)*alab. (2)
Using the equalities (2) and (iii), we obtain that (afab)®al € (ab){5}:
ab(atab)Pa’ = a(alab(atab)P?))at = aatab(alab)#al
= (ab(a'ab)®a’a)a’ = (aTab)”a' (abaa')
(atab)#atab = (atab) P atab.
Hence, for any (afab)M® e (afab){1,5}, (afab)IPal € (ab){5} and the
statement (iv) holds.

(iv) = (i): Since (afab)? € (afab){1,5}, by (iv), (afab)#a’ € (ab){5}.

The equalities (1) and
((a'ab)*a’ab(aTab)?)a’ = (aTab)#al

imply (afab)#al € (ab){1,2} and the condition (i) is satisfied. O



Theorem 2.2. Let b € R and a € RY. If a*ab € R¥, then the following
statements are equivalent:

(a*ab){1,5} - a* C (ab){5}.

Proof. Using a = (a')*a*a and a* = a*aa’, we verify this result similarly as
in Theorem 2.1. O

The following results concerning (ab)* = b'(abb")# and (ab)” = b*(abb*)*
are actually dual to Theorems 2.1 and 2.2, where dual means ”working in
the opposite ring (R, o) with reverse multiplication a o b = ba”.

Corollary 2.1. Let a € R and b € RY. If abb' € R¥, then the following
statements are equivalent:

(i) ab € R¥# and (ab)# = bf(abb!)#,

(ii) bf(abb?)* € (ab){5},
(iii) b'bab = ab and babb' (abb")# = bbT (abb")#ab,
(iv) bt - (abb'){1,5} C (ab){5}.

Corollary 2.2. Let a € R and b € RY. If abb* € R¥, then the following
statements are equivalent:

(i) ab € R* and (ab)* = b*(abb*)?,

(ii) b*(abb*)* € (ab){5},
(iii) b'bab = ab and babb*(abb*)# = bb* (abb*)*ab,
(iv) b* - (abb*){1,5} C (ab){5}.

In the following theorem, we prove that (ab){5} C (aTab){1,5} - a' is
equivalent to (ab){5} = (a'ab){1,5} - a.

Theorem 2.3. Letb € R and a € RY. If ab,atab € R¥, then the following
statements are equivalent:

(i) (ab){5} C (alab){1,5} -al,



(ii) (ab){5} = (alab){1,5}-a'.

Proof. (i) = (ii): Assume that (ab){5} C (a'ab){1,5}-a’. Because (ab)? €
(ab){5}, then there exists (afab)®) € (afab){1,5} such that (ab)# =
(afab)19)at. Since the equalities (2) hold again, we obtain

(atab)# = (afab)#atab(atab)# = (aTab) D alab(alab)?)
which implies
(atab)ta’ = ((a'ad) P al)ab((a'ab)Dal) = (ab)*ab(ab)* = (ab)*.

By Theorem 2.1, we deduce that (a'ab){1,5} - a' C (ab){5}. Hence, the
condition (ii) holds.
(ii) = (i): This is obvious. O

Analogously to Theorem 2.3, we obtain the following theorem.

Theorem 2.4. Letb € R and a € RY. If ab,a*ab € R¥, then the following
statements are equivalent:

(i) (ab){5} C (a*ab){1,5} - a*,
(i) (ab){5} = (a*ab){1,5} - a*.

Applying Theorems 2.3 and 2.4 to the opposite ring (R, o), we get the
dual statements.

Corollary 2.3. Leta € R and b € RY. If ab, abbt € R#, then the following
statements are equivalent:

(i) (ab){5} < bT - (abbF){1,5},
(ii) (ab){5} = b' - (abb?){1,5}.

Corollary 2.4. Leta € R and b € RY. If ab, abb* € R#*, then the following
statements are equivalent:

(i) (ab){5} C b* - (abb"){1,5},
(ii) (ab){5} = b* - (abb*){1,5}.

Now, we consider the conditions which ensure that the reverse order laws
(atab)® = b*a'a and (abb’)# = bbTa” hold.



Theorem 2.5. If a € R and b € R¥, then the following statements are
equivalent:

(i) a'ab € R* and (aTab)?® = b*ala,
(ii) afab = ba'a.
Proof. (i) = (ii): From the assumption (afab)# = b#ala, we obtain
alabb®a’a = b7 a'aa’ab = b7 alab (3)

and
v*ala = b*ala(atab)b®ala = b7 (aTabb¥ala) = b7 b7 alab. (4)

The equalities (3) and (4) imply
bata = b*(b*ala) = V267 b7 alab = bb* alab. (5)

and
(aTabb” a'a)b = b¥ alabb = b(b#b¥ alab)b = bb¥ alab. (6)

Since
alab = a'ab(aTab)?alab = aTabbalaa’ab = a'abb?” alab,
by (6) and (5), we get
alab = bb*alab = ba'a.

Hence, the condition (ii) holds.

(ii) = (i): Assume that afab = ba'a. Because the group inverse b#
double commutes with b, we deduce that afab# = b#ata and afabb# =
bb#ata. We can easily verify that b#afa € (afab){1,2,5}. O

Remark 2.1 Applying Theorem 2.5 with a projection p = a'a (hence
p = p™), for b € R¥, we recover the equivalence pb € R* and (pb)* = b¥p
< pb = bp.

Dually to Theorem 2.5, we can check the following result.

Corollary 2.5. If a € R¥ and b € RY, then the following statements are
equivalent:

(i) abb! € R* and (abbl)# = bbia¥,
(ii) abb’ = bbla.



Notice that the condition (ii) of Theorem 2.5 can be written as aj'b = baj,
where af = 1— a'a. The condition abb! = bb'a of Corollary 2.5 is equivalent
to ab™ = bTa, where b7 = 1 —bbt. If a is EP element (a € R and a'a = aa'
or equivalently a € RTNR# and a' = a¥), then a™ = aj = ay is the spectral
idempotent of the element a.

The following results give the equivalent conditions to (a*ab)” = b*ala
and (abb*)# = bbfa¥.

Theorem 2.6. If a € RY and b,a*ab € R¥, then the following statements
are equivalent:

(i) (a*ab)? =b*ala,
(ii) a*ab = ba'ta.
Proof. (i) = (ii): Suppose that (a*ab)” = b#a'a. Then
b ala = b#a'a(a*ab)b?ala = b¥ (a*abb™ ala) = b*b*alaa*ab = b*b*a*ab
gives

a*ab = (a*ab)”a*aba*ab = b"alaa*aba*ab = b(b" b* a*ab)a*ab
bb* aaa*ab = bb* a*ab = bb(b* b a*ab) = bbb* a'a = bala.

(ii) = (i): If a*ab = ba'a, we get
a*ab = ba'a = bb™ (baTa) = bb a*ab.

Now, from

(a*ab)? (a*ab)[(a*ab)?])? = bb¥ a*ab[(a*ab)¥]?

bb* ata(a*ab|(a*ab)®]?) = bb*ala(a*ab)”
and

vrala = 77 (ba'a) = b7 b7 (a*ab) = b7 b7 (a*ab)a*ab(a*ab)™
b7 b7 balaa*ab(a*ab)® = b7 (a*ab)(a*ab)® = b¥ba'a(a*ab)?,

we obtain that (a*ab)# = b¥ala. O
The dual statement to Theorem 2.6 also holds.

Corollary 2.6. If b € R and a,abb* € R¥, then the following statements
are equivalent:



(i) (abb*)# =bbla,

(ii) abb* = bbla.
In the following theorem, we give necessary and sufficient conditions for
(afab)#al = b7 a' to be satisfied.
Theorem 2.7. If a € R and b,atab € R#, then the following statements
are equivalent:
(i) (atab)*al = b*al,
(ii) ba'a = afabala,
(iii) ba'aR C a*R (or °(a*) C °(bala) ).
Proof. (i) = (ii): Let (afab)”a' = b*a’. Now the equality

alab = a’ab(aTab)”alab = ((aTab)¥aaba’ab = b7 a'aba’ab

implies
v*alaba’abata = b7 b(b7 a'abatab)a’a
b*ba'aba’a = b(b"aMabaTa = b((aTab)*alab)ala
ba'ab((a'ab)*al)a = baTabb™ala.

(aTab)a’a =

Using this equality and
v#al = (aTab)®a’ = (aTab)*alab(alab)®al = b7 alabbal,

we obtain
ataba‘a = ba'abb®ala = b2(b#aTabb#aT)a = bv’b"ala = bala.
So, the statement (ii) is satisfied.
(ii) = (i): Applying the hypothesis ba'a = afabala, we get
b b7 (ba'a)a’ = b7b7 (alab)a’aa’ = b7 b7 alab((a'ab)*alab)al
v b7 (alaba'a)b(aTab) ¥ al = b7 b7 ba'ab(a’ab)” al
b*alab(atab)al.

L

(7)

Since
(aTab)? = aTab(aTab)#]? = aTa(aTab(a’ab)?]?) = aTa(aTab)?,



then
(aTab)®a’ = (aTaba’a)b[(a’ab)?Pa’ = batab[(a’ab)®]3al
= bb” (bal ) [(a'a )#]3 "= bb*alabalab](atab)”Pal
= bb*ala(alabalab[(aTab)?]?)a’ = b7 (ba'a)(alab) ¥ al
= b*alablaTa(a’ab)®)al = b7 alab(aTab)?al,
which yields, by (7), (aTab)#al = b#al.

(ii) < (iii): The condition ba'a = a'aba'a gives ba'aR C a'R = a*R.
Conversely, from bafaR C a*R, we conclude that bata = a*z for some
z € R. Now, bafa = a*z = ata(a*z) = alabala. O

Obviously, for condition (ii) of Theorem 2.7, we have ba'a = afaba’a <
ajb(l—af) =0 afb(l —a]) = (1 —af)a]d.

The following theorem can be proved in the similar manner as Theorem

2.7.

Theorem 2.8. If a € Rt and b,a*ab € R¥, then the following statements
are equivalent:

(i) (a*ab)#a* = b¥*a*,
(ii) ba*a = a*aba*a (or ba'a = a*abata ).

Using Theorems 2.7 and 2.8 to the opposite ring, we obtain the dual
results.

Corollary 2.7. If b € R and a,abb’ € R¥, then the following statements
are equivalent:

(i) bf(abbh)# = bla?,
(ii) bbTa = bbiabb!,
(iii) Rbbla C Rb* (or (b*)° C (bbTa)®).

Note that bbTa = bblabb! < (1 —bT)abT = 0 < (1—bF)abl = ab™(1—bF).
Corollary 2.8. If b € R and a,abb* € R¥, then the following statements
are equivalent:

(i) b*(abb*)# = b*a™,
(ii) bb*a = bb*abb* (or bbia = bblabb* ).
Notice that the conditions of Theorem 2.5 (Theorem 2.6, Corollary 2.5,

Corollary 2.6, respectively) imply the conditions of Theorem 2.7 (Theorem
2.8, Corollary 2.7, Corollary 2.8, respectively)



3 Reverse order laws (ab)* = b*al and (ab)” = b"a*

Assuming that a is Moore-Penrose invertible, and that b is group invertible
in a ring with involution, equivalent conditions to the reverse order law
(ab)? = b”a' are presented in the following theorem.

Theorem 3.1. Ifa € R and b, ab € R¥#, then the following statements are
equivalent:

(i) (ab)? = b*al,
(ii) (ab)#a = b*ata and a*ab = a*abaa’,
(iii) (ab)”a = b*a'a and aTab = alabaal,
(iv) b(ab)® = bb"al and abb” = bb¥ abb” .
Proof. (i) = (ii): The hypothesis (ab)# = b*a' gives (ab)*a = b*a'a and
a*ab = a*ab((ab)¥ab) = a*abab(ab)” = a*ababb™ a'
a* (ababb™ aMaal = a*abaal.

Hence, the condition (ii) holds.
(ii) = (iii): Because (ab)#a = b*ala and a*ab = a*abaa’, then
atab = a' (a")*(a*ab) = al(a")*a*abaa’ = a'abaa’.
So, (iii) is satisfied.
(iii) = (i): Suppose that (ab)*a = b*a'a and a'ab = a'abaal. First, we
show that b*al € (ab){5}:

(b*ata)b = (ab)*ab = (ab)*a(a’ab) = (ab)?aa'abaal
= ((ab)*ab)aa’ = ab((ab)*a)a’ = abb” alaal
= abb?al.

Further, from
ab = ab((ab)¥a)b = abb” a'ab
and

vral = (b*aa)a’ = (ab)?aa’ = ((ab)#a)b((ab)?a)a’
v*alabb”alaa’ = b7 alabb™al,

we deduce that b%al € (ab){1,2}, i.e. (ab)¥ = b¥al.

(i) < (iv): This equivalence can be proved similarly as previous parts.
O
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The condition afab = a'abaa’ in Theorem 3.1 can be replaced with
equivalent conditions Rafab C Ra* or (a*)° C (a'ab)°. Also, the condition
abb® = bb#abb# in Theorem 3.1 can be replaced with equivalent conditions
abb?R C bR or °b C °(abb™).

Similarly as in the proof of Theorem 3.1, we get necessary and sufficient
conditions which ensure that (ab)?” = b¥a* is satisfied.

Theorem 3.2. Ifa € R and b,ab € R¥, then the following statements are
equivalent:

() (ab)# = ba,

(ii) (ab)”a = b*a*a and a*ab = a*abaal,
(iii) (ab)”a = b*a*a and a'ab = a'abaal,
(iv) b(ab)* = bb*a* and abb? = bb* abb™ .

If we suppose that a is EP element in Theorem 3.1 or that a € Rf N R#
and a* = a¥ in Theorem 3.2, we obtain new characterizations of the classical
reverse order law (ab)™ = b a?.

Dually to Theorems 3.1 and 3.2, equivalent conditions for (ab)” = bfa*
and (ab)# = b*a™ are presented.

Corollary 3.1. If b € R and a,ab € R¥, then the following statements
are equivalent:

(i) (ab)# = bfat,

(ii) (ab)”a = b'a™a and a¥ab = o™ abaa™,
(iii) b(ab)” = bbla™ and abb’ = bTbabb!,
(iv) b(ab)® = bbTa™ and abb* = bTbabb*.

In Corollary 3.1, the condition a*ab = a*abaa™ can be replaced with
Ra*ab C Ra or a® C (a?ab)°, and the condition abbl = bTbabb’ can be
replaced with abb’R C b*R or °(b*) C° (abb?).

Corollary 3.2. If b € R and a,ab € R¥, then the following statements
are equivalent:

(i) (ab)” =0*a,

(ii) (ab)?”a = b*a*a and a™ab = a* abaa™,

11



(iii) b(ab)* = bb*a™ and abb! = bibabbT,
(iv) b(ab)# = bb*a™ and abb* = bibabb*.

Several sufficient conditions for the reverse order law (ab)# = b#al are
presented in the next results.

Theorem 3.3. Suppose that a € R and b, ab, a’ab, abb# a*ab € R#. Then
each of the following conditions is sufficient for (ab)# = b*al to hold:

(i) (ab)*a = b"ala and a’ab = baa',
(ii

)

) (ab)# = (afab)#at and (atab)# = v#ala,
(iif) (

)

)

ab)# = b# (abb™)# and (abb?)# = bb#al,
(iv) b(ab)# = bb¥al = (abb¥)#,
(v) (ab)* = (a*ab)*a* and (a*ab)” = b¥(a*a)?.

Proof. (i) Assume that (ab)*a = b*a'a and afab = baa’. As ala is idempo-
tent, then afab = afabaa’ and (ab)# = b#a' by (iii) of Theorem 3.1.
(ii) From the hypothesis (ab)* = (a'ab)*a’ and (a'ab)” = b7 ala, we
get
(ab)? = (aTab)®a’ = b7 alaa’ = v7*al.

(iii) It follows as part (ii).
(iv) Suppose that b(ab)# = bb#a! = (abb¥)#. Then

abb® = (abb™)* (abb™)? = bb* al (abb™)? = (bb7)2al (abb™)? = bb7 abb” .

By part (iv) of Theorem 3.1, (ab)* = b*al.
(v) The condition a € R implies a*a € R¥ and af = (a*a)#a* (see [8]).
The rest of this part follows as (ii). O

The following theorem can be proved in the similar way as Theorem 3.3.

Theorem 3.4. Suppose that a € Rt and b, ab, a’ab, abb¥  a*ab € R¥*. Then
each of the following conditions is sufficient for (ab)? = b*a* to hold:

(i) (ab)¥a =b"a*a and a'ab = baal,
(ii) (ab)# = (a*ab)#a* and (a*ab)¥ = b¥ala,

(iii) (ab)” = b¥ (abb™)* and (abb™)* = bb*a*,
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(iv) b(ab)® = bb¥a* = (abb™)?,
(v) (ab)* = (a'ab)#al and (atab)? = b¥a*a.
Notice that the dual results to Theorems 3.3 and 3.4 are satisfied too.

Corollary 3.3. Suppose that b € R and a,ab, a*ab, abb', abb* € R#*. Then
each of the following conditions is sufficient for (ab)# = bta# to hold:

(i) b(ab)# = bbta® and bTba = abbl,

(ii) (ab)? = (a¥ab)#a® and (a¥ab)* = bla*a,
(iii) (ab)” = bl (abb")# and (abb))# = bbia™,
(iv) (ab)*a = bla*a = (a™ab)?,

(v) (ab)? = b*(abb*)* and (abb*)* = (bb*)#a?

Corollary 3.4. Suppose that b € R and a, ab, a#ab, abb', abb* € R#. Then
each of the following conditions is sufficient for (ab)? = b*a™ to hold:

(i) b(ab)* = bb*a™ and biba = abb’,

(ii) (ab)? = (a™ab)®a” and (a*ab)” = b*a”a,
(iii) (ab)? = b*(abb*)* and (abb*)# = bbla?,
(iv) (ab)*a = b*a™a = (a™ab)?,

(v) (ab)# = bf(abb®)# and (abb*)* = bb*a™.

Remark 3.1. Combining the conditions of Theorem 2.1 and Theorem
2.7, we get the sufficient conditions for the reverse order law (ab)# = b#al
to hold. If we combine the conditions of Corollary 2.1 and Corollary 2.7, we
obtain the sufficient conditions for (ab)# = bfa* to be satisfied.

Sufficient conditions for the reverse order law (ab)* = b*a* ((ab)” =
b*a™) to hold can be obtained combining the conditions of Theorem 2.2 and
Theorem 2.8 (Corollary 2.2 and Corollary 2.8).
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4 Other results

More specific results are proved in this section.

Theorem 4.1. If a € R and b,ab € R¥#, then the following statements are
equivalent:

(i) b” = (ab)™a,
(ii) b = aa'd = ba'a and abb? = bb*a,
(iii) bR C aR, aa’d = ba'a and abb™ = bb*a,
(iv) a® C V°, aa’b = ba'a and abb?” = bb#a.
Proof. (i) = (ii): Using the equality b* = (ab)”a, we observe that
ba'a = b*b7ala = b2 (ab) " aala = b2(ab)"a = b2 = b
and b = b7b? = ((ab)"ab)b = ab(ab)*b which yields
b = ab(ab)®b = aa'(ab(ab)?b) = aa'b.
Also, by (i), we get
abb™ = (ab(ab)™)a = ((ab)¥ a)ba = b7 ba.
So, the condition (ii) holds.
(ii) = (i): Suppose that b = aa'b = baTa and abb” = bb#a. Then, from
b(ab)™ab = b7 bb(ab)¥ ab = b7 ba' (ab(ab)ab) = b¥ (ba'a)b = b7 bb = b
and
(ab)*ab(ab)”a = (ab)¥a,
we conclude that (ab)#a € b{1,2}. Since
b(ab)¥ a = b[(ab)?]?aba = b([(ab)?]?ab)(bb¥a) = (b(ab)¥ ab)b? = bb*
and
ab(ab)? = (abb™)b(ab)? = bb¥ ab(ab)? = b (b(ab)” ab) = bb,

we have b(ab)*a = ab(ab)? = (ab)*ab, that is, (ab)#a € b{5}. Hence, the
condition (i) is satisfied.

(ii) < (iii): We will show that b = aa'b is equivalent to bR C aR. First,
b = aa'b implies bR C aR. Conversely, if bR C aR, then, for some z € R,
b = ax which gives b = aa'(az) = aa'd.

(ii) < (iv): It follows from b = ba'a iff b(1 —afa) = 0 iff (1 —afa)R C b°
iff a® C b°. O
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The next result follows dually to Theorem 4.1.

Theorem 4.2. Ifb € R and a,ab € R¥, then the following statements are
equivalent:

(i
(i) aa™b = baa™ and a = ab'b = bbla,

a’ = b(ab)*,

)

)
(iii)) aR C bR, aa®b = baa# and ab'b = bbla,
(iv)

b° C a°, aa*b = baa® and ab'b = bbla.

Some conditions of Theorem 4.1 and Theorem 4.2 can be written as
aa’b = bata and abb? = bb#a < aTb = ba] and ab™ = b"a;
aa™b = baa” and ab'b = bb'a < a™b = ba™ and ab] = b a.

Theorem 4.3. Ifa € R, b € R and ab € R¥, then the following statements
are equivalent:

(i) a'ab = b(ab)*ab,
(ii) baba = a'ababa,
(iii) babaR C a*R (or °(a*) C °(baba) ).
Proof. (i) = (ii): Using a'ab = b(ab)#ab, we have
(aTab)aba = b((ab)” abab)a = baba.

Thus, the equality (ii) is satisfied.
(ii) = (i): Since baba = a'ababa, then

a'ab = aTabab(ab)® = (a'ababa)b[(ab)*]? = babab[(ab)¥]* = b(ab)¥ ab.

(ii) = (iii): It follows by a*R = afR.
(iii) = (ii): By the condition babaR C a*R, we see that baba = a*x, for
x € R. Hence, baba = a*x = a'a(a*z) = a'ababa.

O
In the same way as in Theorem 4.3, we prove the following theorem.

Theorem 4.4. If a,b € R and ab € R¥, then the following statements are
equivalent:

(i) a*ab = b(ab)*ab,
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(ii) baba = a*ababa.

Applying Theorems 4.3 and 4.4, we have that the next dual statements
hold.

Theorem 4.5. Ifa € R, b € R and ab € R¥, then the following statements
are equivalent:

(i) abb’ = ab(ab)?a,
(ii) baba = bababb',
(iii) Rbaba C Rb* (or (b*)° C (baba)® ).

Theorem 4.6. If a,b € R and ab € R¥, then the following statements are
equivalent:

(i) abb* = ab(ab)*a,
(ii) baba = bababb*.

Some equivalent conditions for aa# = bb to hold are given in the fol-
lowing theorem in a ring with involution.

Theorem 4.7. If a € R¥ and b € R, then the following statements are
equivalent:

(i) aa™ = bbi,

(ii) aR =bR and a® = (b*)°,

)
)
(iii) a+1—0bbt € R7! and aa” = aa®bb! = bblaa™,
(iv) a+1—bbl,1 —aa” +bbf € R~ and abb' = bbla,
)

(v) a+1—0bb',1 —aa” +bb' € R~ and aa™bbl = bblaa™.

Proof. (i) = (ii)-(v): This is trivial, when we notice that (a+1—aa™)(a? +
1—aa”)=1givesa+1—aa” € R™L

(ii) = (i): Assume that aR = bR and a° = (b*)°. Now, we have b = ax
for x € R and, by (b*)° = (1 — bR, a® = (1 — bbY)R. Further, b =
aa®(ar) = aa™b and a(1—bb") = 0. Thus, bbl = aa”bb! = a* (abb!) = a”a.

(iii) = (i): Let a +1 — bb' € R™! and aa® = aa®bb’ = bbfaa®. The
equalities

(a+1—bb" )bb' = abb’ + bb" — bb! = abb
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and
(a+1—bbbb'aa® = a(bb’aa”) = aaa™bb' = abb',

imply bb! = bbfaa®. Hence, we get bbl = aa™.

(iv) = (iii): Since abb! = bb'a, and the group inverse a* double com-
mutes with a, then a#bb" = bbfa# and aa#bbt = bbtaa#. From

(1 —aa® + bbNaa® = aa® — aa® + bbTaa™ = bblaa™,
(1 — aa” + bb"aa™bb" = bb' (aa™bb') = bblaa™,

and the condition 1 — aa® + bb! € R™!, we obtain aa# = aa®bb'. So, the
statements (iii) holds.

(v) = (i): This part can be check in the same way as (iv) = (iii) = (i).

O

Changing b in previous theorem by bf, by (bT)T = b, we obtain equivalent
conditions for aa® = bTb.

Theorem 4.8. If a € R¥ and b € R, then the following statements are
equivalent:

(i) aa™ = b'b,
(ii

(iii) @ +1—b'b € R™! and aa™ = aa™b'b = bibaa”,

aR =b"R and a° = b°,

)
)
(iv) a+1—b'b,1—aa” +b'b € R™! and abb’ = blba,
(v) a+1—0b'b,1 —aa” +b'b e R~ and aa™b'b = bibaa™.

5 Characterization of operators on Hilbert space

Let H be a Hilbert space and L(H) the set of all linear bounded operators
on H. In addition, if T' € L(H), then T, N(T) and R(T) stand for the

adjoint, the null space and the range of T, respectively.
In the spirit of previous results, we prove the following one.

Theorem 5.1. Let A € L(H) have a closed range and let B € L(H).
(i) If AB is group invertible, then

I+ AT(B — A) is invertible & AB(AB)¥ A= A.
(ii) If BA is group invertible, then
I+ AT(B — A) is invertible < A(BA)*BA= A
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Proof. (i) Since A € L(H) have a closed range, there exists the unique
Moore-Penrose inverse AT € L(H) of A. The operators A, B and AB have
the matrix representations on H = R(A*) & N(A) of the forms

o A1 0 N By Bj N AlBl AlBg
A=[ B 0] B[ B B an-| A 4],

where A; is invertible. The Moore—Penrose inverse of A is given by

AT 0
T 1
A_[ i O]

Analogously as in Theorem [7, Theorem 1] for the matrix case, we can
verify that AB is group invertible if and only if Ay By is group invertible and
AlBl (AlBl)#AlBg = AlBg. In this case,

(ABY* = [ (1BU* (A B)#A B ] .

Observe that, AB(AB)#A = Aiff AlBl(AlBl)#Al = A, iff AlBl(AlBl)# =
1 iff A1 By is invertible iff By is invertible. Then, by

—1 -1
I+AT(B—A):[A1 B A 33],

0 1

we deduce that I + Af(B — A) is invertible iff By is invertible.

(i) Applying (i) to the opposite ring, we get I + (B — A)AT is invertible
& A(BA)#BA = A. But by Jacobson lemma, I 4 (B — A)AT is invertible
& I+ AT(B — A) is invertible. O

6 Conclusions

In this paper we consider necessary and sufficient conditions related to the
reverse order laws (ab)® = b*al and (ab)” = bla® in rings with involu-
tion, applying a purely algebraic technique. In the case of linear bounded
operators on Hilbert spaces, where the method of operator matrices is very
useful, similar results for the reverse order law (ab)# = b#a” are given. In
a *-regular ring R, observe that the assumption a € R is automatically
satisfied. It could be interesting to extend this work to the reverse order
laws of a triple product.
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